Lower Bounds from Algorithm
Design: An Overview

Ryan Williams
MIT

Course Announcement
CS294-152. Lower Bounds: Beyond
the Boot Camp

Soda 405
Mondays 4:00pm to = 6:30pm
(with a break in the middle)

first lecture is next week

Outline

A High-Level View

* Algorithms versus Boolean Circuits

Circuit Analysis => Circuit Lower Bounds

Some Details and Some Progress:

NQP (Quasi-NP) is notin ACC
NP doesn’t have small depth-two neural nets

High-level view of algorithms and complexity

* Algorithm designers

 Complexity theorists

 What makes some problems easy to solve?
When can we find an efficient algorithm?

 What makes other problems difficult?
When can we prove that a problem is not easy?

When can we prove a Lower Bound on
the resources (time/space/communication/etc)
needed to solve a problem?

The tasks of the algorithm designer and
the complexity theorist appear to be polar opposites.

* Algorithm designers
prove upper bounds

 Complexity theorists
prove lower bounds

Furthermore, it’s generally believed that
Algorithm Design is easier than Lower Bounds

* In Algorithm Design: find one clever algorithm My Opinion:
* In Lower Bounds: must reason about “all possible”| Thisisn’t why lower
algorithms, and argue none of them work well bounds are hard!

... but there are thousands of worst-case algorithms
which analyze all possible finite objects of some kind...

Why are lower bounds hard to prove?

There are many known “no-go” theorems

Relativization [70’s]
Natural Properties 90’s]
Algebrization (00’s]

Summary: The common proof technigues are not
good enough to prove even weak lower bounds!

Great pessimism in complexity theory

How will we make progress?

There are many known “no-go” theorems

Relativization [70’s]
Natural Properties 90’s]
Algebrization (00’s]

Summary: The common proof technigues are not
good enough to prove even weak lower bounds!

Great pessimism in complexity theory -
Have to non-relativize, non-algebrize, =
and non-naturalize!

One Direction for Progress:
Connect Algorithm Design to Lower Bounds

Much more than opposites!
There are deeper connections we are slowly uncovering.

Thesis: Designing Algorithms (in some sense)
is equivalent to Proving Lower Bounds

A typical res
“Here is an

gorithm Design:

R Mthat salves the problem, Meta-computation:
on afl possibl m’ of the problem" | Problems whose
A typical theorem from Lower|Bounds: '"p:::é:ii:ﬁ:‘e of
“Hereis ¢ Mthat the problem can’t be solved,

ossiblof some type"

A “Plan” For Proving Lower Bounds

Want to prove results of the form:

Task A is impossible for computation model B

Find results showing (algorithm design =2 lower bounds):

Task A’ is possible for computation model B’
Task A is impossible for computation model B

Then, use results from algorithm design to show:

Task A’ is possible for computation model B’

Where do we start????

Want to prove results of the form:

Task A is impossible for computation model B

Find results showing (algorithm design =2 lower bounds):
Define Task A’ be about
analyzing model B

277?

Define Task A
in terms of model B’ Then, use results from algorithm design to show:

Task A’ is possible for computation model B’

(algorithm design =2 lower bounds)?

A simple example from complexity theory:

If PSPACE = EXPTIME then PTIME == PSPACE
- Y o
)
A

T =

[0
PSPACE = problems solvable in polynt,....l.r.“..(,..ace

PTIME = in polynomial time

EXPTIME = ... in exponential time
Proof: PTIME + EXPTIME (time hierarchy theorem)
So PTIME = PSPACE implies PSPACE + EXPTIME. QED

Many such results can be proved....
But they do not seem useful!

Big Idea: Interesting circuit-analysis algorithms
tell us about the limitations of circuits in modeling algorithms

SAT? YES/NO Inherently

non-relativizing
approach

“Non-Trivial”
Circuit Analysis
Algorithm
(beating brute force)

Turing Machine drawing by Tom Dunne for American Scientist

Circuits are not “black-boxes” to algs!

Big Idea: Interesting circuit-analysis algorithms
tell us about the limitations of circuits in modeling algorithms

Goal: Algorithmic task A is impossible for
“efficient” circuits (this is our model B)

Show: Non-trivial analysis of “efficient” circuits
is possible with algorithms (model B’)
Algorithmic Task A is impossible for
“efficient” circuits

Show: Non-trivial analysis of “efficient” circuits
is possible with algorithms

Outline

* Algorithms versus Boolean Circuits

Circuit Analysis => Circuit Lower Bounds

Some Details and Some Progress

Algorithms (Boolean) Circuits

~ | Cantakeinarbitrarily § | -~ = Only take in

4o long inputs and still fixed-length inputs
solve the problem g:{0,1}" - {0,1}
f:10,1}" - {0,1}

it O

’Fmoo
For every input length n,
a circuit family has a circuit C to be run on all inputs of length n

