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Quantum$computers$provide$a$quantum$solu@on$to$a$system$of$linear$equa@ons$in$certain$

cases$exponen@ally$faster$than$classical$algorithms,$given$quantum$access$to$the$data.$

“It$opens$the$possibility$of$drama4c$speedups$for$machine$learning$tasks,$richer$models$for$data$sets$and$
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Quantum$Machine$Learning$Workshop$during$NIPS$2015$
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Computa@on$on$the$data$

•  Given$quantum$access$to$data,$learn$some$property$of$the$data$

•  Running$@me$of$quantum$algorithm$can$be$more$efficient$that$classical$
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Running$@me:$

O(r*polylog(mn))$
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1.  Start$with$an$ini@al$solu@on.$
2.  Update$the$solu@on$according$to$an$Update$Rule$
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Efficient$Quantum$Gradient$Descent$algorithm$$

for$Linear$Systems$and$Stochas@c$Least$Squares.$

[Kerenidis,$Prakash$2017]$

Remark$1:$Improved$Linear$Algebra$

Remark$2:$Great$savings$in$QRAM$$

Types$of$Itera@ve$Methods$
First$order$–$Gradient$Descent$

Second$order$–$Interior$point$methods$
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LCU,$Qubi@za@on$on$U$

Step$3$
Amplitude$Amplifica@on$(VT)$$

Apply$a$circuit$with$O(log1/ε)$U’s$

O(κ(Α))$itera@ons$



Quantum Linear Algebra 

$ $ $ $$$$$

$ $$

$ $ $ $$

$ $ $ $$

Problem:$$
Given$matrix$A$and$vector$x,$output$Ax,$AR1x,$…$

Running$@me:$O(κ(A)μ(Α)log1/ε)$



Quantum Linear Algebra 

$ $ $ $$$$$

$ $$

$ $ $ $$

$ $ $ $$

Problem:$$
Given$matrix$A$and$vector$x,$output$Ax,$AR1x,$…$

Running$@me:$O(κ(A)μ(Α)log1/ε)$

Open$Ques@on:$$
What$is$the$op@mal$μ(Α)?$$
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Frobenius$Distance$Classifica@on$

h(x(0)) := argmin

k2[K]

F
k

(x(0)) (4)

We will estimate F
k

(x(0)) efficiently using the algorithm below. From our QRAM construction
we know we can create a superposition of all vectors in the cluster as quantum states, have access
to their norms and to the total number of points and norm of the cluster (see also Appendix A).
We define N

k

= kX
k

k2
F

+ kX(0)k2
F

= kX
k

k2
F

+ |T
k

| kx(0)k2.

QFE 4 Frobenius Distance Estimator
Require:

QRAM access to the matrix X
k

of cluster k and to a test vector x(0). Error parameter ⌘ > 0.
Ensure:

An estimate F
k

(x(0)) such that |F
k

(x(0))� F
k

(x(0))| < ⌘.

1: s:=0
2: for r = O(1/⌘2) do
3: Create the state

1p
N

k

⇣p
|T

k

| kx(0)k |0i+ kX
k

k
F

|1i
⌘
|0i |0i

4: Apply the unitary that maps:

|0i |0i 7! |0i 1p
|T

k

|

X

i2Tk

|ii and |1i |0i 7! |1i 1

kX
k

k
F

X

i2Tk

kx(i)k |ii

to the first two registers to get

1p
N

k

⇣
|0i
X

i2Tk

kx(0)k |ii+ |1i
X

i2Tk

kx(i)k |ii
⌘
|0i

5: Apply the unitary that maps

|0i |ii |0i 7! |0i |ii |x(0)i and |1i |ii |0i 7! |1i |ii |x(i)i

to get the state

1p
N

k

⇣
|0i
X

i2Tk

kx(0)k |ii |x(0)i+ |1i
X

i2Tk

kx(i)k |ii |x(i)i
⌘

6: Apply a Hadamard to the first register to get

1p
2N

k

|0i
X

i2Tk

⇣
kx(0)k |ii |x(0)i+kx(i)k |ii |x(i)i

⌘
+

1p
2N

k

|1i
X

i2Tk

⇣
kx(0)k |ii |x(0)i�kx(i)k |ii |x(i)i

⌘

7: Measure the first register and if the outcome is |1i then s:=s+1
8: end for
9: Output s

r

.

For the analysis, just note that the probability of measuring |1i is:

1

2N
k

 
|T

k

| kx(0)k2 +
X

i2Tk

kx(i)k2 � 2

X

i2Tk

hx(0), x(i)i
!

= F
k

(x(0)).

