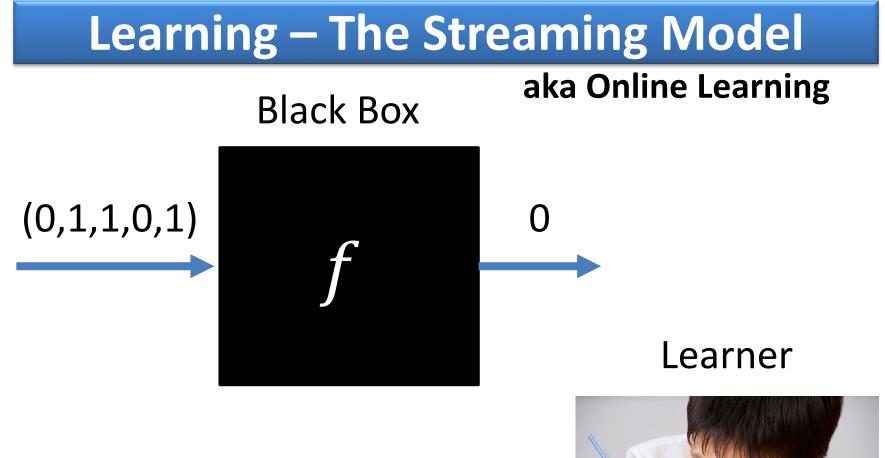
Time-Space Hardness for Learning Problems

Avishay Tal (Stanford)

Based on joint works with Sumegha Garg, Gillat Kol & Ran Raz



stream of examples

[Shamir'2014] [Steinhardt-Valiant-Wager'2015]

Examples of Learning Problems

Parity Learning: for $a, x \in \{0,1\}^n$ $f_x(a) = \langle a, x \rangle \pmod{2}$

DNF Learning: *f* is a small size DNF formula

Decision Tree Learning:

f is a small size decision tree

Junta Learning:

f depends only on $\ell \ll n$ of the input bits.

Parity Learning Problem

 $f_x(a) = \langle a, x \rangle \pmod{2}$

$x \in \{0,1\}^n$ is **unknown** to the learner

Given a stream of examples $(a_1, b_1), (a_2, b_2), (a_3, b_3), ...,$ where $a_i \in_R \{0,1\}^n$ and $b_i = \langle a_i, x \rangle$, the learner needs to learn x with high probability.

Parity Learning Problem

 $f_x(a) = \langle a, x \rangle \pmod{2}$

 $x \in_R \{0,1\}^n$ is chosen uniformly at random x is **unknown** to the learner

Given a stream of examples $(a_1, b_1), (a_2, b_2), (a_3, b_3), \dots,$ where $a_i \in_R \{0,1\}^n$ and $b_i = \langle a_i, x \rangle$, the learner needs to learn x with high probability.

Algorithms for Parity Learning:

$$f_x(a) = \sum_{i=1}^n a_i x_i \pmod{2}$$

- Gaussian Elimination

 O(n²) memory bits, O(n) samples.

 Trying all possibilities
 - O(n) memory bits, $O(2^n \cdot n^2)$ samples.

Raz's Breakthrough

Theorem [Raz'16]: Any algorithm for parity learning requires either $\Omega(n^2)$ memory bits or an exponential number of samples.

Sparse Parities

$$f_x(a) = \sum_{i=1}^n a_i x_i \pmod{2}$$

Could we learn better if we knew that $(x_1, ..., x_n)$ is ℓ -sparse (i.e., $\sum_{i=1}^n x_i = \ell$)?

- Note: any log(n)-sparse parity is also:
- O(n) size DNF formula,
- O(n) size decision-tree,
- Junta on log(n) variables.

