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Learning – The Streaming Model

!
Learner

Black Box

(0,0,1,0,1) 1(1,1,0,1,0) 0(0,1,1,0,1)

stream of examples

[Shamir’2014]
[Steinhardt-Valiant-Wager'2015]

aka Online Learning



Examples of Learning Problems
Parity Learning: for !, # ∈ 0,1 '

() ! = !, # (,-. 2)
DNF Learning: ( is a small size DNF formula

Decision Tree Learning: 
( is a small size decision tree

Junta Learning:
( depends only on ℓ ≪ 3 of the input bits.



Parity Learning Problem

! ∈ 0,1 & is unknown to the learner

Given a stream of examples 
'(, )( , '*, )* , '+, )+ , … ,

where '- ∈. 0,1 & and )- = '-, ! ,
the learner needs to learn ! with high probability.

01 ' = ', ! (345 2)



Parity Learning Problem

! ∈# 0,1 ' is chosen uniformly at random 
! is unknown to the learner

Given a stream of examples 
(), *) , (+, *+ , (,, *, , … ,

where (. ∈# 0,1 ' and *. = (., ! ,
the learner needs to learn ! with high probability.

01 ( = (, ! (345 2)



Algorithms for Parity Learning:

1. Gaussian Elimination 
!(#$) memory bits, !(#) samples.

2. Trying all possibilities
!(#) memory bits, !(2' ⋅ #$) samples.

Theorem [Raz’16]: Any algorithm for parity 
learning requires either Ω(#$) memory bits or 
an exponential number of samples. 

*+ , = ∑/01' ,/2/ (345 2)

Raz’s Breakthrough



Sparse Parities

Could we learn better if we knew that 
!", … , !% is ℓ-sparse (i.e., ∑()"% !( = ℓ)?

Note: any log . -sparse parity is also:
• /(.) size DNF formula,
• /(.) size decision-tree,
• Junta on log(.) variables.

Lower bounds for learning log . -sparse parities 
èLower bounds for learning all of the above

23 4 = ∑()"% 4(!( (567 2)



Upper Bounds

1. Trying all possibilities:

! "
ℓ ⋅ "% ≈ "ℓ'% samples

!(ℓ ⋅ log ") memory bits

2. Record and Eliminate (like Gaussian Elim.)
i. Record !(ℓ ⋅ log ") equations in memory.
ii. Check which of all possible ℓ-sparse vectors satisfies 

the recorded equations.
!(ℓ ⋅ log ") samples
!("ℓ ⋅ log ")memory bits

∑./01 2. = ℓ45 6 = ∑./01 6.2. (789 2)



Algorithm #3: O(n) memory and ℓ"(ℓ) samples.

Can we learn log(()-sparse parities in O(n) memory
and polynomial number of samples? 

Theorem [Kol-Raz-T’17]
Any algorithm for ℓ-sparse parity learning requires 
either Ω(( ⋅ ℓ+.--) memory bits or ℓ. ℓ samples. 

è log(()-sparse parity learning requires either 
Ω(( ⋅ log+.-- () memory or (. /01 /01 2 samples.



[Raz 16, Valiant-Valiant 16] 
Applications to Bounded Storage Crypto:
Encryption/Decryption scheme with:
Key’s length: !
Encryption/Decryption time: !
Unconditional security, if the attacker’s memory 
size is at most !"/10

Previous works assumed that the attacker’s 
memory size is at most linear in the time needed 
for encryption/decryption

Motivation: Cryptography 



[Raz 16, Valiant-Valiant 16, Kol-Raz-T 16] 
Applications to Bounded Storage Crypto:
Encryption/Decryption scheme with:
Key’s length: ℓ
Encryption/Decryption time: "
Unconditional security, if the attacker’s memory 
size is at most o(" ⋅ ℓ)
In the second part of the talk: 
Key’s length: "
Encryption/Decryption time: ℓ
Secure against memory size o(" ⋅ ℓ)

Motivation: Cryptography 



Time-Space Lower Bounds have been studied in 
many models
[Beame-Jayram-Saks 98, Ajtai 99, 

Beame-Saks-Sun-Vee’00, Fortnow 97, 

Fortnow-Lipton-van Melkebeek-Viglas05, 

Williams’06,…]

Main difference: 

the online model is easier to prove lower bounds 
against, since the input is read only once.