By Hoeffding bounds, to estimate F
k

(x(0)) with error ⌘ we would need O(

1

⌘

2 ) samples. For
the running time, we assume all unitaries are efficient either because the quantum states can be
prepared directly by some quantum procedure or given that the classical vectors are stored in the
QRAM as described in Appendix A, hence the algorithm runs in time ˜O(

1

⌘

2 ). We can of course
use amplitude estimation and save a factor of ⌘. Depending on the application one may prefer
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QSFA Quantum Slow Feature Analysis
Require:

Matrices X 2 Rn⇥d and ˙X 2 Rn⇥d in QRAM, parameters ✏, ✓, �, ⌘ > 0.
Ensure:

A state |Y i such that | |Y i � |Y i |  ✏, with Y = A+

✓,�

A✓,�

Z

1: Create the state |Xi := 1

kXkF

P
n

i=1

kx(i)k |ii |x(i)i
2: (Whitening algorithm) Map |Xi to |Zi with | |Zi � |Zi |  ✏ and Z = XB�1/2.
3: (Projection in slow feature space) Project |Zi onto the slow eigenspace of A using threshold ✓

and precision � (i.e. A+

✓,�

A✓,�

Z)
4: Perform amplitude amplification and estimation on the register |0i with the unitary U im-

plementing steps 1 to 3, to obtain |Y i with | |Y i � |Y i |  ✏ and an estimator kY k with
multiplicative error ⌘.

We conclude this section by stating the main dimensionality reduction theorem of this paper.

Theorem 6 (QSFA algorithm). Let X =

P
i

�
i

u
i

vT
i

2 Rn⇥d and its derivative matrix ˙X 2
Rn logn⇥d stored in QRAM as described in Appendix A. Let ✏, ✓, �, ⌘ > 0. There exists a quan-
tum algorithm that produces as output a state |Y i with | |Y i � |A+

✓,�

A✓,�

Zi |  ✏ in time

˜O

✓⇣
(X)µ(X) log(1/") + (µ(X)+µ(

˙

X))

�✓

⌘
||Z||

||A+
✓,�A✓,�Z||

◆
and an estimator kY k with |kY k�kY k | 

⌘ kY k with an additional 1/⌘ factor.

Proof. QSFA consists of two steps. The first step is the whitening, which can be performed in time
˜O((X)µ(X) log(1/✏)) and provide the state |Zi (see Theorem 5).

The second step is the projection in the slow feature space. Using Theorems 2,3, and 4, we
know that the projection (without the amplitude amplification) takes time equal to the ratio µ
over the threshold parameter, and since the matrix is the product of matrices, the parameter µ is
the sum of the µ’s, namely we have that the second step takes time ˜O(

(µ(X)+µ(

˙

X)

�✓

).
Finally, the amplitude amplification and estimation depends on the size of the projection of

|Zi onto the slow eigenspace of A, more precisely it corresponds to the factor ˜O(

||Z||
||A+

✓,A✓,Z|| ).

First, this term is roughly the same if we look at Z instead of Z. Note also that Z is the whitened
data, which means that each whitened vector should look roughly the same on each direction. This
implies that the ratio should be proportional to the ratio of the dimension of the whitened data
over the dimension of the output signal. We will see in the following sections that in the case of
the MNIST dataset this ratio is small enough.

5 Quantum Frobenius Distance classifier

In this section we provide a novel quantum classification algorithm, called Quantum Frobenius
Distance Classifier (QFD), whose running time is logarithmic in the dimension and number of
data points, assuming that the training dataset as quantum states is efficiently preparable, namely
it is either stored in QRAM as described in Appendix A or comes directly from some quantum
process. The classification algorithm assigns a test point x(0) to the cluster k whose points have
minimum normalized average squared `

2

distance to x(0).
Let X

k

be defined as the matrix whose rows are the vectors corresponding to the k-th cluster,
and |T

k

| is the number of elements in the cluster. For the test point x(0), define the matrix
X(0) 2 R|Tk|⇥d which just repeats the row x(0) |T

k

| times. Then, we define

F
k

(x(0)) =
kX

k

�X(0)k2
F

2(kX
k

k2
F

+ kX(0)k2
F

)

,

which corresponds to the average normalized squared distance between x(0) and the cluster k. Let
h : X ! [K] our classification function. We assign to x(0) a label according to the following rule:

12
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⇣
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QSFA Quantum Slow Feature Analysis
Require:

Matrices X 2 Rn⇥d and ˙X 2 Rn⇥d in QRAM, parameters ✏, ✓, �, ⌘ > 0.
Ensure:

A state |Y i such that | |Y i � |Y i |  ✏, with Y = A+

✓,�

A✓,�

Z

1: Create the state |Xi := 1

kXkF

P
n

i=1

kx(i)k |ii |x(i)i
2: (Whitening algorithm) Map |Xi to |Zi with | |Zi � |Zi |  ✏ and Z = XB�1/2.
3: (Projection in slow feature space) Project |Zi onto the slow eigenspace of A using threshold ✓

and precision � (i.e. A+

✓,�

A✓,�

Z)
4: Perform amplitude amplification and estimation on the register |0i with the unitary U im-

plementing steps 1 to 3, to obtain |Y i with | |Y i � |Y i |  ✏ and an estimator kY k with
multiplicative error ⌘.

We conclude this section by stating the main dimensionality reduction theorem of this paper.

Theorem 6 (QSFA algorithm). Let X =

P
i

�
i

u
i

vT
i

2 Rn⇥d and its derivative matrix ˙X 2
Rn logn⇥d stored in QRAM as described in Appendix A. Let ✏, ✓, �, ⌘ > 0. There exists a quan-
tum algorithm that produces as output a state |Y i with | |Y i � |A+

✓,�

A✓,�

Zi |  ✏ in time

˜O

✓⇣
(X)µ(X) log(1/") + (µ(X)+µ(

˙

X))

�✓

⌘
||Z||

||A+
✓,�A✓,�Z||

◆
and an estimator kY k with |kY k�kY k | 

⌘ kY k with an additional 1/⌘ factor.