Lower bounds for learning log(n)-sparse parities \rightarrow Lower bounds for learning all of the above

Upper Bounds

$$\sum_{i=1}^n x_i = \ell$$

1. Trying all possibilities:

 $O\left(\binom{n}{\ell} \cdot n^2\right) \approx n^{\ell+2}$ samples $O(\ell \cdot \log n)$ memory bits

- 2. Record and Eliminate (like Gaussian Elim.)
 - i. Record $O(\ell \cdot \log n)$ equations in memory.
 - ii. Check which of all possible ℓ-sparse vectors satisfies the recorded equations.

 $O(\ell \cdot \log n)$ samples $O(n\ell \cdot \log n)$ memory bits Algorithm #3: O(n) memory and $\ell^{O(\ell)}$ samples.

Can we learn log(n)-sparse parities in O(n) memory and polynomial number of samples? No!

Theorem [Kol-Raz-T'17]

Any algorithm for ℓ -sparse parity learning requires either $\Omega(n \cdot \ell^{0.99})$ memory bits or $\ell^{\Omega(\ell)}$ samples.

→ $\log(n)$ -sparse parity learning requires either Ω $(n \cdot \log^{0.99} n)$ memory or $n^{\Omega(\log \log n)}$ samples.

Motivation: Cryptography [Raz 16, Valiant-Valiant 16] **Applications to Bounded Storage Crypto: Encryption/Decryption scheme with:** Key's length: *n* Encryption/Decryption time: *n* Unconditional security, if the attacker's memory size is at most $n^2/10$

Previous works assumed that the attacker's memory size is at most linear in the time needed for encryption/decryption

Motivation: Cryptography

- [Raz 16, Valiant-Valiant 16, Kol-Raz-T 16]
- **Applications to Bounded Storage Crypto:**
- **Encryption/Decryption scheme with:**
- Key's length: ℓ
- Encryption/Decryption time: nUnconditional security, if the attacker's memory size is at most $o(n \cdot \ell)$
- In the second part of the talk:
- Key's length: n
- Encryption/Decryption time: ℓ Secure against memory size $o(n \cdot \ell)$

Motivation: Complexity Theory

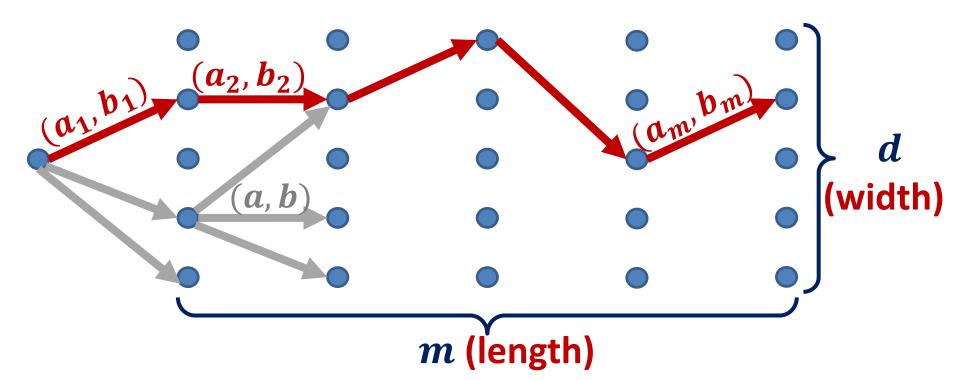
Time-Space Lower Bounds have been studied in many models

[Beame-Jayram-Saks 98, Ajtai 99, Beame-Saks-Sun-Vee'00, Fortnow 97, Fortnow-Lipton-van Melkebeek-Viglas05, Williams'06,...]

Main difference:

