Time-Space Hardness
for Learning Problems

Avishay Tal (Stanford)

Based on joint works with

Sumegha Garg, Gillat Kol & Ran Raz

Learning — The Streaming Model
aka Online Learning

Black Box
(0,1,1,0,1) 0
—_—
Learner
\ ,
stream of examples \ X
[Shamir’2014] \,__—Si ST L

[Steinhardt-Valiant-Wager'2015]

Examples of Learning Problems

Parity Learning: for a, x € {0,1}"
fx(a) = {a,x) (mod 2)

DNF Learning: [is a small size DNF formula

Decision Tree Learning:
[is a small size decision tree

Junta Learning:
[depends only on ¥ << n of the input bits.

Parity Learning Problem

fx(a) = (a,x) (mod 2)

x € {0,1}" is unknown to the learner

Given a stream of examples

(al) bl)) (aZJ bZ)) (a31 b3)) r)
where a; €, {0,1}" and b; = (a;, x),
the learner needs to learn x with high probability.

Parity Learning Problem

fx(a) = (a,x) (mod 2)

x €r {0,1}" is chosen uniformly at random
x is unknown to the learner

Given a stream of examples

(a{, by), (ay, b,), (as, bs), ...,
where a; €, {0,1}"*and b; = (a;, x),
the learner needs to learn x with high probability.

Algorithms for Parity Learning:
fx(a) — ?=1 a;x; (mod 2)

1. Gaussian Elimination
0(n*) memory bits, O(n) samples.
2. Trying all possibilities
0(n) memory bits, 0 (2™ - n?) samples.

Raz’s Breakthrough

Theorem [Raz’16]: Any algorithm for parity
learning requires either ()(n%) memory bits or
an exponential number of samples.

Sparse Parities

fr(a) = 71'1=1 a;x; (mod 2)

Could we learn better if we knew that
(X1, ..., X,) is £-sparse (i.e., Y x; = £)?

Note: any log(n)-sparse parity is also:
* O(n) size DNF formula,

* O(n) size decision-tree,

* Junta on log(n) variables.

Lower bounds for learning log(n)-sparse parities
=>» Lower bounds for learning all of the above

Upper Bounds

fr(@) = Xt a;x; (mod 2) n oy =2

1. Trying all possibilities:

0 ((?) -nz) ~ n**? samples
O(¢ - logn) memory bits

2. Record and Eliminate (like Gaussian Elim.)
i. Record O(¥ -logn) equations in memory.

ii. Check which of all possible £-sparse vectors satisfies
the recorded equations.

O(¢ -logn) samples

O(nt - logn) memory bits

Algorithm #3: O(n) memory and £2) samples.

Can we learn log(n)-sparse parities in O(n) memory
and polynomial number of samples? N©[|

" Theorem [Kol-Raz-T’17] A

Any algorithm for £-sparse parity learning requires
either Q(n - £%°?) memory bits or £(*) samples.

. J

=» log(n)-sparse parity learning requires either
Q(n - 10g%2? n) memory or n2108108™) samp|es.

Motivation: Cryptography
[Raz 16, Valiant-Valiant 16]
Applications to Bounded Storage Crypto:
Encryption/Decryption scheme with:
Key’s length: n

Encryption/Decryption time: n
Unconditional security, if the attacker’s memory
size is at most n/10

Previous works assumed that the attacker’s
memory size is at most linear in the time needed
for encryption/decryption

Motivation: Cryptography
[Raz 16, Valiant-Valiant 16, Kol-Raz-T 16]
Applications to Bounded Storage Crypto:
Encryption/Decryption scheme with:
Key’s length: £

Encryption/Decryption time: n
Unconditional security, if the attacker’s memory

size is at most o(n - £)

In the second part of the talk:

Key’s length: n
Encryption/Decryption time: ¢
Secure against memory size o(n - £)

Motivation: Complexity Theory

Time-Space Lower Bounds have been studied in
many models

[Beame-Jayram-Saks 98, Ajtai 99,
Beame-Saks-Sun-Vee’00, Fortnow 97,
Fortnow-Lipton-van Melkebeek-Viglas05,
Williams’06,...]

