
Time-Space Hardness
for Learning Problems

Avishay Tal (Stanford)

Based on joint works with
Sumegha Garg, Gillat Kol & Ran Raz

Learning – The Streaming Model

!
Learner

Black Box

(0,0,1,0,1) 1(1,1,0,1,0) 0(0,1,1,0,1)

stream of examples

[Shamir’2014]
[Steinhardt-Valiant-Wager'2015]

aka Online Learning

Examples of Learning Problems
Parity Learning: for !, # ∈ 0,1 '

() ! = !, # (,-. 2)
DNF Learning: (is a small size DNF formula

Decision Tree Learning:
(is a small size decision tree

Junta Learning:
(depends only on ℓ ≪ 3 of the input bits.

Parity Learning Problem

! ∈ 0,1 & is unknown to the learner

Given a stream of examples
'(,)(, '*,)* , '+,)+ , … ,

where '- ∈. 0,1 & and)- = '-, ! ,
the learner needs to learn ! with high probability.

01 ' = ', ! (345 2)

Parity Learning Problem

! ∈# 0,1 ' is chosen uniformly at random
! is unknown to the learner

Given a stream of examples
(), *) , (+, *+ , (,, *, , … ,

where (. ∈# 0,1 ' and *. = (., ! ,
the learner needs to learn ! with high probability.

01 (= (, ! (345 2)

Algorithms for Parity Learning:

1. Gaussian Elimination
!(#$) memory bits, !(#) samples.

2. Trying all possibilities
!(#) memory bits, !(2' ⋅ #$) samples.

Theorem [Raz’16]: Any algorithm for parity
learning requires either Ω(#$) memory bits or
an exponential number of samples.

*+ , = ∑/01' ,/2/ (345 2)

Raz’s Breakthrough

Sparse Parities

Could we learn better if we knew that
!", … , !% is ℓ-sparse (i.e., ∑()"% !(= ℓ)?

Note: any log . -sparse parity is also:
• /(.) size DNF formula,
• /(.) size decision-tree,
• Junta on log(.) variables.

Lower bounds for learning log . -sparse parities
èLower bounds for learning all of the above

23 4 = ∑()"% 4(!((567 2)

Upper Bounds

1. Trying all possibilities:

! "
ℓ ⋅ "% ≈ "ℓ'% samples

!(ℓ ⋅ log ") memory bits

2. Record and Eliminate (like Gaussian Elim.)
i. Record !(ℓ ⋅ log ") equations in memory.
ii. Check which of all possible ℓ-sparse vectors satisfies

the recorded equations.
!(ℓ ⋅ log ") samples
!("ℓ ⋅ log ")memory bits

∑./01 2. = ℓ45 6 = ∑./01 6.2. (789 2)

Algorithm #3: O(n) memory and ℓ"(ℓ) samples.

Can we learn log(()-sparse parities in O(n) memory
and polynomial number of samples?

Theorem [Kol-Raz-T’17]
Any algorithm for ℓ-sparse parity learning requires
either Ω((⋅ ℓ+.--) memory bits or ℓ. ℓ samples.

è log(()-sparse parity learning requires either
Ω((⋅ log+.-- () memory or (. /01 /01 2 samples.

[Raz 16, Valiant-Valiant 16]
Applications to Bounded Storage Crypto:
Encryption/Decryption scheme with:
Key’s length: !
Encryption/Decryption time: !
Unconditional security, if the attacker’s memory
size is at most !"/10

Previous works assumed that the attacker’s
memory size is at most linear in the time needed
for encryption/decryption

Motivation: Cryptography

[Raz 16, Valiant-Valiant 16, Kol-Raz-T 16]
Applications to Bounded Storage Crypto:
Encryption/Decryption scheme with:
Key’s length: ℓ
Encryption/Decryption time: "
Unconditional security, if the attacker’s memory
size is at most o(" ⋅ ℓ)
In the second part of the talk:
Key’s length: "
Encryption/Decryption time: ℓ
Secure against memory size o(" ⋅ ℓ)

Motivation: Cryptography

Time-Space Lower Bounds have been studied in
many models
[Beame-Jayram-Saks 98, Ajtai 99,

Beame-Saks-Sun-Vee’00, Fortnow 97,

Fortnow-Lipton-van Melkebeek-Viglas05,

Williams’06,…]

Main difference:

the online model is easier to prove lower bounds
against, since the input is read only once.

