A Short Proof of Gowers' Lower Bound for Reg Lemma

Asaf Shapira

Joint work with G. Moshkovitz

Regular Bipartite Graphs

A natural property we expect to find in G(n,n,d)?

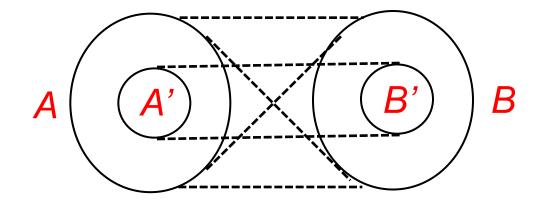
All pairs of vertex sets have "correct" density

<u>Definition:</u> d(X, Y) = |E(X, Y)| / |X||Y|

<u>Definition:</u> G=(A,B,E) is ε -regular if

 $|d(A',B') - d(A,B)| \leq \varepsilon$

for every $A' \subseteq A$ and $B' \subseteq B$ satisfying $|A'|, |B'| \ge \varepsilon n$



The Regularity Lemma

<u>Def</u>: A partition $V = \{V_1, ..., V_k\}$ of V(G) is a ε -regular if $|V_i| = n/k$, and for every V_i all but εk of the V_j 's are s.t. (V_i, V_j) is ε -regular.

<u>Reg. Lemma [Szemerédi '78]</u>: For any $\varepsilon > 0$, there is $M=M(\varepsilon)$ s.t. any graph has an ε -regular partition $V = \{V_1, ..., V_k\}$ with $k \le M$.

<u>Main drawback</u>: Proof gives $M(\varepsilon) \leq twr(1/\varepsilon^5)$

[Gowers '96]:

- 1. $M(\varepsilon) \ge twr(log(1/\varepsilon))$. Short and (relatively) simple.
- 2. $M(\varepsilon) \ge twr(1/\varepsilon^{1/16})$. Long and very complicated.

[Conlon-Fox '12]: $M(\varepsilon) \ge twr(1/\varepsilon)$

A Short and Simpler Proof that $M(\varepsilon) \ge twr(1/\varepsilon^{c})$

Preliminary Observations

We can extend notion of density/ ε -regular/ ε -regular-partition to complete graphs, where each edge (*i*,*j*) has a weight \in [0,1].

<u>Claim:</u> If we generate a random graph from a weighted complete graph, then whp they have the same regular partitions.

To prove that $M(\varepsilon) \ge twr(1/\varepsilon^{1/2})$ enough to prove that:

<u>Theorem [Moshkovitz-S '13]</u>: For every ε >0, there is a <u>weighted</u> graph **G** s.t. every ε -regular partition of **G** is of size twr(1/ ε ^{0.5}).

Quasi-random set partitions

<u>Lemma 1:</u> If $M=2^{m/100}$ then there are *m* bipartitions of $\{1,...,M\}$, denoted $(A_1,B_1),...,(A_m,B_m)$, so that:

- 1. For every $1 \le i \le m$, we have $|A_i| = |B_i| = M/2$
- 2. For every $\lambda = (\lambda_1, ..., \lambda_M)$ satisfying $\lambda_i \ge 0$, $||\lambda||_1 = 1$, $||\lambda||_{\infty} \le 1-8\delta$

there are m/6 bipartitions (A_i, B_i) satisfying

min($\sum_{t \in A_i} \lambda_t$, $\sum_{t \in B_i} \lambda_t$) $\geq \delta$

A Hard Graph for the Reg Lemma

<u>*Recall:*</u> We need to define a weighted complete *n*-vertex graph *G* s.t. every ε -regular partition of *G* has order twr(1/ $\varepsilon^{0.5}$). We assume henceforth that $\varepsilon \leq \varepsilon_0$ and that $n \geq n_0(\varepsilon)$. We define a sequence of partitions X_r of a set of *n* vertices. 1. X_0 is the entire vertex set.

2. X_{r+1} is obtained from X_r by partitioning each of its clusters into $2^{|Xr|/100}$ sub-clusters.

Then, $|X_0| = 1$, $|X_{r+1}| = |X_r| \cdot 2^{|X_r|/100}$, so $|X_r| = twr(r)$.

A Hard Graph for Reg Lemma

 X_{r+1} obtained from X_r by partitioning each cluster into $2^{|Xr|/100}$ sub-clusters. <u>Definition of G:</u> For $r = 0, 1, 2, ..., 1/\epsilon^{0.5}$ do the following

- 1. Let $X_r = \{X^1, ..., X^m\}$ and $X_{r+1} = \{X^1_1, ..., X^1_M, ..., X^m_1, ..., X^m_M\}$
- 2. Let $(A_1, B_1), \dots, (A_m, B_m)$ be a sequence of partitions of [*M*] satisfying the properties of Lemma 1.
- 3. For every X^i , $X^j \in X_r$ do the following
 - Let $(A^{i,j}, B^{i,j})$ be the "natural" partition of X^i defined by (A_j, B_j) using the subsets X^i_1, \dots, X^i_M
 - Let $(A^{j,i}, B^{j,i})$ be the "natural" partition of X^{j} defined by (A_{j}, B_{j}) using the subsets $X_{1}^{j}, \dots, X_{M}^{j}$
 - Add weight $\varepsilon^{0.5}$ to edges in $(A^{i,j}, A^{j,i}) \cup (B^{i,j}, B^{j,i})$.