Motivation: Complexity Theory 



The Branching Program (BP) Model

("#, %
#) ("', %')
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%()
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( (length)
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Each layer represents a time step. Each vertex 
represents a memory state of the learner. 
Each non-leaf vertex has 2+,- outgoing edges, 
one for each ., / ∈ 0,1 +×{0,1}.



The Branching Program (BP) Model

("#, %
#) ("', %')

("(,
%()

(", %)

( (length)

)
(width)

A sequence of random examples *+, ,+ , *-, ,- …
defines a computation path in the BP. The path 
finally reaches a leaf / and outputs 012, a guess for 
the value of 1. The program is successful if 1 = 012.



Affine Branching Programs (ABP)

("#, %
#) ("', %')

("(,
%()

(", %)

( (length)

)
(width)

An ABP is a BP where each vertex * “remembers” a set 
of linear equations +* in the variables ,-, . . , ,/, such 
that, if * is reached by the computation-path then all 
equations in +* are satisfied (by the true unknown ,).



Accurate Affine BPs
Let !" be the vertex reached by the computational 
path of the ABP in layer #.
!" is a random variable that depends on $, &', … , &".

)*|,-./ = the distribution of $ conditioned on 
reaching a specific vertex 0 in layer #.

Accurate ABP: for every 0,  )*|/ is close to uniform 
over the set of (ℓ-sparse) solutions to the eqs 2/.



Proof Plan
We follow Raz’s two steps plan:
1. Simulate any BP for sparse parity learning 

with an accurate ABP.
2. Prove that ABP for sparse parity learning 

must be either wide or long.

Fix some parameter ! ≈ ℓ.
In the ABP, all vertices will be labeled with at 
most ! equations. Once we reach a vertex with 
! equations in the ABP we declare success.



Proof Highlights – Simulation Part
Layer by layer, we convert the BP to an ABP.
For ! = 1,… ,&, we convert the !-th layer of the 
program.
Every vertex ' in the !-th layer is split into many 
vertices by regrouping the edges entering '.

()*, +
*) ()-, +-)

().,
+.)

(), +)

.

/



Regrouping
We partition the edges going into ! to (not too many) groups, 
and associate with each group a set of accurate equations.

!

!′

!′′

!′′′

#$
$′
$

#$%

. . . .
$&&#$%%

#!%

#!%%

#!%%%

Layer i-1 Layer i



Main Lemma

Main Lemma
Either:
1. There exists an equation !, # = %

that is shared by many of the edges.
2. &'|) is close to uniform (over all

ℓ-sparse vectors).

(,-, .-)
(,′′, .′′)

,, .12

12-

12--

3
2
2′

2′′

Each edge 4 = 5, 6 going into 6 “remembers” 
a set of equations 78 ≔ 7: ∪ { !8, %8 }



Regrouping from Main Lemma
Main Lemma: Either
1. There exists an equation !, # = %

that is shared by many of the edges.
2. &'|) is close to uniform (over all

ℓ-sparse vectors).

(,-, .-)
(,′′, .′′)

,, .12

12-

12--

3
2
2′

2′′

Applying the main lemma recursively 4’ ≤ 4 times,
we find a large fraction of the edges with common eqs

!7, # = %7, … , !9:, # = %9:
s.t. conditioned on passing through one of these edges, 
# is close to uniform over all (ℓ-sparse) solutions to the eqs.



Proof on White Board



Lower Bounds on the Affine BP

("#, %
#) ("', %')

("(,
%()

(", %)

Recall: all subspaces in the Affine BP are defined by 
at most ) equations. Success = learned ) equations. 

Fix a node * in the Affine BP with ) linearly independent eqs.
[Raz’16]: prob. of reaching * is at most +, ⋅ 2/, 0/1,

èTo succeed whp, the width should be Ω 2, 0/1, /+,45 .

6 76



Proof on White Board



Conclusion – First Part
Main Theorem: Learning log(%)-sparse parities 
requires either Ω(% ⋅ log).++ %) memory bits or 
%, -./ -./ 0 number of samples.