P/poly={f :{0,1}" — {0, 1} computable by a circuit family {C,}
such that (3k = 1)(Vn), the size of C, is at most n*}

Each circuit is “small” relative to its number of inputs

Circuit model has “programs with infinite-length descriptions”
The standard methods in computability theory are powerless...

it =
:EYF,—_,_:_... =

|F1 000

P/poly={ f : {0,1}* — {0, 1} computable with a circuit family
{C,.} such that (3k = 1)(Vn), the size of C,, is at most n*}

!}

Circuit Family = {7,

Why study this “infinite” model of computation?
1) Circuits could be easier to analyze than Turing machines!
2) Proving limitations on P/poly is a step towards
non-asymptotic complexity theory:

Concrete limitations on computing within the known universe
“Any logic circuit solving most instances of my 1000-bit problem
needs at least 101%? bits to be described”

Universe stores < 108 bits [Bekenstein ‘70s] [Meyer-Stockmeyer ‘70s]

Algorithms versus Circuit Families

P/poly={ f : {0,1}* — {0, 1} computable with a circuit family
{C,.} such that (3k = 1)(Vn), the size of C,, is at most n*}

Most Boolean functions require huge circuits:

Theorem [Shannon ‘49] W.h.p., random f : {0, 1}" — {0, 1} needs
circuits of size at least 2"/n

Theorem [Lupanov’58] Every f has a circuit of size (1+0(1))2"/n

Explicit (non-random) hard functions?

What “uniform” algorithms can be simulated in P/poly?
Can huge uniform classes (like PSPACE, EXP, NEXP)
be simulated with small non-uniform classes (like P/poly)?

The key obstacle: Non-uniformity can be very powerful!

Algorithms versus Circuit Families

What “uniform” algorithms can be simulated in P/poly?
Can huge uniform classes (like PSPACE, EXP, NEXP)
be simulated with small non-uniform classes (like P/poly)?

RIDICULOUSLY OPEN: Is NEXP c P/poly?
Can all problems with exponentially-long answers
checkable in exponential time
be solved with polynomial-size circuit families?

Conjecture: NP & P/poly (harder than P # NP)

OPEN: NP « SIZE(O(n))? Best known: NP « SIZE(5n), SIZE(3.01n)

Now, problems like NP SIZE(O(n)) may be attackable...(?)

Outline

* A High-Level View
* Algorithms versus Boolean Circuits
* Circuit Analysis => Circuit Lower Bounds

* Some Details and Some Progress

Generalized Circuit Satisfiability

Let C be a class of Boolean circuits

C = {formulas}, € = {arbitrary circuits}, C = {3CNFs}

The C-SAT Problem:
Given a circuit K(xy,...,x,) from C, is there an
assignment (a,, ..., a,) € {0,1}" such that K(a,,...,a,) =1?

A very “simple” circuit analysis problem!

|CL70s] C-SAT is NP-complete for practically all interesting C
C-SAT is solvable in O(2" |K|) time by brute force

Gap Circuit Satisfiability

Let C be a class of Boolean circuits
C = {formulas}, € = {arbitrary circuits}, C = {3CNFs}
Gap-C-SAT:
Given K(x,...,x,) from C, and the promise that either

(a) K=0,or (b) Pry[K(x) =1] = 1/2,
decide which is true.

Even simpler! In randomized polynomial time

[Folklore?] If Gap-Circuit-SAT € P then P =RP
[Hirsch, Trevisan, ...] Gap-kSAT is P for all k

Faster C-SAT = Circuit Lower Bounds for C

Slightly Faster Circuit-SAT No “Circuits for NEXP”
[R.W.’10,/11]
Deterministic algorithms for: Would imply:

e Circuit SAT in O(2"/n19) time « NEXP & P/poly
with n inputs and n* gates

* Formula SAT in 0(2"/n1) time | | * NEXP & Poly-size formulas

e C-SAT in O(2"/n%0) time * NEXP & poly-size C Concrete LBs
C =ACC

[W'11]
* Gap-C-SATisin O(2"/n'9) C = ACC of THR
time on nX size NEXP & poly-size C [W’14]

(Easily solved w/ randomness!)

