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Distributed System 

A	collection	of	processes	that	can	communicate	by:	
•  sending	and	receiving	messages	between	one	
another		

or	
• performing	operations	on	shared	objects.	



Synchronous Message-Passing 
Models 

• An	execution	is	divided	into	rounds.	
•  Each	round,	each	process	takes	one	step,	in	which	
it	receives	messages	from	other	processes,	does	
local	computation,	and	sends	messages	to	other	
processes.	

• Messages	sent	in	one	round	are	received	in	the	
next	round.	
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A	configuration	describes	the	system	between	
consecutive	rounds.	It	consists	of:	
•  the	state	of	every	process	at	the	end	of	the	

preceding	round	and	
•  the	messages	that	are	in	transit.	
An	initial	configuration	describes	the	system	at	
the	beginning	of	an	execution.	
•  Each	process	is	in	an	initial	state,	which	

includes	its	input.	
•  There	are	no	messages	in	transit.	



Asynchronous Message-Passing 
Models 

Processes	take	steps	in	an	arbitrary	order,	determined	by	
an	adversarial	scheduler.	
An	execution	is	a	sequence	of	steps.		
In	each	step,	either	
•  one	message	is	delivered	or		
•  one	process	receives	messages	that	have	been	delivered	
to	it	from	other	processes,	does	local	computation,	and	
sends	messages	to	other	processes.	

Messages	can	take	arbitrarily	long	to	be	delivered.		



A	configuration	describes	the	system	between	
consecutive	steps	of	an	execution.	It	consists	of:	
•  the	state	of	every	process,	
•  the	messages	that	each	process	has	sent,	but	

have	not	yet	been	delivered,	and	
•  the	messages	that	have	been	delivered	to	

each	process,	which	it	has	not	yet	received.		

An	initial	configuration	describes	the	system	at	
the	beginning	of	an	execution.	
•  Each	process	is	in	an	initial	state,	which	

includes	its	input.	
•  There	are	no	messages	in	transit.	



Asynchronous Shared-Memory 
Models 

• Processes	take	steps	in	an	arbitrary	order,	
determined	by	an	adversarial	scheduler.	

• An	execution	is	a	sequence	of	steps.		
•  In	each	step,	one	process	performs	an	operation	on	a	
shared	object	and	then	does	local	computation.	

O0	 O1	 Om-1	…	
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Each	object	has:	
• a	set	of	possible	values,	
• an	initial	value,	and	
• a	set	of	operations	that	can	be	applied	to	it.	
	
A	process	atomically	performs	an	operation	
on	an	object.	The	process	updates	its	state	
depending	on	its	current	state	and	the	
response	from	the	object.	



Register	

Set	of	possible	values:		{0,1,2,…}						
Initial	value:	0	

READ(R):	Returns	the	value	of	register	R.	
Doesn’t	change	the	value	of	R.	

WRITE(R,v):	Sets	the	value	of	R	to	v.	
Returns	ack.		



Compare&Swap	Object	

Set	of	possible	values:		{⊥,0,1,2,…}						
Initial	value:	⊥	

CAS(R,u,v):	returns	the	value	of	R.	
If	the	value	of	R	is	u,	changes	the	
value	of	R	from	u	to	v.		



A	configuration	describes	the	system	between	
consecutive	steps	of	an	execution.	It	consists	of:	
•  the	state	of	every	process	and	
•  the	value	of	every	shared	object.	

An	initial	configuration	describes	the	system	at	
the	beginning	of	an	execution.	
•  Each	process	is	in	an	initial	state,	which	

includes	its	input.	
•  Each	shared	object	has	a	predetermined	

initial	value.	



Crash	Faults	

A	faulty	process	stops	
taking	steps	before	it	
finishes	its	task.	

Byzantine	Faults	

A	faulty	process	deviates	
from	its	protocol.	



Distributed vs. Parallel Computing 

•  Each	process	may	have	
its	own	task.	

•  Each	process	has	its	
own	inputs.	

• More	processes	make	
the	tasks	harder.	