Main difference:
the online model is easier to prove lower bounds
against, since the input is read only once.

The Branching Program (BP) Model

Y
m (length)
Each layer represents a time step. Each vertex
represents a memory state of the learner.

Each non-leaf vertex has 2"**! outgoing edges,
one for each (a,b) € {0,1}"x{0,1}.

The Branching Program (BP) Model

Y
m (length)
A sequence of random examples (a4, b,), (a,, b,) ...
defines a computation path in the BP. The path

finally reaches a leaf v and outputs X, a guess for
the value of x. The program is successful if x = X,,.

Affine Branching Programs (ABP)

[
@
@
@
@
\\

Y

m (length)
An ABP is a BP where each vertex v “remembers” a set
of linear equations L, in the variables x4, .., x,,, such
that, if v is reached by the computation-path then all
equations in L,, are satisfied (by the true unknown x).

Accurate Affine BPs

Let V; be the vertex reached by the computational
path of the ABP in layer i.
V; is a random variable that depends on x, a4, ..., a;.

P y.=, = the distribution of x conditioned on
reaching a specific vertex v in layer i.

Accurate ABP: for every v, P, is close to uniform
over the set of (£-sparse) solutions to the eqs L,,.

Proof Plan

We follow Raz’s two steps plan:

1. Simulate any BP for sparse parity learning
with an accurate ABP.

2. Prove that ABP for sparse parity learning
must be either wide or long.

Fix some parameter k = £.

In the ABP, all vertices will be labeled with at
most k equations. Once we reach a vertex with
k equations in the ABP we declare success.

Proof Highlights — Simulation Part

Layer by layer, we convert the BP to an ABP.
Fori =1, ..., m, we convert the i-th layer of the
program.

Every vertex v in the i-th layer is split into many
vertices by regrouping the edges entering v.

Regrouping

We partition the edges going into v to (not too many) groups,
and associate with each group a set of accurate equations.

Layer i-1 Layer i

L, u v
u’ v
Lu’
Lvll
. v”
) v
Lvlll
v”/
144
u
Lu//

Main Lemma

Each edge e = (u, v) going into v “remembers”
a set of equations L, := L, U {(a,, b,)}

Main Lemma
u Either:

v 1. There exists an equation (a,x) = b
that is shared by many of the edges.

2. Py, is close to uniform (over all
£-sparse vectors).

Regrouping from Main Lemma

Main Lemma: Either
u

L, o(ab) 1. There exists an equation {(a,x) = b
u' (@, b ‘v that is shared by many of the edges.

Lu (a", bH 2. P, isclose to uniform (over all
u'’ {-sparse vectors).

L, % p)

Applying the main lemma recursively k¥’ < k times,

we find a large fraction of the edges with common eqgs
(ay,x) = by, ..., {aQyr,xX) = by

s.t. conditioned on passing through one of these edges,

x is close to uniform over all (£-sparse) solutions to the egs.

Proof on White Board

Lower Bounds on the Affine BP

Recall: all subspaces in the Affine BP are defined by
at most k equations. Success = learned k equations.

Fix a node v in the Affine BP with k linearly independent egs.
[Raz’16]: prob. of reaching v is at most m* - 2 ~k(n—2k)
= To succeed whp, the width should be Q(2%(=2k) /mk+1),

Proof on White Board

Conclusion — First Part

Main Theorem: Learning log(n)-sparse parities
requires either Q(n - log®?° n) memory bits or

nfdoglogn) number of samples.

Implies same bounds for learning
* O(n) size DNF formula

* O(n) size Decision trees

* Juntas on log(n) variables

Open: proving tight samples-memory hardness for
learning DNFs, Decision Trees, or Juntas

Lower Bounds more Generally

Q: Can we generalize the lower bounds to hold for
problems not involving parities?