Even Faster SAT = Stronger Lower Bounds

Somewhat Faster Circuit SAT No “Circuits for Quasi-NP”
[Murray-W. "18]
Det. algorithm for some € > 0: Would imply:
o (e : n—n€y . _ _
CI.I’CUIt -SAT in O(2)) time « NTIME[nP°W109] & p/poly
with n inputs and 2™ gates

e Formula SAT in O(2™~ ") time | |® NTIME[nPo!09 1] & NC1

» C-SATin O(2"") time npolylogm C = ACC of THR
[MW’18]

+ Gap-C-SATis in 0(2"™) NTIME[nP°Wlog] ¢ ¢
time on 2™ gates

Even Faster SAT = Stronger Lower Bounds

Note: Would
refute
Strong ETH!

Strongly
believed to
be true...

“Fine-Grained” SAT Algorithms
[Murray-W. '18]
Det. algorithm for some € > 0:
* Circuit SAT in O(2(1=€)") time
on n inputs and 2" gates

e FormSAT in O(2(1=67) time
e C-SATin O(2(1=671) time

e Gap-C-SATisin O(2(1-9m)
time on 2¢™ gates

(Implied by PromiseRP in P)

No “Circuits for NP”

Would imply:
« NP & SIZE(n¥) for all k

* NP Formulas of size nk

« NP ¢ C-SIZE(n*) for all k

NP & C-SIZE(n¥) for all k

C =SUM of THR

C = SUM of RelU
C =SUM of POL

[W’18]

Outline

* A High-Level View
* Algorithms versus Boolean Circuits
* Circuit Analysis => Circuit Lower Bounds

* Some Details and Some Progress

Some Lower Bounds by Algorithm Design

ACCP: circuits of polynomial size and constant depth,
with AND, OR, and MODm gates for some constant m.
ACC° c P/poly, probably a proper subset!

Annoying Circuit Class to prove lower
bounds for, proposed in 1986
(and it is the O™ such class)

Thm [R.W.”11]: NEXP ¢ ACC°
Thm [Murray-W’18]: NTIME[nP°Y(108™M)] ¢ ACCO of THR

ACC o THR: Annoying Circuits with Linear Threshold Gates at the bottom

Progress Report

[W’14, Murray-W’18] Quasi-NP does not have ACC o THR circuits of polynomial size

SAT algorithm uses a new depth-two representation of ACC o THR

and fast rectangular matrix multiplication to evaluate the representation quickly
Improving the lower bounds to multiple layers of THR gates is an open frontier:
[Tamaki’16, AIman-Chan-W’16] ENP does not have ACC o THR o THR circuits of subquadratic size

Uses recent probabilistic polynomials for THR [Srinivasan’13, Alman-W’15]

Open: Quasi-NP does not have THR o THR circuits of subquadratic size
[S.Chen-Papakonstantinou’16] Better size-depth tradeoff lower bound for NEXP vs ACC
[R.Chen-Oliveira-Santhanam’18] Average Case: NEXP doesn’t have poly-size ACC circuits

i 1 i -
computing a 5 + fraction of n-bit inputs correctly

poly(log n)
Carefully applies coding-theoretic techniques on top of the framework

[W’18] NP does not have 0(n1°?)-size depth-two neural networks
with sign activation function, nor with ReLU activation functions
At the heart: [Horowitz-Sahni 70s] Counting subset sum solutions on n items is in ~ 2/? time!
New lower bounds from an old algorithm!

Progress Report

[W’"14, Murray-W’18] Quasi-NP does not have ACC o THR circuits of polynomial size

SAT algorithm uses a new depth-two representation of ACC o THR

and fast rectangular matrix multiplication to evaluate the representation quickly
Improving the lower bounds to multiple layers of THR gates is an open frontier:
[Tamaki’16, Alman-Chan-W’16] ENP does not have ACC o THR o THR circuits of subquadratic size

Uses recent probabilistic polynomials for THR [Srinivasan’13, Alman-W’15]

Open: Quasi-NP does not have THR o THR circuits of subquadratic size
[S.Chen-Papakonstantinou’16] Better size-depth tradeoff lower bound for NEXP vs ACC
[R.Chen-Oliveira-Santhanam’18] Average Case: NEXP doesn’t have poly-size ACC circuits

i 1 i i
computing a 5 + fraction of n-bit inputs correctly

poly(log n)
Carefully applies coding-theoretic techniques on top of the framework

[W’18] NP does not have 0(n1°?)-size depth-two neural networks
with sign activation function, nor with ReLU activation functions
At the heart: [Horowitz-Sahni 70s] Counting subset sum solutions on n items is in ~ 2"/? time!
New lower bounds from an old algorithm!

Lower Bounds for
NEXP, Quasi-NP, and NP
From Nontrivial Gap-SAT Algorithms

How NEXP & ACC° Was Proved

Let C be a “typical” circuit class (like ACCO)

Thm A [W’11] (algorithm design =2 lower bounds)
If for all k, Gap-C-SAT on nk-size is in O(2"/nk) time,
then NEXP does not have poly-size C-circuits.