•  Fault	tolerance.	

• One	task	is	shared	by	all	
processes.	

• All	inputs	are	available	
to	all	processes.	

• More	processes	make	
the	task	easier.	



Central Questions in Theory of 
Distributed Computing 

• What	problems	can	be	solved	in	a	given	distributed	
model?		

• How	efficiently	can	a	particular	problem	be	solved?	
• What	makes	certain	problems	hard	to	solve?	
• How	do	parameters	of	a	model	affect	its	
computational	power?	

• What	are	the	relationships	between	the	
computational	power	of	different	models?	



Most impossibility results in distributed 
computing rely on lack of knowledge 
about the system. 

At	any	point	in	time,	the	state	of	a	process,	including	
the	values	of	its	input	and	local	variables,	describes	the	
knowledge	the	process	has	about	the	system.	
To	solve	many	distributed	problems,	processes	need	to	
learn	information	about	the	states	of	other	processes.	
Unsolvability	proofs	show	that	this	knowledge	cannot	
be	obtained.		
Lower	bound	proofs	show	that	this	knowledge	cannot	
be	obtained	with	limited	resources.	



•  inputs	of	other	processes	
• possibly	some	parameters	of	the	system	

Initially,	processes	lack	knowledge	of:		

•  asynchrony	
•  faults	

Additional	lack	of	knowledge	can	arise	from:		



Leader Election 
Exactly one process (the leader) must 
output 1. 
All other processes must output 0. 
Model: 
•  synchronous message-passing 
•  anonymous processes 
•  each round, each process receives a 

message  from each of its neighbours 
and sends a message to each of its 
neighbours 

•  no faults 



Leader Election 
THEOREM [Angluin 1980] There is no 
deterministic algorithm for leader election, even 
if all processes know the network is a cycle of 
size n. 



Leader Election 
THEOREM [Angluin 1980] There is no 
deterministic algorithm for leader election, even 
if all processes know the network is a cycle of 
size n. 

There is no way to 
break the initial 
symmetry. 
By induction, at the 
end of every round, 
every process must be 
in the same state. 
Thus if one process 
outputs 1, they all do. 



Leader Election 
THEOREM [Angluin 1980] There is no 
randomized algorithm for leader election, even if 
all processes know the network is a cycle, but do 
not know its size. 



Leader Election 
THEOREM [Angluin 1980] There is no 
randomized algorithm for leader election, even if 
all processes know the network is a cycle, but do 
not know its size. 
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If one process outputs 1 
in some execution in C3, 
then there is an 
execution in C6 in which 
two processes output 1. 

C6	C3	



Leader Election 
Every nonfaulty process must output 0 or 1. 
At most one process can output 1. 
No process can output 0 until the eventual 
leader takes its first step. 
Model: 
•  asynchronous message passing 
•  every process has a distinct ID  
•  each step, a process sends a message to one 

of its neighbours or receives a message that it 
was sent, but it has not yet received 

•  at most f processes can crash 



Leader Election 

Partition	the	network	into	2	parts,	each	of	size	≤	f.		

THEOREM	[Gilbert	&	Lynch	2012]	There	is	no	
algorithm	for	leader	election	in	an	asynchronous	
message-passing	system	with	n	processes	if	f	≥	⌈n/
2⌉	processes	can	crash.	



Leader Election 
All messages from a process to another 
process in the same part are delivered, but 
all messages to a process in the other part 
are delayed for a long time. 



Leader Election 
As far as the processes in the left part 
know, the (≤ f) processes in the right part 
may have all crashed before taking any 
steps. 



Leader Election 
As far as the processes in the right part 
know, the (≤ f) processes in the left part 
may have all crashed before taking any 
steps. 



Leader Election 
After a process in each part has output 1, 
the scheduler delivers all undelivered 
messages. 