Motivation: Complexity Theory

The Branching Program (BP) Model

("#, %
#) ("', %')

("(,
%()

(", %)

((length)

)
(width)

Each layer represents a time step. Each vertex
represents a memory state of the learner.
Each non-leaf vertex has 2+,- outgoing edges,
one for each ., / ∈ 0,1 +×{0,1}.

The Branching Program (BP) Model

("#, %
#) ("', %')

("(,
%()

(", %)

((length)

)
(width)

A sequence of random examples *+, ,+ , *-, ,- …
defines a computation path in the BP. The path
finally reaches a leaf / and outputs 012, a guess for
the value of 1. The program is successful if 1 = 012.

Affine Branching Programs (ABP)

("#, %
#) ("', %')

("(,
%()

(", %)

((length)

)
(width)

An ABP is a BP where each vertex * “remembers” a set
of linear equations +* in the variables ,-, . . , ,/, such
that, if * is reached by the computation-path then all
equations in +* are satisfied (by the true unknown ,).

Accurate Affine BPs
Let !" be the vertex reached by the computational
path of the ABP in layer #.
!" is a random variable that depends on $, &', … , &".

)*|,-./ = the distribution of $ conditioned on
reaching a specific vertex 0 in layer #.

Accurate ABP: for every 0,)*|/ is close to uniform
over the set of (ℓ-sparse) solutions to the eqs 2/.

Proof Plan
We follow Raz’s two steps plan:
1. Simulate any BP for sparse parity learning

with an accurate ABP.
2. Prove that ABP for sparse parity learning

must be either wide or long.

Fix some parameter ! ≈ ℓ.
In the ABP, all vertices will be labeled with at
most ! equations. Once we reach a vertex with
! equations in the ABP we declare success.

Proof Highlights – Simulation Part
Layer by layer, we convert the BP to an ABP.
For ! = 1,… ,&, we convert the !-th layer of the
program.
Every vertex ' in the !-th layer is split into many
vertices by regrouping the edges entering '.

()*, +
*) ()-, +-)

().,
+.)

(), +)

.

/

Regrouping
We partition the edges going into ! to (not too many) groups,
and associate with each group a set of accurate equations.

!

!′

!′′

!′′′

#$
$′
$

#$%

. . . .
$&&#$%%

#!%

#!%%

#!%%%

Layer i-1 Layer i

Main Lemma

Main Lemma
Either:
1. There exists an equation !, # = %

that is shared by many of the edges.
2. &'|) is close to uniform (over all

ℓ-sparse vectors).

(,-, .-)
(,′′, .′′)

,, .12

12-

12--

3
2
2′

2′′

Each edge 4 = 5, 6 going into 6 “remembers”
a set of equations 78 ≔ 7: ∪ { !8, %8 }

Regrouping from Main Lemma
Main Lemma: Either
1. There exists an equation !, # = %

that is shared by many of the edges.
2. &'|) is close to uniform (over all

ℓ-sparse vectors).

(,-, .-)
(,′′, .′′)

,, .12

12-

12--

3
2
2′

2′′

Applying the main lemma recursively 4’ ≤ 4 times,
we find a large fraction of the edges with common eqs

!7, # = %7, … , !9:, # = %9:
s.t. conditioned on passing through one of these edges,
is close to uniform over all (ℓ-sparse) solutions to the eqs.

Proof on White Board

Lower Bounds on the Affine BP

("#, %
#) ("', %')

("(,
%()

(", %)

Recall: all subspaces in the Affine BP are defined by
at most) equations. Success = learned) equations.

Fix a node * in the Affine BP with) linearly independent eqs.
[Raz’16]: prob. of reaching * is at most +, ⋅ 2/, 0/1,

èTo succeed whp, the width should be Ω 2, 0/1, /+,45 .

6 76

Proof on White Board

Conclusion – First Part
Main Theorem: Learning log(%)-sparse parities
requires either Ω(% ⋅ log).++ %) memory bits or
%, -./ -./ 0 number of samples.