[Raz’17, Moshkovitz-Moshkovitz’17, Moshkovitz-
Moshkovitz’18]: Yes

A new and general proof technique
(we shall focus on Raz’s proof technique)

As a special case: a new proof for the memory-
samples lower bound for parity learning.

[Garg-Raz-T’18, Beame-Oveis Gharan-Yang’18]:

Further generalizations of the method & more
applications

A Learning Problem as a Matrix

A, X : finite sets
X : concept class

A : possible samples

M: AxX — {—1,1} : a matrix

X €Ep X is chosen uniformly at random
A learner tries to learn x from a stream
(a{,b,),(a,,b,) ..., where Vt :

a; €Ep A and by, = M(a;, x)

Extractor-Based Lower Bounds for Learning

Thm [Garg-Raz-T’18] Assume that any submatrix of
M of fraction 27%x27* has bias of at most 277,

Then, any learning algorithm for the learning
problem defined by M requires either:

QO(k - £) memory bits, e

or 2°) samples. X|- 27
Independently, [Beame- A

Oveis Gharan-Yang’18] Al - 27K

got a similar result

Applications of Extractor-Based Theorem

* Learning Parities

* Learning Sparse Parities and implications

e Learning from low-degree equations: A learner tries to
learn x = (x4, ..., x,) € {0,1}"*, from random
polynomial equations of degree at most d , over F,,.

Q(n%*1) memory or 2™ samples

* Learning low-degree polynomials: A learner tries to
learn an n-variate multilinear polynomial p of degree at
most d over F,, from random evaluations of p over F7.

Q(n%*1) memory or 2% samples

and more...

Technique to Prove Extractor Property

M: AxX - {-1,1} : the learning matrix

Def’n: We say that the columns of M are (€, §)-almost
orthogonal if for each column x, at most ¢ - | X|
of the columns x’ € X have |[{M,, M ,/)| = € - |A].

Claim: Suppose the columns of M are (¢, §)-almost
orthogonal, for 6 < €. Then, learning requires either

§) (log() log()) memory bits
or poly (E) samples

Recall: The Branching Program Model

m (?gngth)
Each layer represents a time step. Each vertex
represents a memory state of the learner.
Each non-leaf vertex has 2 - |A| outgoing edges,
one for each (a,b) € |A|x{—1,1}.

Proof Overview

P, = the distribution of x conditioned on 1X| = 2n

reaching a specific vertex v.

Significant vertices: v s.t. ||Px|v||% >2t.2"
Pr(v) = probability that the path reaches v.
We prove: If v is significant, Pr(v) < 279k

Hence, there are at least 2:(%4) significant vertices.

T = same as the computational path, but stops when
“atypical” things happen (stopping rules)

Pr(T stops) is exp small

Proof Overview

If v is significant, Pr(v) < 27%k%)
Progress Function: For layer i,

Zi = By [(Pey, Pepp)"]
1) ZO — 2—7’lk

2) Z;is very slowly growing: Z, = Z,,
(as long as number of steps is at most 27)

3) Ifv € L, then Z,, > Pr(v) - 2kt . 271k

Hence: If v is significant, Pr(v) < 27 %K)

Open Problems

* Optimal tradeoffs for DNFs, Juntas, Decision Trees.

 What are the limits of the Extractor-Based lower
bounds for these problems?

e Characterize memory-samples complexity from
properties of the learning matrix M.

e Generalize to Real-Valued Domains

* Generalize to k-passes (some progress)

Open Problem: Understanding Neural Nets

Expressiveness and Learnability are empirically
different in Neural Nets.

Consider the following experiment:

* Generate (input,output) pairs from a depth-2 NN
with a fixed structure & randomly chosen weights.

* Try to learn weights from (input,output) pairs
using stochastic gradient descent.

* This usually fails.

Can this be explained by the low-memory of the
learner?

Thank You!