Indistinguishability 
Configurations	C	and	C' are	indistinguishable	

to	a	set	of	processes	P,	denoted	C							C',	if	

•  each	process	in	P	has	the	same	state	in	C	and	C'.			
~	
P	

~	
P	

~	
P	

Executions	α	and	α'	starting	from	configurations	C	and	C'

are	indistinguishable	to	a	set	of	processes	P,		

denoted	α				α',	if	

•  	C					C'	and		
•  each	process	in	P	performs	the	same	steps	in	α	and	α' in 

the same order and	gets	the	same	responses	from	them.	



Indistinguishability 

Proposition	Suppose	α	and	α'	are	finite	executions	
starting	from	configurations	C	and	C',	respectively.		
If	α					α',	then	Cα					C’α.	~	

P	
~	
P	

Suppose	α	is	a	finite	execution	starting	from	
configuration	C.	
Then	Cα	denotes	the	configuration	at	the	end	of	α.	
	



Leader Election 

THEOREM[Alistarh,	Gelashvili,	&	Vladu	2015]	
Suppose	up	to	⎡n/2⎤	–	1	processes	can	crash.	
Any	algorithm	in	an	asynchronous	message-passing	
system	with	n	processes	has	Ω(n2)	worst	case	
expected	message	complexity.	

The	adversary	picks	a	
set	of		⎣n/4⎦	processes	
and	puts	each	in	a	
bubble.	



Leader Election 
Processes	are	allocated	steps	in	round-robin	order.	
Messages	sent	to	or	from	a	process	in	a	bubble	are		
trapped	in	its	buffer.	All	other	messages	are	
delivered	immediately.	

A	process	is	released	
from	its	bubble	when	
its	buffer	contains						
≥	n/4	messages	



Leader Election 
To	each	process	not	in	a	bubble,	this	execution	is	
indistinguishable	to	an	execution	in	which	all	
processes	that	remain	in	bubbles	have	crashed.	
	
To	each	process	pi	in	a	bubble,	this	execution	is	
indistinguishable	to	an	execution	in	which	the	
following	processes	have	crashed:	
the	other	processes	in	bubbles,	
the	processes	which	have	sent	a	message	to	pi,	and	
the	processes	to	which	pi	has	sent	a	message.	
Thus	pi	must	eventually	leave	its	bubble	or									
return	while	it	is	still	in	a	bubble.	



Leader Election 
No	process	pi	can	return	while	it	is	still	in	a	bubble	
because	
all	its	steps	might	be	before	the	steps	of	all	other	
processes,	in	which	case	pi	must	return	1	
or		
all	its	steps	might	be	after	one	or	more	other	
processes	have	returned,	in	which	case	pi	must	
return	0.	
	
Thus	every	process	in	a	bubble	must	eventually	
leave	its	bubble.	



Leader Election 
There	are	⌊n/4⌋	processes	initially	in	bubbles.	
A	process	is	released	from	its	bubble	when	its	
buffer	contains	≥	n/4	messages.	
	
Thus	Ω(n2)	messages	are	sent	in	this	execution.	



Computing Diameter 

Every process knows the size n of the network 
and the IDs of its neighbours. 
Every process must output the diameter D of the 
network. 
Model: 
•  synchronous message-passing 
•  each processes has a distinct ID 
•  each round, each process can send a 

message of unlimited size to each of its 
neighbours 

•  no faults 



Computing Diameter 

requires Ω(D) rounds: 

D=5	

D=4	



Computing Diameter 

requires Ω(D) rounds: 

can be computed in O(D) rounds 

D=5	

D=4	



Computing Diameter 

Every process knows the size n of the network 
and the IDs of its neighbours. 
Every process must output the diameter D. 
CONGEST Model: 
•  synchronous message-passing 
•  each processes has a distinct ID 
•  each round, each process can send a 

message of  B bits to each of its neighbours, 
where B ∊ O(log n) 

•  no faults 



Computing Diameter 

THEOREM	[Frischknecht,	Holzer	&	Wattenhofer	
2012]	Any	 algorithm for determining the 
diameter D of a graph with n nodes using B-
bit messages requires Ω(n/B) rounds. 
 