Implies same bounds for learning
• 1(%) size DNF formula
• 1(%) size Decision trees
• Juntas on log(%) variables

Open: proving tight samples-memory hardness for 
learning DNFs, Decision Trees, or Juntas



Lower Bounds more Generally
Q: Can we generalize the lower bounds to hold for 
problems not involving parities?
[Raz’17, Moshkovitz-Moshkovitz’17, Moshkovitz-
Moshkovitz’18]: Yes
A new and general proof technique 
(we shall focus on Raz’s proof technique)
As a special case: a new proof for the memory-
samples lower bound for parity learning.

[Garg-Raz-T’18, Beame-Oveis Gharan-Yang’18]:
Further generalizations of the method & more 
applications



A Learning Problem as a Matrix
!, # : finite sets
# : concept class
! : possible samples

$:!×# → {−1,1} : a matrix
, ∈. # is chosen uniformly at random
A learner tries to learn , from a stream
/0, 10 , /2, 12 … , where ∀5 :  
/6 ∈. ! and 16 = $(/6, ,)



Extractor-Based Lower Bounds for Learning

Thm [Garg-Raz-T’18] Assume that any submatrix of 
! of fraction 2#$×2#ℓ has bias of at most 2#'. 
Then, any learning algorithm for the learning 
problem defined by ! requires either: 
Ω ) ⋅ ℓ memory bits, 
or 2+ ' samples.

Independently, [Beame-
Oveis Gharan-Yang’18] 
got a similar result 

,
|,| ⋅ 2#ℓ

|.| ⋅ 2#$
.



Applications of Extractor-Based Theorem
• Learning Parities
• Learning Sparse Parities and implications
• Learning from low-degree equations: A learner tries to 

learn ! = !#,… , !& ∈ {0,1}& , from random 
polynomial equations of degree at most , , over F.. 
Ω(123#) memory or 26(&) samples

• Learning low-degree polynomials: A learner tries to 
learn an 1-variate multilinear polynomial 7 of degree at 
most , over F., from random evaluations of 7 over F.&.
Ω(123#) memory or 26(&) samples

and more…



Technique to Prove Extractor Property
!: "×# → {−1,1} : the learning matrix 
Def’n: We say that the columns of ! are (%, ')-almost 
orthogonal if for each column ), at most ' ⋅ #
of the columns )’ ∈ # have !-,!-. ≥ % ⋅ |"|.

Claim: Suppose the columns of ! are %, ' -almost 
orthogonal, for ' ≤ %. Then, learning requires either 

Ω log 6
7 ⋅ log 6

8 memory bits 

or poly 6
7 samples



Recall: The Branching Program Model

("#, %
#) ("', %')
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Each layer represents a time step. Each vertex 
represents a memory state of the learner. 
Each non-leaf vertex has 2 ⋅ |-| outgoing edges, 
one for each ., / ∈ |-|×{−1,1}.



Proof Overview
!"|$ = the distribution of % conditioned on 
reaching a specific vertex &.

Significant vertices: & s.t. ||P"|$||(( ≥ 2ℓ ⋅ 2-.
Pr & = probability that the path reaches &.
We prove: If & is significant, Pr & ≤ 2-1(3⋅ℓ)

Hence, there are at least 21(3⋅ℓ) significant vertices.

5 = same as the computational path, but stops when 
“atypical” things happen (stopping rules)
Pr 5 67896 is exp small

: = 2.



Proof Overview
If ! is significant, Pr ! ≤ 2&'()⋅ℓ)
Progress Function: For layer -,

./ = 123 P4|23 , P4|7 )

1) .8 = 2&9)
2)  ./ is very slowly growing: .8 ≈ .;
(as long as number of steps is at most 2<)
3) If ! ∈ >;,  then  .; ≥ Pr ! ⋅ 2)ℓ ⋅ 2&9)

Hence: If ! is significant, Pr ! ≤ 2&'()ℓ)



Open Problems
• Optimal tradeoffs for DNFs, Juntas, Decision Trees.

• What are the limits of the Extractor-Based lower 
bounds for these problems?

• Characterize memory-samples complexity from 
properties of the learning matrix !.

• Generalize to Real-Valued Domains

• Generalize to k-passes (some progress)



Open Problem: Understanding Neural Nets
Expressiveness and Learnability are empirically 
different in Neural Nets.

Consider the following experiment:
• Generate (input,output) pairs from a depth-2 NN 

with a fixed structure & randomly chosen weights.
• Try to learn weights from (input,output) pairs 

using stochastic gradient descent.
• This usually fails.

Can this be explained by the low-memory of the 
learner?



Thank You!