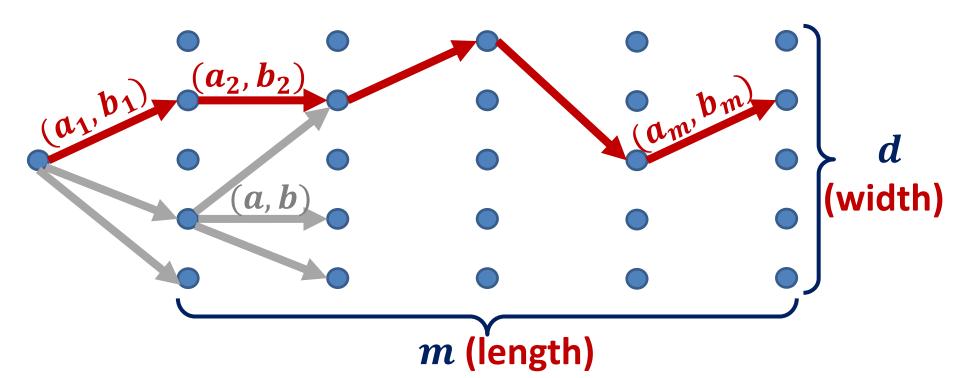
the online model is easier to prove lower bounds against, since the input is read only once.

The Branching Program (BP) Model



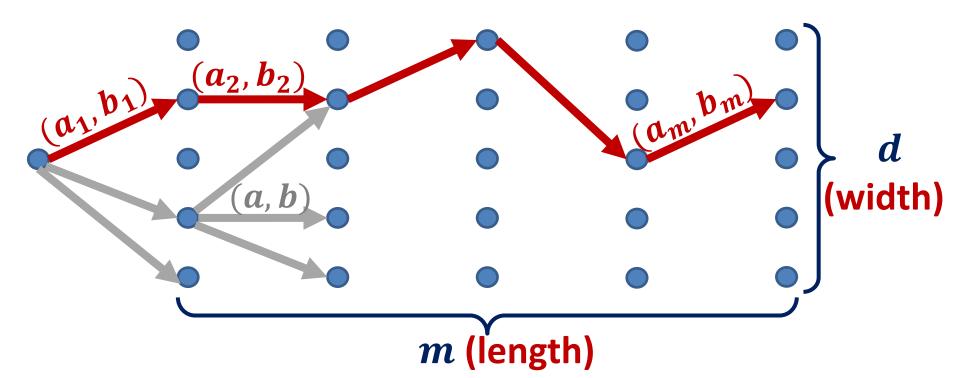
Each layer represents a time step. Each vertex represents a memory state of the learner. Each non-leaf vertex has 2^{n+1} outgoing edges, one for each $(a, b) \in \{0,1\}^n \times \{0,1\}$.

The Branching Program (BP) Model



A sequence of random examples $(a_1, b_1), (a_2, b_2) \dots$ defines a computation path in the **BP**. The path finally reaches a leaf v and outputs \tilde{x}_v , a guess for the value of x. The program is successful if $x = \tilde{x}_v$.

Affine Branching Programs (ABP)



An **ABP** is a **BP** where each vertex \boldsymbol{v} "remembers" a set of **linear equations** $\boldsymbol{L}_{\boldsymbol{v}}$ in the variables x_1, \ldots, x_n , such that, if \boldsymbol{v} is reached by the computation-path then all equations in $\boldsymbol{L}_{\boldsymbol{v}}$ are satisfied (by the true unknown \boldsymbol{x}).

Accurate Affine BPs

Let V_i be the vertex reached by the computational path of the **ABP** in layer i.

 V_i is a random variable that depends on x, a_1, \dots, a_i .

 $P_{x|V_i=v}$ = the distribution of x conditioned on reaching a specific vertex v in layer *i*.

Accurate ABP: for every v, $P_{x|v}$ is close to uniform over the set of (ℓ -sparse) solutions to the eqs L_v .

Proof Plan

We follow Raz's two steps plan:

- 1. Simulate any **BP** for sparse parity learning with an accurate **ABP**.
- 2. Prove that **ABP** for sparse parity learning must be either **wide** or **long.**