Computing Diameter 

THEOREM	[Frischknecht,	Holzer&	Wattenhofer	
2012]	Any	 algorithm for determining the 
diameter D of a graph with n nodes using B-
bit messages requires Ω(n/B) rounds, even if 
all nodes know that D ∊ {2,3}. 
 



Communication Complexity 

(x1,…,	xk)	∊	{0,1}k	 (y1,…,	yk)	∊	{0,1}k	

Set	Disjointness	Problem:	
Determine	if,	for	all	i	∊	{1,…,k},	either	xi	=	0	or	yi	=	0.	
	



Communication Complexity 

(x1,…,	xk)	∊	{0,1}k	 (y1,…,	yk)	∊	{0,1}k	

Set	Disjointness	Problem:	
Determine	if,	for	all	i	∊	{1,…,k},	either	xi	=	0	or	yi	=	0.	
	
THEOREM	[Kalyanasundaram	and	Schnitger,	
Razborov]		Ω(k)	bits	of	communication	are	required	
by	any	randomized	protocol	for	set	disjointness.	



Computing Diameter 



Computing Diameter 



Computing Diameter 



Computing Diameter 

xi	

Associate	a	different	variable	xi	with	each	of	the	k	=	((n-2)/4)2	
possible	edges	between	blue	and	green	nodes.	
The	edge	is	in	the	graph	if	and	only	if	xi	=	0.	



Computing Diameter 

xi	 yi	

Associate	the	variable	yi	with	the	possible	edge	between	the	
corresponding	red	and	purple	nodes.	
The		edge	is	in	the	graph	if	and	only	if	yi	=	0.	



Computing Diameter 

xi	 yi	

The	resulting	graph	has	diameter	2	if	and	only	if	
for	all	i	∊	{1,…,k},	either	xi	=	0	or	yi	=	0.	
Otherwise	the	graph	has	diameter	3.	



Computing Diameter 

xi	 yi	

n/2	edges	

Suppose	there	is	an	R	round	algorithm	for	determining		whether	
the	diameter	of	any	graph	in	this	class	has	diameter	2	or	3.	
It	communicates	at	most	nRB	bits	across	these	edges.	



Solving Set Disjointness 
for k	=	((n-2)/4)2 

xi	 yi	

Alice	has	input	
x1,…,xk	

Bob	has	input	
y1,…,yk	



Solving Set Disjointness 
for k	=	((n-2)/4)2 

xi	 yi	

They	simulate	the	diameter	algorithm,	communicating	
at	most	nRB	bits.		Hence	nRB	∊	Ω(k)	=	Ω(n2).	
Thus,	the	diameter	algorithm	takes	R	∊	Ω(n/B)	rounds.	



Computing	the	Diameter	D	of	an	n	node	graph	
with	B-bit	messages	

		
Approximation	Factor 	Number	of	Rounds	
1 	 	 	 	Ω(D	+	n/B)		
										[Frischknecht,	Holzer&	Wattenhofer	
2012]	
(3/2	-	ε)	 	 	 	Ω(D	+	n/Bpolylog(n))		
																[Abboud,	Censor-Hillel	&	Khoury	2016]	
3/2		 	 	 	 	O(D	+	n1/2)		
							[Holzer,	Peleg,	Roditty	&	Wattenhofer	
2014]	
2  					 	 	 	O(D)	
																																																				Breath-first	search		
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Covering Arguments 
A	process	pi	covers	a	register	R	in	a	configuration	C	if	
pi	writes	to	R	whenever	pi	is	next	allocated	a	step	by	
the	scheduler.		
Previous	writes	to	R	by	other	processes	are	hidden	
by	performing	this	write.		
		
	



Covering Arguments 
A	process	pi	covers	a	register	R	in	a	configuration	C	if	
pi	writes	to	R	whenever	pi	is	next	allocated	a	step	by	
the	scheduler.		
Previous	writes	to	R	by	other	processes	are	hidden	
by	performing	this	write.		
A	block	write	is	a	sequence	of	consecutive	steps	by	
different	processes	in	which	they	each	write	to	a	
different	register.	
Previous	writes	to	this	set	of	registers	by	other	
processes	are	hidden	when	this	block	write	is	
performed.	
	