Thm B [W’11] (algorithm)
3 &£, ACCO-SAT on 2™ size is in 0(2"_"8) time.
(Used a well-known representation of ACC° from 1990,
that people long suspected should imply lower bounds)

Note the inefficiency!
Theorem B gives a much stronger algorithm
than is necessary in Theorem A.

This is exactly the starting point of [Murray-W’18]...

ldea of Theorem A

Let C be some circuit class (like ACCO)

(algorithm design =» lower bounds)
If for all k, Gap C-SAT on nk-size is in O(2"/nk) time,
then NEXP does not have poly-size C-circuits.

Show that if we assume both:

(1) NEXP has poly-size C-circuits,
AND

(2) afaster Gap C-SAT algorithm

Then we can show NTIME[2"] € NTIME[o(2")]
(contradicts the nondeterministic time hierarchy!)

Proof Ideas in Theorem A

Assume
(1) NEXP has poly-size C-circuits, AND
(2) there’s a faster Gap C-SAT algorithm
Show that NTIME[2"] € NTIME[o(2")]

Take any problem L in
Given an input x, we “compute” L on x by:

1. Guessing a witness y of length.
2. Checking y is a witness for x in time.

Want to “speed-up” both parts 1 and 2,
using the above assumptions

Proof Ideas in Theorem A

Idea. Assume
(1) NEXP has poly-size C-circuits, AND
(2) there’s a faster Gap C-SAT algorithm
Show that NTIME[2"] € NTIME[o(2")]

Take any problem L in
Given an input x, we wil

Ill

compute” L on x by:

1. Use (1) to guess a witness y of o(2") length
(Easy Witness Lemma [IKWO02]:
if NEXP is in P/poly, then L has “small withesses”)

2. Use (2) to check y is a witness for x in o(2") time
Technical: Use a highly-structured PCPs for NEXP
[W’10, BV’14] to reduce the check to Gap C-SAT

Proof Ideas in Theorem A

Idea. Assume
(1) NEXP has poly-size C-circuits, AND
(2) there’s a faster Gap C-SAT algorithm
Show that NTIME[2™] € NTIME[o(2")]

Take any problem L in
Given an input x, we will “compute” L on x by:

1. Use (1) to guess a witness y of o(2") length
(Easy Witness Lemma [IKWO02]:
if NEXP is in P/poly, then L has “small witnesses”)

2. Use (2) to check y is a witness for x in o(2"") time
Technical: Use a highly-structured PCPs for NEXP
[W’10, BV’14] to reduce the check to Gap C-SAT

Guessing Short Witnesses

1. Guess a witness y of O(2") length.

Definition. An NTIME[2"] problem L has easy witnesses if

dc > 1, V VerifiersVfor L, if 3 y € {0, 1}2|x|+d s.t. V(x,y) accepts, then
3 circuit D, of |x|€ size and |x| + d inputs s.t. V(x,tt(D,)) accepts,

where tt(D,) = Truth Table of circuit D,
Easy Witness Lemma [IKW’02]:
If NEXP is in P/poly then all NEXP problems have easy witnesses
Small circuits for solving NEXP problems
— Small circuits for solutions to NEXP problems

Replace 1 with: 1. Guess poly(|x|)-size circuit D

Proof Sketch of Theorem A

Idea. Assume
(1) NEXP has poly-size C-circuits, and
(2) there’s a faster Gap C-SAT algorithm
Show that NTIME[2"] € NTIME[o(2")]

Take any problem L in nondeterministic 2™ time.
Given an input x, we compute L on x by:

1. Guessing a circuit D, of poly(|x]) size
(Easy Witness Lemma, using (1))

2. Using (2) to check D, encodes a witness for x
in o(2™) time (Nice PCPs for L)

Improving Theorem A [MW’18]

Let C be a “typical” circuit class (like ACCO)
Thm A+ [MW18] If there is an £>0 such that
Gap-C-SAT on 2™ _size circuits is in 0(2”_"8) time
then NTIME[2(l0g ")0(1)] doesn’t have poly-size C-circuits

Thm A++ [MW18] If there is an €>0 such that
Gap-C-SAT on 2&"-size circuits is in O(2"(179) time
then for all k, NP doesn’t have n¥-size C-circuits

and NTIME[n!°8" "] doesn’t have poly-size C-circs [Tell’18]

Proof of Theorem A++7?

Approach: Want to show that given

(1) NP has n*-size C-circuits, and

(2) Gap-C-SAT algorithm running in 2(178)7 time
Then NTIME[n“] S NTIME[o(n?)] for some d

Let L € NTIME[n%]. To solve L faster on input x,
—c : irewit-Eofotnd)si

2. Check C, encodes witness for x in o(n?) time
(Use nice PCP; this still works, if part 1 works)

Easy Witness Lemma only works for NEXP!