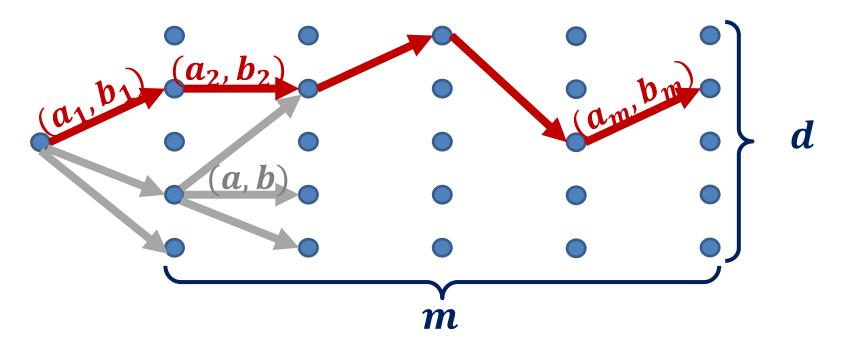
Fix some parameter $k \approx \ell$.

In the ABP, all vertices will be labeled with at most *k* equations. Once we reach a vertex with *k* equations in the ABP we declare success.

Proof Highlights – Simulation Part

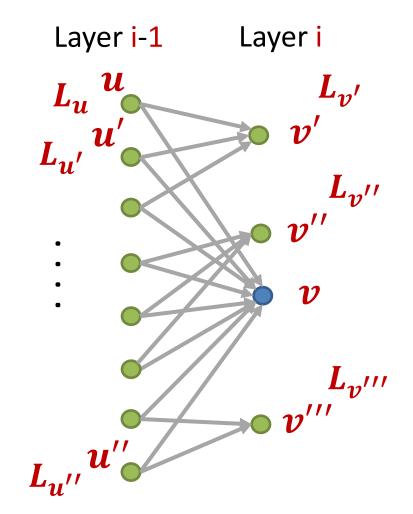
Layer by layer, we convert the **BP** to an **ABP**. For i = 1, ..., m, we convert the *i*-th layer of the program. Every vertex v in the *i*-th layer is **split** into many

vertices by **regrouping** the edges entering \boldsymbol{v} .



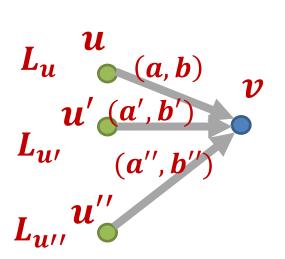
Regrouping

We **partition** the edges going into \boldsymbol{v} to (not too many) groups, and associate with each group a set of **accurate** equations.



Main Lemma

Each edge e = (u, v) going into v "remembers" a set of equations $L_e \coloneqq L_u \cup \{(a_e, b_e)\}$



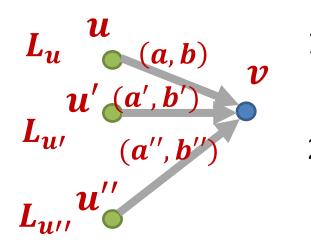
Main Lemma

Either:

- 1. There exists an equation $\langle a, x \rangle = b$ that is shared by many of the edges.
- 2. $P_{x|v}$ is close to uniform (over all *l*-sparse vectors).

Regrouping from Main Lemma

Main Lemma: Either



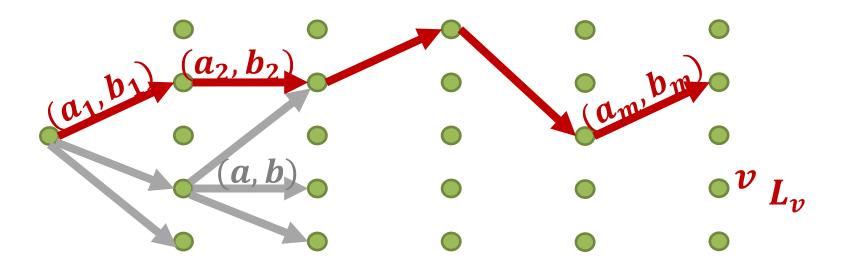
- 1. There exists an equation $\langle a, x \rangle = b$ that is shared by many of the edges.
- 2. $P_{x|v}$ is close to uniform (over **all** ℓ -sparse vectors).