Covering Arguments 

The	goal	of	a	covering	argument	is	to	construct	a	
configuration	C	in	which	all	registers	are	covered.	
Then	any	execution	α	from	C	by	the	remaining	
processes	can	be	hidden	by	a	block	write	β.	

C
β

β
α	

γ	

γ	



Covering Arguments 

The	goal	of	a	covering	argument	is	to	construct	a	
configuration	C	in	which	all	registers	are	covered.	
Then	any	execution	from	C	by	the	remaining	
processes	can	be	hidden	by	a	block	write.	
This	can	be	used	to	show	that	any	asynchronous	
algorithm	using	too	few	registers	(each	of	
unbounded	size)	can	behave	incorrectly.	
The	construction	is	usually	inductive,	with	the	
number	of	covered	objects	increasing	as	the	
argument	progresses.	



THEOREM	[Burns	&	Lynch	1993]	Any	mutual	
exclusion	algorithm	for	n	≥	2	processes	uses	at	
least	n	registers.		

Model		
•  asynchronous	shared-memory	system	
•  every	process	has	a	distinct	ID	
•  processes	communicate	through	shared	

(read/write)	registers	of	unbounded	size	
•  no	faults	



Mutual Exclusion Problem 

This	problem	models	the	situation	in	which	
processes	need	temporary	exclusive	access	to	a	
shared	resource.	
•  To	get	the	resource,	a	process	performs	an	entry	
protocol.	

• When	a	process	has	finished	using	the	resource,	it	
performs	an	exit	protocol.	

• A	process	is	idle	if	it	does	not	have	the	resource	
and	is	not	performing	its	entry	or	exit	protocol.	



Mutual Exclusion Problem 

A	mutual	exclusion	algorithm	consists	of	entry	and	
exit	protocols	for	each	process	that	satisfy:	
• mutual	exclusion:	in	any	configuration,	at	most	one	
process	has	the	resource,	and	

• deadlock	freedom:	starting	from	any	configuration	
C	in	which	some	process	is	performing	its	entry	
protocol	and	no	process	has	the	resource,	there	is	a	
finite	execution	by	processes	that	are	not	idle	in	C	
which	causes	some	process	to	get	the	resource.		



LEMMA	1	Suppose		
α	is	a	finite	execution	by	process	pi		starting	from	
configuration	C,		
pi	is	idle	in	C,	
pi	has	the	resource	in	Cα,	and	
R	is	the	set	of	registers	covered	in	C.	
Then,	during	α,	pi	writes	to	some	register	not	in	R.	
Proof:	By	contradiction.	

C
β

β
α	

γ	

γ	

β	is	a	block	write	to	R.	
Some	process	pj	≠ pi	has	
the	resource	in	Cβγ.	
	

~	
pj	

~	
pj	



A	configuration	is	quiescent	if	every	process	is	idle.		

LEMMA	2	From	any	quiescent	configuration	Q	and	
for	1	≤	k	≤	n,	there	are	executions	σ	and	δ	such	that	
•  Qδ	is	quiescent,	
•  	all	registers	have	the	same	values	in	Qσ	and	Qδ	
•  p0,…,pk-1	cover	k	different	registers	in	Qσ,	and	
•  Qσ	and	Qδ	are	indistinguishable	to	all	other	

processes.	



A	configuration	is	quiescent	if	every	process	is	idle.		

LEMMA	2	From	any	quiescent	configuration	Q	and	
for	1	≤	k	≤	n,	there	are	executions	σ	and	δ	such	that	
•  Qδ	is	quiescent,	
•  	all	registers	have	the	same	values	in	Qσ	and	Qδ,	
•  p0,…,pk-1	cover	k	different	registers	in	Qσ,	and	
•  Qσ	and	Qδ	are	indistinguishable	to	all	other	

processes.	

PROOF	OF	THEOREM:	The	initial	configuration	is	
quiescent.	Apply	Lemma	2	with	k	=	n.	