New Easy Witness Lemma [MW’18]

if
VL € NTIME[t(n)], V VerifiersV, Vx € L,
3 s(n)-size circuit D, such that V(x, tt(D,)) accepts.

Old Easy Witness Lemma [IKWO02]:

If every problem in NEXP has poly(n)-size circuits,
then NEXP has poly(n)-size witness circuits.

New Easy Witness Lemma (Special Case of [MW’18]):
If every problem in NP has n¥-size circuits,

N .
then NP has n?")_size witness circuits.
Similar statement for NTIME[nP°Wlogn],

Proof of Theorem A++7?

Approach: Want to show that given

(1) NP has n*-size C-circuits, and

(2) Gap-C-SAT algorithm for 2€" size, in 2176 time
Then NTIME[n*"] € NTIME[o(n*")]

LetL € NTIME[nk4]. To solve L faster on input x,

1. Guess circuit C, of O(nkg) size with k* log n inputs,
4
encoding witness y of length nk
(Use (1) and New Easy Witness Lemma)

2. Check C, encodes witness for x in o(nk4) time
(Use (2) and nice PCP)

Contradiction!

IKW’s Easy Withess Lemma

Easy Witness Lemma [IKWO02]:
NTIME[2"] c SIZE[n*] for some k

= NTIME[2"] has n‘-size witness circuits for some c.

Strategy: Assume the negation, prove a contradiction!
(1) 3k NTIME[2"] c SIZE[n*] and
(2) Vc, NTIME[2™] DOESN’T have n‘-size witness circuits

IKW start with Ly,,-4 € SPACE[n**1] /i.0.-SIZE[n*]
and show how assumptions (1) and (2) imply:
SPACE[n**1] € MA C i.0.-NTIME[2"] ,, € i.0.-SIZE[n*]

Merlin-Arthur infinitely often,
protocols with n bits of advice

Proof of IKW’s Easy Withess Lemma

(1) 3k NTIME[2"] c SIZE[n*] and
(2) Vc, NTIME[2™] DOESN’T have n‘-size witness circuits

Show how assumptions (1) and (2) imply:
SPACE[n**1] € MA C i.0.-NTIME[2"],, < i.0.-SIZE[n¥]

MA: Merlin-Arthur = NP with probabilistic verification
Lis in MA means there’s a polytime V such that
X € L =2 thereis a y such that V(x,y) always accepts

X & L= foreveryy, V(x,y) rejects with prob > %
Merlin Arthur

Proof of IKW’s Easy Witness Lemma

(1) 3k NTIME[2"] c SIZE[n¥] and

(2) Vc, NTIME[2™] DOESN’T have n‘-size witness circuits

Show how assumptions (1) and (2) imply:
SPACE[n"'] € MA C i.0.-NTIME[2"],, € i.0.-SIZE[n¥]

(1) NTIME[2"] c SIZE[n¥]
— SPACE[O(n)] < P/poly
— PSPACE c P/poly

— PSPACE = MA [BFNW’93]
Use the fact that PSPACE = IP [Shamir]:
Guess a small circuit encoding the prover’s strategy,
then run the interactive protocol with that circuit

Proof of IKW’s Easy Witness Lemma

(1) 3k NTIME[2"] c SIZE[n*] and

(2) Vc, NTIME[2™] DOESN’T have n‘-size witness circuits

Show how assumptions (1) and (2) imply:
SPACE[n**1] € MA C i.0.-NTIME[2"] , € i.0.-SIZE[n"]

(1) NTIME[2"] c SIZE[nk]

= 1.0.-NTIME[2"]/n € i.0.-SIZE[n*]
(Hard-code the advice in the circuit)

Proof of IKW’s Easy Withess Lemma

(1) 3k NTIME[2"] c SIZE[n*] and

(2) Vc, NTIME[2™] DOESN’T have n‘-size witness circuits

Show how assumptions (1) and (2) imply:
SPACE[n**1] € MA C i.0.-NTIME[2"], € i.0.-SIZE[n*]

(2) NTIME[2"] DOESN’T have n‘-size witness circuits:
—|(‘v’L € NTIME[2"], V Verifiers V, for all but finitely many x € L,

Jy s.t. V(x,y) accepts and (Circuit complexity of y) < n¢)

Proof of IKW'’s Easy Witness Lemma

(1) 3k NTIME[2"] c SIZE[n*] and

(2) Vc, NTIME[2™] DOESN’T have n‘-size witness circuits

Show how assumptions (1) and (2) imply:
SPACE[n**1] € MA C i.0.-NTIME[2"], € i.0.-SIZE[n*]

(2) NTIME[2"] DOESN’T have n‘-size witness circuits:
3L € NTIME[2"], 3 Verifier V, 3 infinitely many x € L,
such that Vy [V(x, y) accepts = (Circuit complexity of y) >n°]

Given a ‘bad’ input x as advice, can use verifier V to
guess-and-check a function with circuit complexity > n¢
in 0(2™") time
Can nondeterministically generate hard functions!