A Couple of Observations

- 1. Iteration *r* prevents X_r from being an ε -regular partition of *G*.
- After iterations 1,...r-1, for any Xⁱ, Xⁱ∈X_r all edges in (Xⁱ, X^j) have the same weight.
 In particular, finest partition (partition X_{1/√ε}) is o(1)-regular.
- 3. For every $X \in X_r$ and any vertex *u* the total density added at iteration *r* to d(u, X) is exactly $0.5\varepsilon^{0.5}$.
- 4. Same holds for every $X \in X_r$ and set of vertices U.

<u>Corollary</u>: For every $X \in X_r$ and vertex set U, the total density added to d(U,X) in iterations $r, \dots, \varepsilon^{-0.5}$ is <u>exactly</u> $0.5\varepsilon^{0.5}(\varepsilon^{-0.5}-r+1)$.

The Key Lemma

<u>Definition:</u> $A \subset_{\alpha} B$ if $|A \cap B| \ge (1-\alpha)|A|$. (so $A \subset_{0} B$ iff $A \subseteq B$) If Z and X are partitions of V(G) then $Z \subset_{\alpha} X$, if for every $Z \in Z$ there is $X \in X$ such that $Z \subset_{\alpha} X$. (so $Z \subset_{0} X$ iff Z refines X)

<u>Key Lemma</u>: If Z is an ε -regular partition of G and $Z \subset_{\alpha} X_r$ then $Z \subset_{\alpha+8\varepsilon} X_{r+1}$ (assuming $\alpha \leq \varepsilon^{0.5}$).

<u>Corollary</u>: If Z is an ε -regular partition of G then $Z \subset_{8\sqrt{\varepsilon}} X_{1/\sqrt{\varepsilon}}$

<u>Proof:</u> $Z \subset_0 X_0$ so we can repeatedly apply the Key Lemma. <u>Corollary:</u> $|Z| \ge |X_{1/\sqrt{\epsilon}}|/2 = twr(1/\epsilon^{0.5}).$

<u>Definition:</u> $A \subset_{\alpha} B$ if $|A \cap B| \ge (1-\alpha)|A|$. If Z and X are partitions of V(G) then $Z \subset_{\alpha} X$, if for every $Z \in Z$ there is $X \in X$ such that $Z \subset_{\alpha} X$.

<u>Key Lemma</u>: If Z is an ε -regular partition of G and $Z \subset_{\alpha} X_r$ then $Z \subset_{\alpha+8\varepsilon} X_{r+1}$ (assuming $\alpha \le \varepsilon^{0.5}$).

<u>*Proof:*</u> Suppose $Z_0 \in Z$ satisfies $Z_0 \subset_{\alpha} X^i \in X_r$ but does not satisfy $Z_0 \subset_{\alpha+8\varepsilon} X_t^i$ for all sets $X_1^i, \dots, X_M^i \in X_{r+1}$. We need to find εk sets Z so that (Z_0, Z) is not ε -regular.

<u>Claim</u>: At least m/6 of the sets $X^{j} \in X_{r}$ satisfy $\min(|Z_{0} \cap A^{i,j}|, |Z_{0} \cap B^{i,j}|) \ge \varepsilon |Z_{0}|$ (*)

<u>Claim</u>: At least *m*/6 of the sets $X^{j} \in X_{r}$ satisfy $\min(|Z_{0} \cap A^{i,j}|, |Z_{0} \cap B^{i,j}|) \ge \varepsilon |Z_{0}| \qquad (*)$

- <u>*Def:*</u> A vertex $u \in Z \cap X$ is <u>useful</u> if $Z \subset_{\alpha} X$
- <u>Def</u>: A set $X \in X_r$ is <u>useful</u> if it satisfies (*) and at least |X| (1-12 α) of its vertices are useful

<u>Claim 1:</u> At least m/12 of the sets $X \in X_r$ are useful.

<u>*Proof:*</u> At least m/6 of the sets $X^{j} \in X_{r}$ satisfy (*) and at most m/12 of them have more than $12\alpha |X'|$ unfriendly vertices.

<u>*Recall:*</u> Assuming $Z_0 \in Z$ satisfies $Z_0 \subset_{\alpha} X \in X_r$ but does not satisfy $Z_0 \subset_{\alpha+8\varepsilon} X_t^i$ for all sets $X_1^i, \dots, X_M^i \in X_{r+1}$, we need to find εk sets Z so that (Z_0, Z) is not ε -regular.

