Time-Space Hardness for Learning Problems

Avishay Tal (Stanford)

Based on joint works with

Sumegha Garg, Gillat Kol & Ran Raz
Learning – The Streaming Model

Black Box

(0,1,1,0,1) → f → 0

Learner

stream of examples

[Shamir’2014]
[Steinhardt-Valiant-Wager'2015]
Examples of Learning Problems

Parity Learning: for $a, x \in \{0,1\}^n$

$$f_x(a) = \langle a, x \rangle \pmod{2}$$

DNF Learning: f is a small size DNF formula

Decision Tree Learning:

f is a small size decision tree

Junta Learning:

f depends only on $\ell \ll n$ of the input bits.
Parity Learning Problem

\[f_x(a) = \langle a, x \rangle \pmod{2} \]

\(x \in \{0,1\}^n \) is **unknown** to the learner

Given a stream of examples
\((a_1, b_1), (a_2, b_2), (a_3, b_3), \ldots, \)
where \(a_i \in \mathbb{R} \{0,1\}^n \) and \(b_i = \langle a_i, x \rangle \),
the learner needs to learn \(x \) with high probability.
Parity Learning Problem

\[f_x(a) = \langle a, x \rangle \pmod{2} \]

\(x \in_R \{0,1\}^n \) is chosen uniformly at random
\(x \) is unknown to the learner

Given a stream of examples
\((a_1, b_1), (a_2, b_2), (a_3, b_3), \ldots,\)
where \(a_i \in_R \{0,1\}^n \) and \(b_i = \langle a_i, x \rangle \),
the learner needs to learn \(x \) with high probability.
Algorithms for Parity Learning:

\[f_x(a) = \sum_{i=1}^{n} a_ix_i \pmod{2} \]

1. Gaussian Elimination
\(O(n^2) \) memory bits, \(O(n) \) samples.

2. Trying all possibilities
\(O(n) \) memory bits, \(O(2^n \cdot n^2) \) samples.

Raz’s Breakthrough

Theorem [Raz’16]: Any algorithm for parity learning requires either \(\Omega(n^2) \) memory bits or an exponential number of samples.
Sparse Parities

\[f_x(a) = \sum_{i=1}^{n} a_i x_i \pmod{2} \]

Could we learn better if we knew that
\((x_1, \ldots, x_n)\) is \(\ell\)-sparse (i.e., \(\sum_{i=1}^{n} x_i = \ell\))?

Note: any \(\log(n)\)-sparse parity is also:
- \(O(n)\) size DNF formula,
- \(O(n)\) size decision-tree,
- Junta on \(\log(n)\) variables.

Lower bounds for learning \(\log(n)\)-sparse parities

Lower bounds for learning all of the above
Upper Bounds

\[f_x(a) = \sum_{i=1}^{n} a_i x_i \pmod{2} \]

\[\sum_{i=1}^{n} x_i = \ell \]

1. Trying all possibilities:

\[O\left(\binom{n}{\ell} \cdot n^2\right) \approx n^{\ell+2} \] samples

\[O(\ell \cdot \log n) \] memory bits

2. Record and Eliminate (like Gaussian Elim.)

i. Record \(O(\ell \cdot \log n) \) equations in memory.

ii. Check which of all possible \(\ell \)-sparse vectors satisfies the recorded equations.

\[O(\ell \cdot \log n) \] samples

\[O(n\ell \cdot \log n) \] memory bits
Algorithm #3: $O(n)$ memory and $\ell^{O(\ell)}$ samples.

Can we learn $\log(n)$-sparse parities in $O(n)$ memory and polynomial number of samples? **No!**

Theorem [Kol-Raz-T’17]

Any algorithm for ℓ-sparse parity learning requires either $\Omega(n \cdot \ell^{0.99})$ memory bits or $\ell^{\Omega(\ell)}$ samples.

\Rightarrow $\log(n)$-sparse parity learning requires either $\Omega(n \cdot \log^{0.99} n)$ memory or $n^{\Omega(\log \log n)}$ samples.
Motivation: Cryptography

[Raz 16, Valiant-Valiant 16]

Applications to Bounded Storage Crypto:

Encryption/Decryption scheme with:

Key’s length: n

Encryption/Decryption time: n

Unconditional security, if the attacker’s memory size is at most $n^2 / 10$

Previous works assumed that the attacker’s memory size is at most linear in the time needed for encryption/decryption
Motivation: Cryptography

[Raz 16, Valiant-Valiant 16, Kol-Raz-T 16]

Applications to Bounded Storage Crypto:

Encryption/Decryption scheme with:

Key’s length: ℓ

Encryption/Decryption time: n

Unconditional security, if the attacker’s memory size is at most $o(n \cdot \ell)$

In the second part of the talk:

Key’s length: n

Encryption/Decryption time: ℓ

Secure against memory size $o(n \cdot \ell)$
Motivation: Complexity Theory

Time-Space Lower Bounds have been studied in many models

[Beame-Jayram-Saks 98, Ajtai 99, Beame-Saks-Sun-Vee’00, Fortnow 97, Fortnow-Lipton-van Melkebeek-Viglas05, Williams’06,...]