Proof. QSFA consists of two steps. The first step is the whitening, which can be performed in time
˜O((X)µ(X) log(1/✏)) and provide the state |Zi (see Theorem 5).

The second step is the projection in the slow feature space. Using Theorems 2,3, and 4, we
know that the projection (without the amplitude amplification) takes time equal to the ratio µ
over the threshold parameter, and since the matrix is the product of matrices, the parameter µ is
the sum of the µ’s, namely we have that the second step takes time ˜O(

(µ(X)+µ(

˙

X)

�✓

).
Finally, the amplitude amplification and estimation depends on the size of the projection of

|Zi onto the slow eigenspace of A, more precisely it corresponds to the factor ˜O(

||Z||
||A+

✓,A✓,Z|| ).

First, this term is roughly the same if we look at Z instead of Z. Note also that Z is the whitened
data, which means that each whitened vector should look roughly the same on each direction. This
implies that the ratio should be proportional to the ratio of the dimension of the whitened data
over the dimension of the output signal. We will see in the following sections that in the case of
the MNIST dataset this ratio is small enough.

5 Quantum Frobenius Distance classifier

In this section we provide a novel quantum classification algorithm, called Quantum Frobenius
Distance Classifier (QFD), whose running time is logarithmic in the dimension and number of
data points, assuming that the training dataset as quantum states is efficiently preparable, namely
it is either stored in QRAM as described in Appendix A or comes directly from some quantum
process. The classification algorithm assigns a test point x(0) to the cluster k whose points have
minimum normalized average squared `

2

distance to x(0).
Let X

k

be defined as the matrix whose rows are the vectors corresponding to the k-th cluster,
and |T

k

| is the number of elements in the cluster. For the test point x(0), define the matrix
X(0) 2 R|Tk|⇥d which just repeats the row x(0) |T

k

| times. Then, we define

F
k

(x(0)) =
kX

k

�X(0)k2
F

2(kX
k

k2
F

+ kX(0)k2
F

)

,

which corresponds to the average normalized squared distance between x(0) and the cluster k. Let
h : X ! [K] our classification function. We assign to x(0) a label according to the following rule:
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Frobenius$Distance$Classifica@on$

h(x(0)) := argmin

k2[K]

F
k

(x(0)) (4)

We will estimate F
k

(x(0)) efficiently using the algorithm below. From our QRAM construction
we know we can create a superposition of all vectors in the cluster as quantum states, have access
to their norms and to the total number of points and norm of the cluster (see also Appendix A).
We define N

k

= kX
k

k2
F

+ kX(0)k2
F

= kX
k

k2
F

+ |T
k

| kx(0)k2.

QFE 4 Frobenius Distance Estimator
Require:

QRAM access to the matrix X
k

of cluster k and to a test vector x(0). Error parameter ⌘ > 0.
Ensure:

An estimate F
k

(x(0)) such that |F
k

(x(0))� F
k

(x(0))| < ⌘.

1: s:=0
2: for r = O(1/⌘2) do
3: Create the state

1p
N

k

⇣p
|T

k

| kx(0)k |0i+ kX
k

k
F

|1i
⌘
|0i |0i

4: Apply the unitary that maps:

|0i |0i 7! |0i 1p
|T

k

|

X

i2Tk

|ii and |1i |0i 7! |1i 1

kX
k

k
F

X

i2Tk

kx(i)k |ii

to the first two registers to get

1p
N

k

⇣
|0i
X

i2Tk

kx(0)k |ii+ |1i
X

i2Tk

kx(i)k |ii
⌘
|0i

5: Apply the unitary that maps

|0i |ii |0i 7! |0i |ii |x(0)i and |1i |ii |0i 7! |1i |ii |x(i)i

to get the state

1p
N

k

⇣
|0i
X

i2Tk

kx(0)k |ii |x(0)i+ |1i
X

i2Tk

kx(i)k |ii |x(i)i
⌘

6: Apply a Hadamard to the first register to get

1p
2N

k

|0i
X

i2Tk

⇣
kx(0)k |ii |x(0)i+kx(i)k |ii |x(i)i

⌘
+

1p
2N

k

|1i
X

i2Tk

⇣
kx(0)k |ii |x(0)i�kx(i)k |ii |x(i)i

⌘

7: Measure the first register and if the outcome is |1i then s:=s+1
8: end for
9: Output s

r

.

For the analysis, just note that the probability of measuring |1i is:

1

2N
k

 
|T

k

| kx(0)k2 +
X

i2Tk

kx(i)k2 � 2

X

i2Tk

hx(0), x(i)i
!

= F
k

(x(0)).