<u>Claim 1:</u> At least m/12 of the sets $X \in X_r$ are useful.

<u>Claim 2:</u> If $X \in X_r$ is useful then there are $12 \varepsilon k/m$ sets Z so that $Z \subset_{\alpha} X$ and (Z_0, Z) is not ε -regular.

Claim 1 and Claim 2 give the Key Lemma.

<u>Claim 2:</u> If $X \in X_r$ is useful then there are $12 \varepsilon k/m$ sets Z so that $Z \subset_{\alpha} X$ and (Z_0, Z) is not ε -regular.

<u>*Proof:*</u> Suppose claim is false. Set $Z^1 = Z_0 \cap A^{i,j}$, $Z^2 = Z_0 \cap B^{i,j}$. F(u,v) is weight added to (u,v) at iterations r+1,r+2,...

Define $A \subseteq A^{j,i}$ as follows. Suppose $u \in Z \subset_{\alpha} X^{j}$. Put u in A if

- 1. (Z_0, Z) is not ε -regular
- 2. (Z_0, Z) is ε -regular, but

 $d_F(u,Z^2) < d_F(u,Z^1) + 0.75 \varepsilon^{0.5}$

 $\underline{Claim:} |A| \le 0.5 \varepsilon^{0.5} |A^{j,i}|$

<u>Conclusion:</u> $d_F(A^{j,i},Z^2) - d_F(A^{j,i},Z^1) > (1 - \varepsilon^{0.5}/2) \frac{3}{4}\varepsilon^{0.5} - \varepsilon^{0.5}/2 > 0$

Concluding Remarks

<u>Gowers '97, Conlon-Fox '12:</u> twr(1/ɛ^c) lower

bounds for weaker versions of regularity lemma.

Find simple/short proofs of these results.

Thank You

Quasi-random set partitions

<u>Definition</u>: A sequence of bipartitions $(A_1, B_1), \dots, (A_m, B_m)$

- of [M] is c-balanced if
- 1. For every $1 \le i \le m$, we have $|A_i| = |B_i| = M/2$
- 2. For every $t,t' \in [M]$, at most $(\frac{1}{2} + c)m$ of the bipartitions (A_i, B_i) are such that t,t' belong to the same set $(A_i \text{ or } B_i)$.

<u>Lemma</u>: If $M=2^{m/100}$ then there is a sequence of *m* bipartitions of *M* that is $\frac{1}{4}$ -balanced.

Proof: Random bipartitions.

Quasi-random set partitions

Lemma 1: If $(A_1, B_1), \dots, (A_m, B_m)$ is a $\frac{1}{4}$ -balanced sequence of bipartitions of [M], then for every $\lambda = (\lambda_1, \dots, \lambda_M)$ with $\lambda_i \ge 0$, $\|\lambda\|_1 = 1$, $\|\lambda\|_\infty \le 1-8\delta$ then there is a bipartition (A_i, B_i) so that min($\sum_{t \in A_i} \lambda_t$, $\sum_{t \in B_i} \lambda_t$) $\geq \delta$ *Proof:* Pick a random (A_i, B_i) Set $Y_t = 1/-1$ if $t \in A_i/B_i$, and $Y = \sum_t \lambda_t Y_t$

Then $E[Y_t^2] = 1$ and $E[Y_tY_{t'}] \le \frac{1}{2}$, implying that $E[Y^2] \le 1-4\delta$ Hence $E[|Y|] \le 1-2\delta$, so there is a partition (A_i, B_i) satisfying

$$\sum_{t\in A_i}\lambda_t - \sum_{t\in B_i}\lambda_t \leq 1-2\delta.$$

Amplifying Lemma 1

<u>Lemma 1</u>: If $(A_1, B_1), \dots, (A_m, B_m)$ is a 1/4-balanced sequence of partitions of [*M*], then for every $\lambda = (\lambda_1, \dots, \lambda_M)$ s.t. ... there is <u>a</u> bipartition (A_i, B_i) s.t. ...

<u>Lemma 2</u>: If $(A_1, B_1), \dots, (A_m, B_m)$ is a <u>**0**/4</u>-balanced sequence of bipartitions of [*M*], then for every $\lambda = (\lambda_1, \dots, \lambda_M)$ with ... there are <u>*m*/6</u> bipartitions (A_i, B_i) so that ...

<u>*Proof:*</u> Repeatedly apply Lemma 1. Since the sequence was initially *0.1-balanced*, then as long as we remove less than *m*/6 partitions, the remaining sequence is still *1/4-balanced*.

<u>Coro</u>: If $M=2^{m/100}$ then there are *m* bipartitions of [*M*] s.t. for every $\lambda \in \mathbb{R}^{M}$ satisfying... there are *m*/6 bipartitions satisfying...