Proof of IKW'’s Easy Witness Lemma

(1) 3k NTIME[2"] c SIZE[n*] and

(2) Vc, NTIME[2™] DOESN’T have n‘-size witness circuits

Show how assumptions (1) and (2) imply:

SPACE[n**1] € MA C i.0.-NTIME[2"], € i.0.-SIZE[n*]
(2) NTIME[2"] DOESN’T have n‘-size witness circuits:

3L € NTIME[2"], 3 Verifier V, 3 infinitely many x € L,
such that Vy [V(x, y) accepts = (Circuit complexity of y) >n°]

Thm [Hardness-to-PRGs] There’s an a > 0 and O(2™)-time computable

F such that, given a string y with circuit complexity > n¢,
F outputs a set of O(2") strings which “fool” all circuits of size n* ¢

Use F to derandomize n%()-time Merlin-Arthur protocols in 0(2™) time,
on infinitely many input lengths, with n bits of advice

Scaling Down to NP?

New Easy Witness Lemma (Special Case)
If NP has n*-size circuits,

then NP has no(ks)-size witness circuits.

Idea: Derive a contradiction from assuming that

NP c SIZE[n¥]
and

V¢, NP does NOT have n‘-size witness circuits.

Scaling Down to NP?

What happens when we try to follow the IKW proof?
We want to derive something like:
PSPACE € MA < i.0.NP,, < i.0.SIZE[n¥]

These two inclusions are OK!

They follow from
and

NP does NOT have n‘-size witness circuits

Scaling Down to NP?

What happens when we try to follow the IKW proof?
We want to derive something like:
PSPACE © MA Ci.0.NP,, C i.0.SIZE[n¥]

Problem: Can’t conclude PSPACE is in MA from
assuming NP c SIZE[n*] and
NP does NOT have n‘-size witness circuits!

Possible fix: Use another circuit lower bound?
Thm [San07] MA ; ¢ SIZE[n¥]

Scaling Down to NP?

What happens when we try to follow the IKW proof?
We want to derive something like:
MA,; €i.0.NP,,, € i.0.SIZE[n"]
New problem: We only know MA , ¢ SIZE[n¥]
Don’t know if MA ; ¢ i.0.SIZE[n*]

Possible fix: Prove a stronger MA lower bound?
Turns out we don’t need an
“almost-everywhere” lower bound...

New Lower Bound for Merlin-Arthur Protocols

For all k, thereisan L € MA-TIME[n"Z]/O(Iog n)
such that for all but finitely many input lengths n,

either L, has circuit complexity at least n*

. . . k2
or L has circuit complexity at least n

Our proof of the new EWL shows:

k_size circuits

0(k3)

If every problem in NP has n

and some NP problem doesn’t have n -size witnesses,
then the above Merlin-Arthur lower bound is contradicted!

Sketch of the New Easy Withess Lemma

: 2 o
Start with L € MA-TIME[n* 1/0(10g n) from our new circuit lower bound.

: 3y . :
Assuming some NP problem doesn’t have n?")size witnesses,
we derive a partial derandomization of the MA protocol for L:

For infinitely many n, there is an NP, algorithm computlng
L correctly on all inputs of length n AND of length n*

k

Assuming NP has n"-size circuits, we can derive:

For infinitely many n,

. . . 2
-size circuit AND Lnk has an nk

k

L,hasann -size circuit.

This directly contradicts our lower bound for L!

More Details on Derandomizing MA

3) ..
Assume: NP does NOT have nk” -size witness circuits.

Let V be a “bad” verifier (for inf. many x, every witness for x is not easy)
How to derive MA ;5.) S 1:0.NP/ . 651106 1)
Given a ‘bad’ x,, as advice,

Guess a ‘bad’ y such that V(x,,,y) accepts

// y encodes a function with circuit complexity > nk’

Stick y into a PRG that fools n®*)size circuits

Use PRG to derandomize an m-time MA protocol
(Guess Merlin’s message, construct a circuit of
size m? that takes Arthur’s message as input)

This works as long as m? << nO0(k*)

More Details on Derandomizing MA

How to derive MA ;..) S 1:0-NP/, 61106 1)
Given a ‘bad’ x,, as advice,

Guess a ‘bad’ y such that V(x,,,,y) accepts

// v encodes a function with circuit complexity > n*’