By Hoeffding bounds, to estimate F
k

(x(0)) with error ⌘ we would need O(

1

⌘

2 ) samples. For
the running time, we assume all unitaries are efficient either because the quantum states can be
prepared directly by some quantum procedure or given that the classical vectors are stored in the
QRAM as described in Appendix A, hence the algorithm runs in time ˜O(

1

⌘

2 ). We can of course
use amplitude estimation and save a factor of ⌘. Depending on the application one may prefer
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QSFA Quantum Slow Feature Analysis
Require:

Matrices X 2 Rn⇥d and ˙X 2 Rn⇥d in QRAM, parameters ✏, ✓, �, ⌘ > 0.
Ensure:

A state |Y i such that | |Y i � |Y i |  ✏, with Y = A+

✓,�

A✓,�

Z

1: Create the state |Xi := 1

kXkF

P
n

i=1

kx(i)k |ii |x(i)i
2: (Whitening algorithm) Map |Xi to |Zi with | |Zi � |Zi |  ✏ and Z = XB�1/2.
3: (Projection in slow feature space) Project |Zi onto the slow eigenspace of A using threshold ✓

and precision � (i.e. A+

✓,�

A✓,�

Z)
4: Perform amplitude amplification and estimation on the register |0i with the unitary U im-

plementing steps 1 to 3, to obtain |Y i with | |Y i � |Y i |  ✏ and an estimator kY k with
multiplicative error ⌘.

We conclude this section by stating the main dimensionality reduction theorem of this paper.

Theorem 6 (QSFA algorithm). Let X =

P
i

�
i

u
i

vT
i

2 Rn⇥d and its derivative matrix ˙X 2
Rn logn⇥d stored in QRAM as described in Appendix A. Let ✏, ✓, �, ⌘ > 0. There exists a quan-
tum algorithm that produces as output a state |Y i with | |Y i � |A+

✓,�

A✓,�

Zi |  ✏ in time

˜O

✓⇣
(X)µ(X) log(1/") + (µ(X)+µ(

˙

X))

�✓

⌘
||Z||

||A+
✓,�A✓,�Z||

◆
and an estimator kY k with |kY k�kY k | 

⌘ kY k with an additional 1/⌘ factor.

Proof. QSFA consists of two steps. The first step is the whitening, which can be performed in time
˜O((X)µ(X) log(1/✏)) and provide the state |Zi (see Theorem 5).

The second step is the projection in the slow feature space. Using Theorems 2,3, and 4, we
know that the projection (without the amplitude amplification) takes time equal to the ratio µ
over the threshold parameter, and since the matrix is the product of matrices, the parameter µ is
the sum of the µ’s, namely we have that the second step takes time ˜O(

(µ(X)+µ(

˙

X)

�✓

).
Finally, the amplitude amplification and estimation depends on the size of the projection of

|Zi onto the slow eigenspace of A, more precisely it corresponds to the factor ˜O(

||Z||
||A+

✓,A✓,Z|| ).

First, this term is roughly the same if we look at Z instead of Z. Note also that Z is the whitened
data, which means that each whitened vector should look roughly the same on each direction. This
implies that the ratio should be proportional to the ratio of the dimension of the whitened data
over the dimension of the output signal. We will see in the following sections that in the case of
the MNIST dataset this ratio is small enough.

5 Quantum Frobenius Distance classifier

In this section we provide a novel quantum classification algorithm, called Quantum Frobenius
Distance Classifier (QFD), whose running time is logarithmic in the dimension and number of
data points, assuming that the training dataset as quantum states is efficiently preparable, namely
it is either stored in QRAM as described in Appendix A or comes directly from some quantum
process. The classification algorithm assigns a test point x(0) to the cluster k whose points have
minimum normalized average squared `

2

distance to x(0).
Let X

k

be defined as the matrix whose rows are the vectors corresponding to the k-th cluster,
and |T

k

| is the number of elements in the cluster. For the test point x(0), define the matrix
X(0) 2 R|Tk|⇥d which just repeats the row x(0) |T

k

| times. Then, we define

F
k

(x(0)) =
kX

k

�X(0)k2
F

2(kX
k

k2
F

+ kX(0)k2
F

)

,

which corresponds to the average normalized squared distance between x(0) and the cluster k. Let
h : X ! [K] our classification function. We assign to x(0) a label according to the following rule:
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h(x(0)) := argmin

k2[K]

F
k

(x(0)) (4)

We will estimate F
k

(x(0)) efficiently using the algorithm below. From our QRAM construction
we know we can create a superposition of all vectors in the cluster as quantum states, have access
to their norms and to the total number of points and norm of the cluster (see also Appendix A).
We define N

k

= kX
k

k2
F

+ kX(0)k2
F

= kX
k

k2
F

+ |T
k

| kx(0)k2.

QFE 4 Frobenius Distance Estimator
Require:

QRAM access to the matrix X
k

of cluster k and to a test vector x(0). Error parameter ⌘ > 0.
Ensure:

An estimate F
k

(x(0)) such that |F
k

(x(0))� F
k

(x(0))| < ⌘.