PROOF	OF	LEMMA	2:	By	induction	on	k.	
	
Base	case:	k	=	1.	
By	deadlock	freedom,	there	is	an	execution	α	by	p0	
in	which	p0		gets	the	resource.	
By	Lemma	1,	during	α,	p0	writes	to	some	register.	
Let	σ	be	the	longest	prefix	of	α	that	contains	no	
writes	and	let	δ	be	the	empty	execution.	
Then	
• Qδ	=	Q	is	quiescent,	
•  	all	registers	have	the	same	values	in	Qσ	and	Qδ,	
• p0	covers	1	register	in	Qσ,	and	
• Qσ	and	Qδ	are	indistinguishable	to	all	other	
processes.	

	
	



Induction	step:	Let	1	≤	k	<	r	and	assume	the	claim	is	true	
for	k.		
By	the	induction	hypothesis,	from	any	quiescent	
configuration	Qt,	there	are	executions	σt	and	δt	that	
satisfy	the	claim.	
	
Since	Qtδt	is	quiescent	and	Qtσt	and	Qtδt	are	
indistinguishable	to	all	other	processes,		
they	are	idle	in	Qtσt.	
	
Let	βt	be	a	block	write	by	{p0,…,pk-1}	starting	from	Qtσt.	
Let	γt	be	a	finite	execution	by	{p0,…,pk-1}	starting	from	
Qtσtβt	such	that	Qt+1	=	Qtσtβtγt	is	quiescent.	



	
	

Q1	
σ1	β1	γ1	 σ2	β2	γ2	

Q2	
σt	βt	γt	

Qt	… …Q3	

δ1	 δ2	 δ3	 δt	 δt+1	

Qt+1	

By	the	pigeon	hole	principle,	there	exist	1	≤	t	<	tʹ		
such	that	βt	and	βt’	are	block	writes	to	the	same	set		
of	k	registers	R.	
Since	Qtδt	is	quiescent,	there	is	a	finite	execution	α	
by	pk	starting	from	Qtδt	such	that	pk	has	the	
resource	in	Qtδtα.	
Since	Qtσt					Qtδt	and	all	registers	have	the	same	
values	in	Qtσt	and	Qtδt,	α	can	occur	starting	from	
Qtσt	and	pk	has	the	resource	in	Qtσtα.	

Q	=	

~	
pk	



	
	

Q1	
σ1β1γ1		…	σt-1βt-1γt-1	
		
	

βt	γt	…	σt’-1βt’-1γt’-1	Qt	

α’	
by	pk	

Qt’	

By	Lemma	1,	during	α,	pk	writes	to	some	register	not	
in	R.		Let	α’	be	the	shortest	prefix	of	α	such	that,	in	
Qtσtα’,		pk	covers	a	register	not	in	R.	
Since	βt	is	a	block	write	to	R,	each	register	has	the	
same	value	in	Qtσtβt	and	Qtσtα’	βt.	
Since	Qtσtβt	and	Qtσtα’	βt	are	indistinguishable	to	all	
other	processes,	the	execution	γtσt+1βt+1γt…	γt’-1	can	
also	occur	starting	from	Qtσtα’	βt.	
Let	σ	=	σ1β1γ1		…	σt-1βt-1γt-1σtα’	βt	γt	…	σt’-1βt’-1γt’-1σt'	
and	δ	=	σ1β1γ1		…	σt-1βt-1γt-1σt				βt	γt	…	σt’-1βt’-1γt’-1δt’.		