Applying the main lemma recursively $k' \leq k$ times, we find a large fraction of the edges with common eqs $\langle a_1, x \rangle = b_1, \dots, \langle a_{k'}, x \rangle = b_{k'}$ s.t. conditioned on passing through one of these edges, x is close to uniform over all (ℓ -sparse) solutions to the eqs.

Proof on White Board

Lower Bounds on the Affine BP

Recall: all subspaces in the Affine BP are defined by at most k equations. Success = learned k equations.



Fix a node v in the Affine BP with k linearly independent eqs. [Raz'16]: prob. of reaching v is at most $m^k \cdot 2^{-k(n-2k)}$ \rightarrow To succeed whp, the width should be $\Omega(2^{k(n-2k)}/m^{k+1})$.

Proof on White Board

Conclusion – First Part

Main Theorem: Learning log(n)-sparse parities requires either $\Omega(n \cdot log^{0.99} n)$ memory bits or $n^{\Omega(log log n)}$ number of samples.

Implies same bounds for learning

- O(n) size DNF formula
- O(n) size Decision trees
- Juntas on log(n) variables

Open: proving tight samples-memory hardness for learning **DNFs**, **Decision Trees**, or **Juntas**

Lower Bounds more Generally

Q: Can we generalize the lower bounds to hold for problems not involving parities?

- [Raz'17, Moshkovitz-Moshkovitz'17, Moshkovitz-Moshkovitz'18]: Yes
- A new and general proof technique (we shall focus on Raz's proof technique)

As a special case: a new proof for the memorysamples lower bound for parity learning.

[Garg-Raz-T'18, Beame-Oveis Gharan-Yang'18]:

Further generalizations of the method & more applications

A Learning Problem as a Matrix

- A, X : finite sets
- X : concept class
- A : possible samples

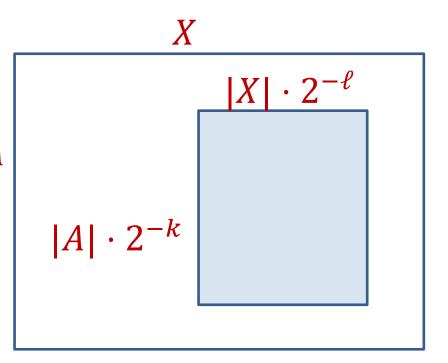
 $M: A \times X \to \{-1,1\}: a \text{ matrix}$ $x \in_R X \text{ is chosen uniformly at random}$ A learner tries to learn x from a stream $(a_1, b_1), (a_2, b_2) \dots, \text{ where } \forall t:$ $a_t \in_R A \text{ and } b_t = M(a_t, x)$

Thm [Garg-Raz-T'18] Assume that any submatrix of M of fraction $2^{-k} \times 2^{-\ell}$ has bias of at most 2^{-r} .

Then, any learning algorithm for the learning problem defined by M requires either:

 $\Omega(k \cdot \ell)$ memory bits, or $2^{\Omega(r)}$ samples.

Independently, [Beame- ' Oveis Gharan-Yang'18] got a similar result



Applications of Extractor-Based Theorem

- Learning Parities
- Learning Sparse Parities and implications
- Learning from low-degree equations: A learner tries to learn $x = (x_1, ..., x_n) \in \{0,1\}^n$, from random polynomial equations of degree at most d, over F_2 .

 $\Omega(n^{d+1})$ memory or $2^{\Omega(n)}$ samples

• Learning low-degree polynomials: A learner tries to learn an *n*-variate multilinear polynomial *p* of degree at most *d* over F_2 , from random evaluations of *p* over F_2^n . $\Omega(n^{d+1})$ memory or $2^{\Omega(n)}$ samples

and more ...