Implies same bounds for learning
• 1(%) size DNF formula
• 1(%) size Decision trees
• Juntas on log(%) variables

Open: proving tight samples-memory hardness for
learning DNFs, Decision Trees, or Juntas

Lower Bounds more Generally
Q: Can we generalize the lower bounds to hold for
problems not involving parities?
[Raz’17, Moshkovitz-Moshkovitz’17, Moshkovitz-
Moshkovitz’18]: Yes
A new and general proof technique
(we shall focus on Raz’s proof technique)
As a special case: a new proof for the memory-
samples lower bound for parity learning.

[Garg-Raz-T’18, Beame-Oveis Gharan-Yang’18]:
Further generalizations of the method & more
applications

A Learning Problem as a Matrix
!, # : finite sets
: concept class
! : possible samples

$:!×# → {−1,1} : a matrix
, ∈. # is chosen uniformly at random
A learner tries to learn , from a stream
/0, 10 , /2, 12 … , where ∀5 :
/6 ∈. ! and 16 = $(/6, ,)

Extractor-Based Lower Bounds for Learning

Thm [Garg-Raz-T’18] Assume that any submatrix of
! of fraction 2#$×2#ℓ has bias of at most 2#'.
Then, any learning algorithm for the learning
problem defined by ! requires either:
Ω) ⋅ ℓ memory bits,
or 2+ ' samples.

Independently, [Beame-
Oveis Gharan-Yang’18]
got a similar result

,
|,| ⋅ 2#ℓ

|.| ⋅ 2#$
.

Applications of Extractor-Based Theorem
• Learning Parities
• Learning Sparse Parities and implications
• Learning from low-degree equations: A learner tries to

learn ! = !#,… , !& ∈ {0,1}& , from random
polynomial equations of degree at most , , over F..
Ω(123#) memory or 26(&) samples

• Learning low-degree polynomials: A learner tries to
learn an 1-variate multilinear polynomial 7 of degree at
most , over F., from random evaluations of 7 over F.&.
Ω(123#) memory or 26(&) samples

and more…

Technique to Prove Extractor Property
!: "×# → {−1,1} : the learning matrix
Def’n: We say that the columns of ! are (%, ')-almost
orthogonal if for each column), at most ' ⋅ #
of the columns)’ ∈ # have !-,!-. ≥ % ⋅ |"|.

Claim: Suppose the columns of ! are %, ' -almost
orthogonal, for ' ≤ %. Then, learning requires either

Ω log 6
7 ⋅ log 6

8 memory bits

or poly 6
7 samples

Recall: The Branching Program Model

("#, %
#) ("', %')

("(,
%()

(", %)

((length)

)
(width)

Each layer represents a time step. Each vertex
represents a memory state of the learner.
Each non-leaf vertex has 2 ⋅ |-| outgoing edges,
one for each ., / ∈ |-|×{−1,1}.

Proof Overview
!"|$ = the distribution of % conditioned on
reaching a specific vertex &.

Significant vertices: & s.t. ||P"|$||((≥ 2ℓ ⋅ 2-.
Pr & = probability that the path reaches &.
We prove: If & is significant, Pr & ≤ 2-1(3⋅ℓ)

Hence, there are at least 21(3⋅ℓ) significant vertices.

5 = same as the computational path, but stops when
“atypical” things happen (stopping rules)
Pr 5 67896 is exp small

: = 2.

Proof Overview
If ! is significant, Pr ! ≤ 2&'()⋅ℓ)
Progress Function: For layer -,

./ = 123 P4|23 , P4|7)

1) .8 = 2&9)
2) ./ is very slowly growing: .8 ≈ .;
(as long as number of steps is at most 2<)
3) If ! ∈ >;, then .; ≥ Pr ! ⋅ 2)ℓ ⋅ 2&9)

Hence: If ! is significant, Pr ! ≤ 2&'()ℓ)

Open Problems
• Optimal tradeoffs for DNFs, Juntas, Decision Trees.

• What are the limits of the Extractor-Based lower
bounds for these problems?

• Characterize memory-samples complexity from
properties of the learning matrix !.

• Generalize to Real-Valued Domains

• Generalize to k-passes (some progress)

Open Problem: Understanding Neural Nets
Expressiveness and Learnability are empirically
different in Neural Nets.

Consider the following experiment:
• Generate (input,output) pairs from a depth-2 NN

with a fixed structure & randomly chosen weights.
• Try to learn weights from (input,output) pairs

using stochastic gradient descent.
• This usually fails.

Can this be explained by the low-memory of the
learner?

Thank You!