1: s:=0
2: for r = O(1/⌘2) do
3: Create the state

1p
N

k

⇣p
|T

k

| kx(0)k |0i+ kX
k

k
F

|1i
⌘
|0i |0i

4: Apply the unitary that maps:

|0i |0i 7! |0i 1p
|T

k

|

X

i2Tk

|ii and |1i |0i 7! |1i 1

kX
k

k
F

X

i2Tk

kx(i)k |ii

to the first two registers to get

1p
N

k

⇣
|0i
X

i2Tk

kx(0)k |ii+ |1i
X

i2Tk

kx(i)k |ii
⌘
|0i

5: Apply the unitary that maps

|0i |ii |0i 7! |0i |ii |x(0)i and |1i |ii |0i 7! |1i |ii |x(i)i

to get the state

1p
N

k

⇣
|0i
X

i2Tk

kx(0)k |ii |x(0)i+ |1i
X

i2Tk

kx(i)k |ii |x(i)i
⌘

6: Apply a Hadamard to the first register to get

1p
2N

k

|0i
X

i2Tk

⇣
kx(0)k |ii |x(0)i+kx(i)k |ii |x(i)i

⌘
+

1p
2N

k

|1i
X

i2Tk

⇣
kx(0)k |ii |x(0)i�kx(i)k |ii |x(i)i

⌘

7: Measure the first register and if the outcome is |1i then s:=s+1
8: end for
9: Output s

r

.

For the analysis, just note that the probability of measuring |1i is:

1

2N
k

 
|T

k

| kx(0)k2 +
X

i2Tk

kx(i)k2 � 2

X

i2Tk

hx(0), x(i)i
!

= F
k

(x(0)).

By Hoeffding bounds, to estimate F
k

(x(0)) with error ⌘ we would need O(

1

⌘

2 ) samples. For
the running time, we assume all unitaries are efficient either because the quantum states can be
prepared directly by some quantum procedure or given that the classical vectors are stored in the
QRAM as described in Appendix A, hence the algorithm runs in time ˜O(

1

⌘

2 ). We can of course
use amplitude estimation and save a factor of ⌘. Depending on the application one may prefer
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prepared directly by some quantum procedure or given that the classical vectors are stored in the
QRAM as described in Appendix A, hence the algorithm runs in time ˜O(

1

⌘

2 ). We can of course
use amplitude estimation and save a factor of ⌘. Depending on the application one may prefer
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k

(x(0)) such that |F
k

(x(0))� F
k
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⌘
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⌘
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⇣
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⌘
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⌘
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the running time, we assume all unitaries are efficient either because the quantum states can be
prepared directly by some quantum procedure or given that the classical vectors are stored in the
QRAM as described in Appendix A, hence the algorithm runs in time ˜O(

1
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use amplitude estimation and save a factor of ⌘. Depending on the application one may prefer
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Classifica@on$$
[KL$18]$

QSFA Quantum Slow Feature Analysis
Require:

Matrices X 2 Rn⇥d and ˙X 2 Rn⇥d in QRAM, parameters ✏, ✓, �, ⌘ > 0.
Ensure:

A state |Y i such that | |Y i � |Y i |  ✏, with Y = A+

✓,�

A✓,�

Z

1: Create the state |Xi := 1

kXkF

P
n

i=1

kx(i)k |ii |x(i)i
2: (Whitening algorithm) Map |Xi to |Zi with | |Zi � |Zi |  ✏ and Z = XB�1/2.
3: (Projection in slow feature space) Project |Zi onto the slow eigenspace of A using threshold ✓

and precision � (i.e. A+

✓,�

A✓,�

Z)
4: Perform amplitude amplification and estimation on the register |0i with the unitary U im-

plementing steps 1 to 3, to obtain |Y i with | |Y i � |Y i |  ✏ and an estimator kY k with
multiplicative error ⌘.

We conclude this section by stating the main dimensionality reduction theorem of this paper.

Theorem 6 (QSFA algorithm). Let X =

P
i

�
i

u
i

vT
i

2 Rn⇥d and its derivative matrix ˙X 2
Rn logn⇥d stored in QRAM as described in Appendix A. Let ✏, ✓, �, ⌘ > 0. There exists a quan-
tum algorithm that produces as output a state |Y i with | |Y i � |A+

✓,�

A✓,�

Zi |  ✏ in time

˜O

✓⇣
(X)µ(X) log(1/") + (µ(X)+µ(

˙

X))

�✓

⌘
||Z||

||A+
✓,�A✓,�Z||

◆
and an estimator kY k with |kY k�kY k | 

⌘ kY k with an additional 1/⌘ factor.

Proof. QSFA consists of two steps. The first step is the whitening, which can be performed in time
˜O((X)µ(X) log(1/✏)) and provide the state |Zi (see Theorem 5).

The second step is the projection in the slow feature space. Using Theorems 2,3, and 4, we
know that the projection (without the amplitude amplification) takes time equal to the ratio µ
over the threshold parameter, and since the matrix is the product of matrices, the parameter µ is
the sum of the µ’s, namely we have that the second step takes time ˜O(

(µ(X)+µ(

˙

X)

�✓

).
Finally, the amplitude amplification and estimation depends on the size of the projection of

|Zi onto the slow eigenspace of A, more precisely it corresponds to the factor ˜O(

||Z||
||A+

✓,A✓,Z|| ).

First, this term is roughly the same if we look at Z instead of Z. Note also that Z is the whitened
data, which means that each whitened vector should look roughly the same on each direction. This
implies that the ratio should be proportional to the ratio of the dimension of the whitened data
over the dimension of the output signal. We will see in the following sections that in the case of
the MNIST dataset this ratio is small enough.