Technique to Prove Extractor Property

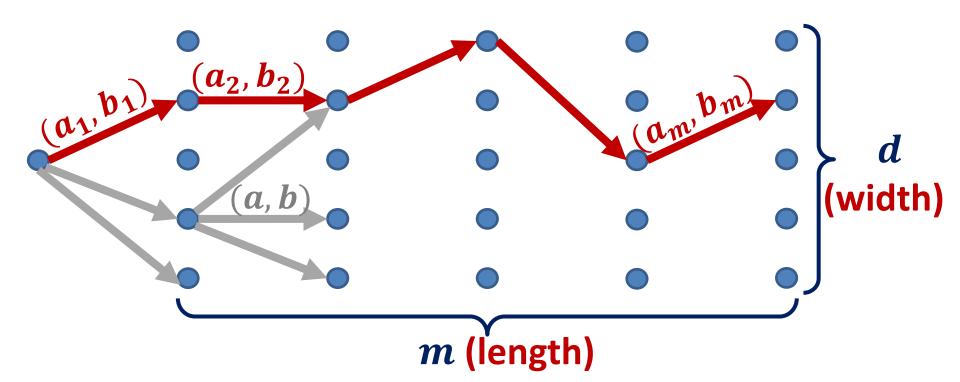
 $M: A \times X \rightarrow \{-1,1\}$: the learning matrix

Def'n: We say that the columns of M are (ϵ, δ) -almost orthogonal if for each column x, at most $\delta \cdot |X|$ of the columns $x' \in X$ have $|\langle M_x, M_{x'} \rangle| \ge \epsilon \cdot |A|$.

Claim: Suppose the columns of M are (ϵ, δ) -almost orthogonal, for $\delta \leq \epsilon$. Then, learning requires either

$$\frac{\Omega\left(\log\left(\frac{1}{\epsilon}\right) \cdot \log\left(\frac{1}{\delta}\right)\right)}{\text{or poly}\left(\frac{1}{\epsilon}\right)} \text{ samples}$$

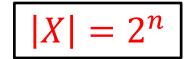
Recall: The Branching Program Model



Each layer represents a time step. Each vertex represents a memory state of the learner. Each non-leaf vertex has $2 \cdot |A|$ outgoing edges, one for each $(a, b) \in |A| \times \{-1, 1\}$.

Proof Overview

 $P_{x|v}$ = the distribution of x conditioned on reaching a specific vertex v.



Significant vertices: v s.t. $||P_{x|v}||_2^2 \ge 2^{\ell} \cdot 2^{-n}$ Pr(v) = probability that the path reaches <math>v. We prove: If v is significant, $Pr(v) \le 2^{-\Omega(k \cdot \ell)}$

Hence, there are at least $2^{\Omega(k \cdot \ell)}$ significant vertices.

T = same as the computational path, but stops when "atypical" things happen (stopping rules) $Pr(T \ stops)$ is exp small

Proof Overview

If v is significant, $\Pr(v) \leq 2^{-\Omega(k \cdot \ell)}$ Progress Function: For layer *i*, $Z_{i} = \mathbf{E}_{V_{i}} [\langle \mathbf{P}_{x|V_{i}}, \mathbf{P}_{x|v} \rangle^{k}]$ 1) $Z_0 = 2^{-nk}$ 2) Z_i is very slowly growing: $Z_0 \approx Z_m$ (as long as number of steps is at most 2^{r}) 3) If $v \in L_m$, then $Z_m \ge \Pr(v) \cdot 2^{k\ell} \cdot 2^{-nk}$ Hence: If v is significant, $\Pr(v) \leq 2^{-\Omega(k\ell)}$

Open Problems

- Optimal tradeoffs for DNFs, Juntas, Decision Trees.
- What are the limits of the **Extractor-Based** lower bounds for these problems?
- Characterize memory-samples complexity from properties of the learning matrix *M*.
- Generalize to Real-Valued Domains
- Generalize to k-passes (some progress)

Open Problem: Understanding Neural Nets

Expressiveness and Learnability are empirically different in Neural Nets.

Consider the following experiment:

- Generate (input,output) pairs from a depth-2 NN with a fixed structure & randomly chosen weights.
- Try to learn weights from (input,output) pairs using stochastic gradient descent.
- This usually fails.

Can this be explained by the low-memory of the learner?

Thank You!