Stick y into a PRG that fools nk) size circuits

Use PRG to derandomize an m-time MA protocol
(Guess Mer//n s message, construct a circuit of

size m? that takes Arthur’s message as input)
This works as long as m? << n0(k’)

3 . i .
If NP does not have n* -size witness circuits,

the same advice x,, can be used to derandomize MA

for all running times up to m = n?*”)

Lower Bounds for NP
Against Some Depth-Two Classes

The R-linear Representation Problem

Let C be a class of “simple” functions
(take Boolean inputs, but need not be Boolean-valued)

mn_: I/?

f : {0,1}71 N {0’1} — poly(m) “size”:

Call this a) o € circuit

If C spans the vector space of all functions f : {0,1}" - R
then there is always some) o C circuit of < 2™ size...

The R-linear Representation Problem

Which “interesting” functions f can(not) be represented by
“short” R-linear combinations of functions from C?

If C is the class of 2™ AN D functions on n variables:
Y. oAND = 0/1 polynomials over R

If C is the class of 2™ PARITY functions on n variables:

Y. oPARITY = —1/1 polynomials over R
(Fourier analysis of Boolean functions)

These are well-understood:
C is a basis for the vector space of functions f : {0,1}"* - R
= the R-linear representation of f is unique,
so the “shortest” is also the “longest”...

More interesting cases: representations are not unigue

[W’18] Three Simple Classes

1. Linear Threshold Functions [LT F]
2. Rectified Linear Units [ReLU]
3. GF(p)-Polynomials of Degree-d [POLYd|p]]

(p primeand d = 2)
For all three classes:

 There are > 2™ functions on n variables,
so R-linear representations are not unique

20(n*) | TFs, p©(*) degree-d polys, o RelU functions

 R-linear Representations have been studied!
Y. o LTF = Special Case of Depth-2 Threshold Circuits
Y. o ReLU = “Depth-2 Neural Net with ReLU activation”
Y. o POLYd[p] = “Higher-Order” Fourier Analysis for d > 2

Sums of Linear Threshold Functions
Def. f,,: {0,1}™ — {0,1}isan LTFif 3 wy, ...w,,t € R such that
V (x4, %) €01}, f(X1, 0 xp) =1 & Y;wix; >t
Depth-Two LTF Circuits (LTF o LTF): Major problem to find
“nice” functions without n*-gate LTF o LTF circuits, for all k

[Hajnal et al.’91] exp(n) depth-two lower bounds for small w;’s
[Roychowdhury-Orlitsky-Siu’94] What about), o LTF?
Special case of LTF o LTF:
the linear form for output LTF must always evaluate to 0 or 1

Still, no n1°-gate lower bounds were known for ¥ o LTF!

We prove:
Thm Vk, 3f, € NP without n*-size Y o LTF

Thm 3f € NTIME[n'°9 "] without poly(n)-size Y. o LTF

Note: It is a major open problem to prove
3f € NP without n’*-size (unrestricted) circuits

Sums of RelLUs

Def. f,,;: R™ - R* isa RelU if 3wy, ...w,,t € R such that
V (xq, ., xp) ERY, f(xq,...,x,) = max(0,),;w;x; + t)
Y. o ReLU generalizes), o LTF

Y. o ReLU = “Depth-Two Neural Nets with ReLU Activations”
Very widely studied, thousands of references

Several recent references [see paper] give lower bounds
for some “weird” f: R™ — R which vary sharply / sensitive

No lower bounds known for discrete-domain / Boolean functions
(note: “most sensitive” Boolean fn PARITY has O(n)-size ;o LTF)

We can generalize the), o LTF limitsto), ¢ ReLU:
Thm Vk, 3f, € NP without n*-size . o« ReLU

Thm 3f € NTIME[n'°9" "] without poly(n)-size . o ReLU

Sums of Low-Degree GF(p)-Polys
Yo POLYd|[p]: Linear combination of f:{0,1}" — {0,1,...,p — 1}
where for every f there is a degree-d polynomial g(x) such that
vx € {0,1}", f(x) = q(x) mod p
Caseofd = 2,p = 2 is already very interesting!

Compelling Conjecture [“Degree-Two Uncertainty Principle”]:
AND (on n inputs) requires n®W-size Yo POLY2 2]
Known: AND requires Q(2™)-size ;o POLY1|2]
AND has 0(2™/?)-size Yo POLY2[2]
No non-trivial lower bounds were known for), « POLY2|p]
We prove:
Thm Vd, k, Vp prime, 3f;, € NP without n¥-size Yo POLY d[p]

Thm 3f € NTIME[n!°9™] without poly(n)-size Yo POLYd|[p]
for all fixed d and fixed prime p

Key Theorem

A new instance of “Circuit Analysis Algorithms = Circuit Lower Bounds”

Key Theorem: Let € be a class of functions f : {0, 1}" — R.