5 Quantum Frobenius Distance classifier

In this section we provide a novel quantum classification algorithm, called Quantum Frobenius
Distance Classifier (QFD), whose running time is logarithmic in the dimension and number of
data points, assuming that the training dataset as quantum states is efficiently preparable, namely
it is either stored in QRAM as described in Appendix A or comes directly from some quantum
process. The classification algorithm assigns a test point x(0) to the cluster k whose points have
minimum normalized average squared `

2

distance to x(0).
Let X

k

be defined as the matrix whose rows are the vectors corresponding to the k-th cluster,
and |T

k

| is the number of elements in the cluster. For the test point x(0), define the matrix
X(0) 2 R|Tk|⇥d which just repeats the row x(0) |T

k

| times. Then, we define

F
k

(x(0)) =
kX

k

�X(0)k2
F

2(kX
k

k2
F

+ kX(0)k2
F

)

,

which corresponds to the average normalized squared distance between x(0) and the cluster k. Let
h : X ! [K] our classification function. We assign to x(0) a label according to the following rule:
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Frobenius$Distance$Classifica@on$

h(x(0)) := argmin

k2[K]

F
k

(x(0)) (4)

We will estimate F
k

(x(0)) efficiently using the algorithm below. From our QRAM construction
we know we can create a superposition of all vectors in the cluster as quantum states, have access
to their norms and to the total number of points and norm of the cluster (see also Appendix A).
We define N

k

= kX
k

k2
F

+ kX(0)k2
F

= kX
k

k2
F

+ |T
k

| kx(0)k2.

QFE 4 Frobenius Distance Estimator
Require:

QRAM access to the matrix X
k

of cluster k and to a test vector x(0). Error parameter ⌘ > 0.
Ensure:

An estimate F
k

(x(0)) such that |F
k

(x(0))� F
k

(x(0))| < ⌘.

1: s:=0
2: for r = O(1/⌘2) do
3: Create the state

1p
N

k

⇣p
|T

k

| kx(0)k |0i+ kX
k

k
F

|1i
⌘
|0i |0i

4: Apply the unitary that maps:

|0i |0i 7! |0i 1p
|T

k

|

X

i2Tk

|ii and |1i |0i 7! |1i 1

kX
k

k
F

X

i2Tk

kx(i)k |ii

to the first two registers to get

1p
N

k

⇣
|0i
X

i2Tk

kx(0)k |ii+ |1i
X

i2Tk

kx(i)k |ii
⌘
|0i

5: Apply the unitary that maps

|0i |ii |0i 7! |0i |ii |x(0)i and |1i |ii |0i 7! |1i |ii |x(i)i

to get the state

1p
N

k

⇣
|0i
X

i2Tk

kx(0)k |ii |x(0)i+ |1i
X

i2Tk

kx(i)k |ii |x(i)i
⌘

6: Apply a Hadamard to the first register to get

1p
2N

k

|0i
X

i2Tk

⇣
kx(0)k |ii |x(0)i+kx(i)k |ii |x(i)i

⌘
+

1p
2N

k

|1i
X

i2Tk

⇣
kx(0)k |ii |x(0)i�kx(i)k |ii |x(i)i

⌘

7: Measure the first register and if the outcome is |1i then s:=s+1
8: end for
9: Output s

r

.

For the analysis, just note that the probability of measuring |1i is:

1

2N
k

 
|T

k

| kx(0)k2 +
X

i2Tk

kx(i)k2 � 2

X

i2Tk

hx(0), x(i)i
!

= F
k

(x(0)).

By Hoeffding bounds, to estimate F
k

(x(0)) with error ⌘ we would need O(

1

⌘

2 ) samples. For
the running time, we assume all unitaries are efficient either because the quantum states can be
prepared directly by some quantum procedure or given that the classical vectors are stored in the
QRAM as described in Appendix A, hence the algorithm runs in time ˜O(

1

⌘

2 ). We can of course
use amplitude estimation and save a factor of ⌘. Depending on the application one may prefer
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Classifica@on$$
[KL$18]$

QSFA Quantum Slow Feature Analysis
Require:

Matrices X 2 Rn⇥d and ˙X 2 Rn⇥d in QRAM, parameters ✏, ✓, �, ⌘ > 0.
Ensure:

A state |Y i such that | |Y i � |Y i |  ✏, with Y = A+

✓,�

A✓,�

Z

1: Create the state |Xi := 1

kXkF

P
n

i=1

kx(i)k |ii |x(i)i
2: (Whitening algorithm) Map |Xi to |Zi with | |Zi � |Zi |  ✏ and Z = XB�1/2.
3: (Projection in slow feature space) Project |Zi onto the slow eigenspace of A using threshold ✓

and precision � (i.e. A+

✓,�

A✓,�

Z)
4: Perform amplitude amplification and estimation on the register |0i with the unitary U im-

plementing steps 1 to 3, to obtain |Y i with | |Y i � |Y i |  ✏ and an estimator kY k with
multiplicative error ⌘.

We conclude this section by stating the main dimensionality reduction theorem of this paper.