Q	=	
σt	 σt'	

βt	γt	…	σt’-1βt’-1γt’-1	 σt'	

δt'	
Qδ	

Qσ	



	
	

Q1	
σ1β1γ1		…	σt-1βt-1γt-1	
		
	

βt	γt	…	σt’-1βt’-1γt’-1	Qt	

α’	
by	pk	

Qt’	

Let	σ	=	σ1β1γ1		…	σt-1βt-1γt-1σtα’	βt	γt	…	σt’-1βt’-1γt’-1σt'	
and	δ	=	σ1β1γ1		…	σt-1βt-1γt-1σt				βt	γt	…	σt’-1βt’-1γt’-1δt’.	
Then	
•  Qδ	is	quiescent,	
•  	all	registers	have	the	same	values	in	Qσ	and	Qδ,	
•  p0,…,pk	cover	k+1	different	registers	in	Qσ,	and	
•  Qσ	and	Qδ	are	indistinguishable	to	all	other	

processes.	
Thus	the	claim	is	true	for		k+1.		

Q	=	
σt	 σt'	

βt	γt	…	σt’-1βt’-1γt’-1	 σt'	

δt'	
Qδ	

Qσ	



Before	

After	

1	 3	 2	 3	

2	 2	 2	

Consensus	



Consensus Problem 

•  Agreement:	All	output	values	are	the	same.	
•  Validity:	The	output	value	of	each	process	is	

the	input	value	of	some	process.	
•  Wait-Free	Termination:	Each	non-faulty	

process	outputs	a	value	after	taking	a	finite	
number	of	steps.	

Each	process	pi	has	a	private	input	value	vi.	



Valency Arguments 

… v	v	

1	0	

A	configuration	C	is:	
v-univalent	if	all	executions	starting	
from	C	output	v	and	

	
bivalent	if	there	are	two	executions	
starting	from	C	that	output	
different	values.	

	
	



Valency Arguments 

A	configuration	C	is:	
v-univalent	if	all	executions	starting	
from	C	output	v	and	

	
bivalent	if	there	are	two	executions	
starting	from	C	that	output	
different	values.	

	
After	value	v	has	been	output,	
every	configuration	is	v-univalent.	

… v	v	

1	0	



THEOREM	[Fischer,	Lynch	&	Paterson	1983,	
Chor,	Israeli	&	Li	1987,	Loui	&	Abu	Amara	
1987,	Abrahamson	1988,	Herlihy	1991]	
There	is	no	deterministic	algorithm	to	solve	
consensus	among	n	≥	2	processes	in	an	
asynchronous	system.	
Model	
•  asynchronous	shared-memory	
•  processes	communicate	using			(read/

write)	registers	
•  every	process	has	a	distinct	ID	
•  at	most	n-1	processes	can	crash	



THEOREM	[Fischer,	Lynch	&	Paterson	1983,	
Chor,	Israeli	&	Li	1987,	Loui	&	Abu	Amara	
1987,	Abrahamson	1988,	Herlihy	1991]	
There	is	no	deterministic	algorithm	to	solve	
consensus	among	n	≥	2	processes	in	an	
asynchronous	shared	memory	system	where	
processes	communicate	using	registers.	

Idea:	An	adversary	can	create	an	infinitely	
long	execution	that	doesn’t	output	a	value.			



LEMMA	1	Every	consensus	algorithm	has	a	
bivalent	initial	configuration.	

Proof:	by	contradiction.	Suppose	all	initial	
configurations	are	univalent.	
Let	Ci	denote	the	initial	configuration	where,	
for	0	≤	j	<	n,	process	pj	has	input	value		

1	if	j	<	i	
0	if	j	≥	i.	

	

00…0						10…0		
			C0																	C1	

1…10					1…11		
		Cn-1														Cn	

…



00…0						10…0		 1…10					1…11		…

C1	

… 0	0	 … 1	1	

Cn-1	

By	validity,	C0	is	0-univalent	and	Cn	is	1-univalent.	

C0	 Cn	



00…0						10…0		 1…10					1…11		…

C1	

… 0	0	 … 1	1	

Cn-1	

By	validity,	C0	is	0-univalent	and	Cn	is	1-univalent.	

C0	 Cn	

Hence,	there	exists	i	∊	{0,…,n-1}	such	that																												
Ci	is	0-univalent	and	Ci+1	is	1-univalent.	
		