Assume: there is an € > 0 and an algorithm 4 so that
forany given f4, ..., f4 € C, A can compute the “sum-product”

4
Z 1_[fi(a) Solving a generalization of #SAT for C
aco1}n i=1 —> Strong lower bounds for) o C
in 2t(1-8) time.
Then: Yk, 3f € NP without n¥-size Yo €, and

f € NTIME[n"’g*”] without poly(n)-size .o C

Applies new Easy Witness Lemma [Murray-W’18]

We show how to compute sum-products in 27178 time
for LTFs, RelLUs, and low-degree polynomials

Major Ideas in the Key Theorem

Assume: (1) There is a 2"1~8)_time sum-product algorithm A for C
(2) For some fixed k, all f € NP have nk-size Yo € Goal: Derive a contradiction.

(1) and (2) = Given (unrestricted) Boolean circuit T with n inputs and m size,
we can guess-and-check an mk-size Yo € computing T, in 2"1~8)m0M) time

Notes: (a) Checking that a given Y - C is Boolean-valued is the hardest part.
(b) In order to guess the Yo C circuit, we need that the coefficients in our
linear combinations have “small” bit complexity, WLOG

(1) = Can solve #Circuit-SAT in nondeterministic 2" 1~ m2%@ time

Idea: given (unrestricted) circuit T, guess-and-check an equivalent m¥*-size
2.o C computing T. Then, #SAT(T) is equiv. to }.,co 13n(20 C (@) = . Xq C(@).

[Murray-W’18] + #Circuit-SAT algorithm = Vk, 3f € NP without n¥-size unrestricted circuits
Contradicts (2) when ;o € can be simulated by Boolean circuits!

The proof crucially relies on the) o € circuit computing an arbitrary circuit exactly

Sum-Product Algorithm for LTF

Uses (old) fact that #Subset-Sum is solvable in poly(n) - 22 time!
Thm [HS'76] #Subset-Sum on i numbers is in poly(n) - 2™/? time

Proof Given wy, ..., w,,, t, we want to know
the number of § C [n] such that },;ccw; = ¢

1. Enumerate all possible 2™/2 subsets S of {w;, s Why2}e
Make a list L, of the 2™/? subset sums, and SORT all sums in L,
2. Enumerate all possible 2™/2 subsets T of {Wn/241, s Wn}
For each T summing to a value v,
BINARY SEARCH for avalue v’ in L; suchthatv + v’ =t

3. To compute the total number of subsets summing to ¢:
For each sum value v’ appearingin L,
store the number n,,, of subsets in L, which have value v'.
Later, if value v’ is found in the binary search,

add n,, to a running sum.
Takes poly(n) - 2™2 time in total

Sum-Product Algorithm for LTF

Uses (old) fact that #Subset-Sum is solvable in poly(n) - 22 time!
Thm For any f4, ..., f4 € LTF, we can compute

4
Z Hfi(a) in poly(n) - 2?2 time.

ac{0,1)" i=1
Proof An Exact LTF (ELTF) g hastheformg(x) =1), w;x; =t
#Subset-Sum in poly(n) - 22 time = Y., g(a) in poly(n) - 2™/? time
[HP"10]: Every LTF on n inputs can be written as)., ,;,,c,) ELTF

4 4

So we can write 2 ﬂfi(a) = z (z gi,j(a)> for ELTFs gdij
ac{0,1}" i=1 ac{0,1}" ‘i.=iL poly(n)
4
Simple algebra: = z z gij.(a) = z Z gij(a)
ac{0,1}" poly(n) i=1 poly(n) ac{0,1}" i=1

Each [T{=1 9ij,(x) = h(x) for some ELTF h | Can compute in poly(n) - 2™/2 time!

Open Problems

Know: For each k, there isan f € NTIME [na(k4)] without n¥-size Yo LTF
Show SAT requires nk-size Yo LTF, for all k

Show Quasi-NP does not have THR o THR circuits of
subquadratic size

ENP

Show there’s a function in without 67 size circuits

| know how to solve #SAT for ;o POLY2|[2] in poly-time.
Thus this class should not even represent CNF. Prove that!

If SAT € P, then TIME(n!'°8™) is not in P/poly.
If SAT is in nP°Y!°9 ™ time, then Quasi-P is not in P/poly.
Is such a connection true for Gap-Circuit-SAT?
[IW97] (TIME[2°™)] not in 2™/190 sjze) = Gap-Circuit-SAT is in P

Thank you!