Theorem 6 (QSFA algorithm). Let X =

P
i

�
i

u
i

vT
i

2 Rn⇥d and its derivative matrix ˙X 2
Rn logn⇥d stored in QRAM as described in Appendix A. Let ✏, ✓, �, ⌘ > 0. There exists a quan-
tum algorithm that produces as output a state |Y i with | |Y i � |A+

✓,�

A✓,�

Zi |  ✏ in time

˜O

✓⇣
(X)µ(X) log(1/") + (µ(X)+µ(

˙

X))

�✓

⌘
||Z||

||A+
✓,�A✓,�Z||

◆
and an estimator kY k with |kY k�kY k | 

⌘ kY k with an additional 1/⌘ factor.

Proof. QSFA consists of two steps. The first step is the whitening, which can be performed in time
˜O((X)µ(X) log(1/✏)) and provide the state |Zi (see Theorem 5).

The second step is the projection in the slow feature space. Using Theorems 2,3, and 4, we
know that the projection (without the amplitude amplification) takes time equal to the ratio µ
over the threshold parameter, and since the matrix is the product of matrices, the parameter µ is
the sum of the µ’s, namely we have that the second step takes time ˜O(

(µ(X)+µ(

˙

X)

�✓

).
Finally, the amplitude amplification and estimation depends on the size of the projection of

|Zi onto the slow eigenspace of A, more precisely it corresponds to the factor ˜O(

||Z||
||A+

✓,A✓,Z|| ).

First, this term is roughly the same if we look at Z instead of Z. Note also that Z is the whitened
data, which means that each whitened vector should look roughly the same on each direction. This
implies that the ratio should be proportional to the ratio of the dimension of the whitened data
over the dimension of the output signal. We will see in the following sections that in the case of
the MNIST dataset this ratio is small enough.

5 Quantum Frobenius Distance classifier

In this section we provide a novel quantum classification algorithm, called Quantum Frobenius
Distance Classifier (QFD), whose running time is logarithmic in the dimension and number of
data points, assuming that the training dataset as quantum states is efficiently preparable, namely
it is either stored in QRAM as described in Appendix A or comes directly from some quantum
process. The classification algorithm assigns a test point x(0) to the cluster k whose points have
minimum normalized average squared `

2

distance to x(0).
Let X

k

be defined as the matrix whose rows are the vectors corresponding to the k-th cluster,
and |T

k

| is the number of elements in the cluster. For the test point x(0), define the matrix
X(0) 2 R|Tk|⇥d which just repeats the row x(0) |T

k

| times. Then, we define

F
k

(x(0)) =
kX

k

�X(0)k2
F

2(kX
k

k2
F

+ kX(0)k2
F

)

,

which corresponds to the average normalized squared distance between x(0) and the cluster k. Let
h : X ! [K] our classification function. We assign to x(0) a label according to the following rule:
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h(x(0)) := argmin

k2[K]

F
k

(x(0)) (4)

We will estimate F
k

(x(0)) efficiently using the algorithm below. From our QRAM construction
we know we can create a superposition of all vectors in the cluster as quantum states, have access
to their norms and to the total number of points and norm of the cluster (see also Appendix A).
We define N

k

= kX
k

k2
F

+ kX(0)k2
F

= kX
k

k2
F

+ |T
k

| kx(0)k2.

QFE 4 Frobenius Distance Estimator
Require:

QRAM access to the matrix X
k

of cluster k and to a test vector x(0). Error parameter ⌘ > 0.
Ensure:

An estimate F
k

(x(0)) such that |F
k

(x(0))� F
k

(x(0))| < ⌘.

1: s:=0
2: for r = O(1/⌘2) do
3: Create the state

1p
N

k

⇣p
|T

k

| kx(0)k |0i+ kX
k

k
F

|1i
⌘
|0i |0i

4: Apply the unitary that maps:

|0i |0i 7! |0i 1p
|T

k

|

X

i2Tk

|ii and |1i |0i 7! |1i 1

kX
k

k
F

X

i2Tk

kx(i)k |ii

to the first two registers to get

1p
N

k

⇣
|0i
X

i2Tk

kx(0)k |ii+ |1i
X

i2Tk

kx(i)k |ii
⌘
|0i

5: Apply the unitary that maps

|0i |ii |0i 7! |0i |ii |x(0)i and |1i |ii |0i 7! |1i |ii |x(i)i

to get the state

1p
N

k

⇣
|0i
X

i2Tk

kx(0)k |ii |x(0)i+ |1i
X

i2Tk

kx(i)k |ii |x(i)i
⌘

6: Apply a Hadamard to the first register to get

1p
2N

k

|0i
X

i2Tk

⇣
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k

| kx(0)k2 +
X

i2Tk
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X
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!

= F
k

(x(0)).