1i0n-i	 1i+10n-i-1	

… 0	0	 … 1	1	

Ci	

vi	=	0	in	Ci																			vi	=	1	in	Ci+1	

Consider	any	execution	α	starting	from	Ci		in	
which	pi	crashes	before	taking	any	steps.	To	all	
other	processes,	Ci	and	Ci+1	are	indistinguishable.	
Therefore,	the	non-faulty	processes	also	output	
0	when	α	starts	from	Ci+1.		

Ci+1	



LEMMA	2	From	every	bivalent	configuration,	
there	is	a	step	that	leads	to	a	bivalent	
configuration.	

..



LEMMA	2	From	every	bivalent	configuration,	
there	is	a	step	that	leads	to	a	bivalent	
configuration.	

This	implies	there	is	an	infinite	
execution,	consisting	of	only	
bivalent	configurations,	
violating	wait-free	termination.	

..



Consider	any	bivalent	configuration	C,		where	
the	next	step	s0	by	process	p0	results	in																		
a	0-univalent	configuration	C0	and																											
the	next	step	s1	by	process	p1	results	in																					
a	1-univalent	configuration	C1.	

s0	 C	

C1	C0	

0	 1	

s1	



s0		and	s1	access	different	registers	

C’	

s0	

s1	

C	

C1	C0	

0	 1	

?	

s0	

s1	



s0		and	s1	read	the	same	register	

C’	

s0	

s1	

C	

C1	C0	

0	 1	

?	

s0	

s1	



s1	writes	to	the	the	same	register	that	s0	
accesses		

C2	

s0	

s1	

C	

C1	C0	

0	 1	

s1	

C1	and	C2		are	indistinguishable	to	p1,	so	the	solo	
execution	α	by	p1	from	C1		behaves	the	same	
when	started	from	C2.	

α

1	



Consensus	can	be	solved	in	an	asynchronous	
shared-memory	system	using	a	single	
Compare&Swap	object.	



Consensus	can	be	solved	in	an	asynchronous	
shared-memory	system	using	a	single	
Compare&Swap	object.	
	
Therefore,	asynchronous	shared	memory	
systems	with	only	registers	are	less	powerful	
than	asynchronous	shared-memory	systems	
with	Compare&Swap	objects	and	registers. �
	



Randomized Consensus 
•  Agreement:	All	output	values	are	the	same.	
•  Validity:	The	output	value	of	each	process	is	

the	input	value	of	some	process.	
•  Randomized	Wait-Free	Termination:	Each	

non-faulty	process	outputs	a	value	after	
taking	an	expected	finite	number	of	steps.	



THEOREM	[Attiya&Censor-Hillel	2008]	
For	any	algorithm	that	solves	randomized	
consensus	among	n	processes,	the	
expected	total	number	of	steps	taken	by	
all	processes	is	Ω(n2).	

There	is	an	algorithm	that	solves		
randomized	consensus	among	n	processes	
in	which	the	expected	total	number	of	
steps	taken	by	all	processes	is	O(n2).		



There	are	randomized	algorithms	for	consensus	
among	n	processes	that	use	n	registers.	

THEOREM	[Zhu	2016]	Any	randomized	
algorithm	for	consensus	among	n	processes	
must	use	at	least		n-1	registers.	

THEOREM	[Ellen,	Gelashvili	&	Zhu	2018]	Any	
randomized	algorithm	for	consensus	among	n	
processes	must	use	at	least	n	registers.	



k-set Agreement Problem 

•  Agreement:	At	most	k	different	values	are	
output.	

•  Validity:	The	output	value	of	each	process	is	the	
input	value	of	some	process.	

•  Wait-Free	Termination:	Each	non-faulty	process	
outputs	a	value	after	taking	a	finite	number	of	
steps.	

Each	process	pi	has	a	private	input	value	vi.	



There	are	randomized	algorithms	for	k-set	
agreement	among	n	processes	that	use	n-k+1	
registers.	

THEOREM	[Ellen,	Gelashvili	&	Zhu	2018]	Any	
randomized	algorithm	for	k-set	agreement	
among	n	processes	must	use	at	least	⎣(n-1)/
k⎦+1	registers.	