Main difference:
the online model is easier to prove lower bounds against, since the input is read only once.
Each layer represents a time step. Each vertex represents a memory state of the learner. Each non-leaf vertex has 2^{n+1} outgoing edges, one for each $(a, b) \in \{0,1\}^n \times \{0,1\}$.
The Branching Program (BP) Model

A sequence of random examples \((a_1, b_1), (a_2, b_2)\) ... defines a computation path in the BP. The path finally reaches a leaf \(v\) and outputs \(\tilde{x}_v\), a guess for the value of \(x\). The program is successful if \(x = \tilde{x}_v\).
An **ABP** is a **BP** where each vertex \(v \) "remembers" a set of **linear equations** \(L_v \) in the variables \(x_1, \ldots, x_n \), such that, if \(v \) is reached by the computation-path then all equations in \(L_v \) are satisfied (by the true unknown \(x \)).
Accurate Affine BPs

Let V_i be the vertex reached by the computational path of the ABP in layer i. V_i is a random variable that depends on $x, a_1, ..., a_i$.

$P_{x|V_i=v} = \text{the distribution of } x \text{ conditioned on reaching a specific vertex } v \text{ in layer } i$.

Accurate ABP: for every v, $P_{x|v}$ is close to uniform over the set of (ℓ-sparse) solutions to the eqs L_v.
Proof Plan

We follow Raz’s two steps plan:

1. Simulate any BP for sparse parity learning with an accurate ABP.
2. Prove that ABP for sparse parity learning must be either wide or long.

Fix some parameter \(k \approx \ell \).

In the ABP, all vertices will be labeled with at most \(k \) equations. Once we reach a vertex with \(k \) equations in the ABP we declare success.
Layer by layer, we convert the BP to an ABP. For \(i = 1, \ldots, m \), we convert the \(i \)-th layer of the program. Every vertex \(v \) in the \(i \)-th layer is split into many vertices by regrouping the edges entering \(v \).
We *partition* the edges going into \mathbf{v} to (not too many) groups, and associate with each group a set of *accurate* equations.
Each edge \(e = (u, v) \) going into \(v \) “remembers” a set of equations \(L_e := L_u \cup \{(a_e, b_e)\} \).

Either:

1. There exists an equation \(\langle a, x \rangle = b \) that is shared by many of the edges.
2. \(P_{x|v} \) is close to uniform (over all \(\ell \)-sparse vectors).
Main Lemma: Either

1. There exists an equation \(\langle a, x \rangle = b \) that is shared by many of the edges.
2. \(P_{x|v} \) is close to uniform (over all \(\ell \)-sparse vectors).

Applying the main lemma recursively \(k' \leq k \) times, we find a large fraction of the edges with common eqs
\[
\langle a_1, x \rangle = b_1, \ldots, \langle a_{k'}, x \rangle = b_{k'},
\]
s.t. conditioned on passing through one of these edges, \(x \) is close to uniform over all \(\ell \)-sparse solutions to the eqs.
Proof on White Board
Recall: all subspaces in the **Affine BP** are defined by at most k equations. **Success** = learned k equations.

Fix a node v in the **Affine BP** with k linearly independent eqs.

[Raz’16]: prob. of reaching v is at most $m^k \cdot 2^{-k(n-2k)}$

⇒ To succeed whp, the width should be $\Omega \left(\frac{2^{k(n-2k)}}{m^{k+1}} \right)$.
Proof on White Board
Main Theorem: Learning $\log(n)$-sparse parities requires either $\Omega(n \cdot \log^{0.99} n)$ memory bits or $n^{\Omega(\log \log n)}$ number of samples.

Implies same bounds for learning

- $O(n)$ size DNF formula
- $O(n)$ size Decision trees
- Juntas on $\log(n)$ variables

Open: proving tight samples-memory hardness for learning DNFs, Decision Trees, or Juntas
Can we generalize the lower bounds to hold for problems not involving parities?

[Raz’17, Moshkovitz-Moshkovitz’17, Moshkovitz-Moshkovitz’18]: Yes

A new and general proof technique (we shall focus on Raz’s proof technique)

As a special case: a new proof for the memory-samples lower bound for parity learning.

[Garg-Raz-T’18, Beame-Oveis Gharan-Yang’18]: Further generalizations of the method & more applications
A Learning Problem as a Matrix

\(A, X \) : finite sets
\(X \) : concept class
\(A \) : possible samples

\(M : A \times X \rightarrow \{-1,1\} \) : a matrix
\(x \in_R X \) is chosen uniformly at random
A learner tries to learn \(x \) from a stream
\((a_1, b_1), (a_2, b_2) \ldots\), where \(\forall t : a_t \in_R A \) and \(b_t = M(a_t, x) \)
Thm [Garg-Raz-T’18] Assume that any submatrix of M of fraction $2^{-k} \times 2^{-\ell}$ has bias of at most 2^{-r}.

Then, any learning algorithm for the learning problem defined by M requires either:

- $\Omega(k \cdot \ell)$ memory bits,
- or $2^{\Omega(r)}$ samples.

Independently, [Beame-Oveis Gharan-Yang’18] got a similar result.
Applications of Extractor-Based Theorem

• **Learning Parities**

• **Learning Sparse Parities** and implications

• **Learning from low-degree equations**: A learner tries to learn \(x = (x_1, \ldots, x_n) \in \{0,1\}^n \), from random polynomial equations of degree at most \(d \), over \(\mathbb{F}_2 \).

 \[\Omega(n^{d+1}) \] memory or \(2^{\Omega(n)} \) samples

• **Learning low-degree polynomials**: A learner tries to learn an \(n \)-variate multilinear polynomial \(p \) of degree at most \(d \) over \(\mathbb{F}_2 \), from random evaluations of \(p \) over \(\mathbb{F}_2^n \).

 \[\Omega(n^{d+1}) \] memory or \(2^{\Omega(n)} \) samples

and more...
Technique to Prove Extractor Property

M: \(A \times X \rightarrow \{-1,1\}\) : the learning matrix

Def’n: We say that the columns of \(M\) are \((\epsilon, \delta)\)-almost orthogonal if for each column \(x\), at most \(\delta \cdot |X|\) of the columns \(x' \in X\) have \(\langle M_x, M_{x'} \rangle \geq \epsilon \cdot |A|\).

Claim: Suppose the columns of \(M\) are \((\epsilon, \delta)\)-almost orthogonal, for \(\delta \leq \epsilon\). Then, learning requires either

\[
\Omega \left(\log \left(\frac{1}{\epsilon} \right) \cdot \log \left(\frac{1}{\delta} \right) \right) \text{ memory bits}
\]

or

\[
\text{poly} \left(\frac{1}{\epsilon} \right) \text{ samples}
\]
Each layer represents a time step. Each vertex represents a memory state of the learner. Each non-leaf vertex has $2 \cdot |A|$ outgoing edges, one for each $(a, b) \in |A| \times \{-1, 1\}$.
Proof Overview

\(P_{x|v} \) = the distribution of \(x \) conditioned on reaching a specific vertex \(v \).

Significant vertices: \(v \) s.t. \(\| P_{x|v} \|_2^2 \geq 2^\ell \cdot 2^{-n} \)

\(\Pr(v) \) = probability that the path reaches \(v \).
We prove: If \(v \) is significant, \(\Pr(v) \leq 2^{-\Omega(k \cdot \ell)} \)

Hence, there are at least \(2^{\Omega(k \cdot \ell)} \) significant vertices.

\(T \) = same as the computational path, but stops when “atypical” things happen (stopping rules)
\(\Pr(T \text{ stops}) \) is exp small
Proof Overview

If ν is significant, $\Pr(\nu) \leq 2^{-\Omega(k\cdot\ell)}$

Progress Function: For layer i,

$$Z_i = \mathbb{E}_{V_i}[\langle P_x|V_i, P_x|\nu \rangle^k]$$

1) $Z_0 = 2^{-nk}$

2) Z_i is very slowly growing: $Z_0 \approx Z_m$
 (as long as number of steps is at most 2^{r})

3) If $\nu \in L_m$, then $Z_m \geq \Pr(\nu) \cdot 2^{k\ell} \cdot 2^{-nk}$

Hence: If ν is significant, $\Pr(\nu) \leq 2^{-\Omega(k\ell)}$
Open Problems

• Optimal tradeoffs for DNFs, Juntas, Decision Trees.

• What are the limits of the Extractor-Based lower bounds for these problems?

• Characterize memory-samples complexity from properties of the learning matrix M.

• Generalize to Real-Valued Domains

• Generalize to k-passes (some progress)
Open Problem: Understanding Neural Nets

Expressiveness and Learnability are empirically different in Neural Nets.

Consider the following experiment:

• Generate (input,output) pairs from a depth-2 NN with a fixed structure & randomly chosen weights.
• Try to learn weights from (input,output) pairs using stochastic gradient descent.
• This usually fails.

Can this be explained by the low-memory of the learner?
Thank You!