By Hoeffding bounds, to estimate F
k

(x(0)) with error ⌘ we would need O(

1

⌘

2 ) samples. For
the running time, we assume all unitaries are efficient either because the quantum states can be
prepared directly by some quantum procedure or given that the classical vectors are stored in the
QRAM as described in Appendix A, hence the algorithm runs in time ˜O(

1

⌘

2 ). We can of course
use amplitude estimation and save a factor of ⌘. Depending on the application one may prefer
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Remark$1:$$

Classifica@on$as$easy$as$crea@ng$the$states$$

Classifica@on$$
[KL$18]$

QSFA Quantum Slow Feature Analysis
Require:

Matrices X 2 Rn⇥d and ˙X 2 Rn⇥d in QRAM, parameters ✏, ✓, �, ⌘ > 0.
Ensure:

A state |Y i such that | |Y i � |Y i |  ✏, with Y = A+

✓,�

A✓,�

Z

1: Create the state |Xi := 1

kXkF

P
n

i=1

kx(i)k |ii |x(i)i
2: (Whitening algorithm) Map |Xi to |Zi with | |Zi � |Zi |  ✏ and Z = XB�1/2.
3: (Projection in slow feature space) Project |Zi onto the slow eigenspace of A using threshold ✓

and precision � (i.e. A+

✓,�

A✓,�

Z)
4: Perform amplitude amplification and estimation on the register |0i with the unitary U im-

plementing steps 1 to 3, to obtain |Y i with | |Y i � |Y i |  ✏ and an estimator kY k with
multiplicative error ⌘.

We conclude this section by stating the main dimensionality reduction theorem of this paper.

Theorem 6 (QSFA algorithm). Let X =

P
i

�
i

u
i

vT
i

2 Rn⇥d and its derivative matrix ˙X 2
Rn logn⇥d stored in QRAM as described in Appendix A. Let ✏, ✓, �, ⌘ > 0. There exists a quan-
tum algorithm that produces as output a state |Y i with | |Y i � |A+

✓,�

A✓,�

Zi |  ✏ in time

˜O

✓⇣
(X)µ(X) log(1/") + (µ(X)+µ(

˙

X))

�✓

⌘
||Z||

||A+
✓,�A✓,�Z||

◆
and an estimator kY k with |kY k�kY k | 

⌘ kY k with an additional 1/⌘ factor.

Proof. QSFA consists of two steps. The first step is the whitening, which can be performed in time
˜O((X)µ(X) log(1/✏)) and provide the state |Zi (see Theorem 5).

The second step is the projection in the slow feature space. Using Theorems 2,3, and 4, we
know that the projection (without the amplitude amplification) takes time equal to the ratio µ
over the threshold parameter, and since the matrix is the product of matrices, the parameter µ is
the sum of the µ’s, namely we have that the second step takes time ˜O(

(µ(X)+µ(

˙

X)

�✓

).
Finally, the amplitude amplification and estimation depends on the size of the projection of

|Zi onto the slow eigenspace of A, more precisely it corresponds to the factor ˜O(

||Z||
||A+

✓,A✓,Z|| ).

First, this term is roughly the same if we look at Z instead of Z. Note also that Z is the whitened
data, which means that each whitened vector should look roughly the same on each direction. This
implies that the ratio should be proportional to the ratio of the dimension of the whitened data
over the dimension of the output signal. We will see in the following sections that in the case of
the MNIST dataset this ratio is small enough.

5 Quantum Frobenius Distance classifier

In this section we provide a novel quantum classification algorithm, called Quantum Frobenius
Distance Classifier (QFD), whose running time is logarithmic in the dimension and number of
data points, assuming that the training dataset as quantum states is efficiently preparable, namely
it is either stored in QRAM as described in Appendix A or comes directly from some quantum
process. The classification algorithm assigns a test point x(0) to the cluster k whose points have
minimum normalized average squared `

2

distance to x(0).
Let X

k

be defined as the matrix whose rows are the vectors corresponding to the k-th cluster,
and |T

k

| is the number of elements in the cluster. For the test point x(0), define the matrix
X(0) 2 R|Tk|⇥d which just repeats the row x(0) |T

k

| times. Then, we define

F
k

(x(0)) =
kX

k

�X(0)k2
F

2(kX
k

k2
F

+ kX(0)k2
F

)

,

which corresponds to the average normalized squared distance between x(0) and the cluster k. Let
h : X ! [K] our classification function. We assign to x(0) a label according to the following rule:
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Frobenius$Distance$Classifica@on$

h(x(0)) := argmin

k2[K]

F
k

(x(0)) (4)

We will estimate F
k

(x(0)) efficiently using the algorithm below. From our QRAM construction
we know we can create a superposition of all vectors in the cluster as quantum states, have access
to their norms and to the total number of points and norm of the cluster (see also Appendix A).
We define N

k

= kX
k

k2
F

+ kX(0)k2
F

= kX
k

k2
F

+ |T
k

| kx(0)k2.

QFE 4 Frobenius Distance Estimator
Require:

QRAM access to the matrix X
k

of cluster k and to a test vector x(0). Error parameter ⌘ > 0.
Ensure:

An estimate F
k

(x(0)) such that |F
k

(x(0))� F
k

(x(0))| < ⌘.

1: s:=0
2: for r = O(1/⌘2) do
3: Create the state

1p
N

k

⇣p
|T

k

| kx(0)k |0i+ kX
k

k
F

|1i
⌘
|0i |0i

4: Apply the unitary that maps:

|0i |0i 7! |0i 1p
|T

k

|

X

i2Tk

|ii and |1i |0i 7! |1i 1

kX
k

k
F

X

i2Tk

kx(i)k |ii

to the first two registers to get

1p
N

k

⇣
|0i
X

i2Tk

kx(0)k |ii+ |1i
X

i2Tk

kx(i)k |ii
⌘
|0i

5: Apply the unitary that maps

|0i |ii |0i 7! |0i |ii |x(0)i and |1i |ii |0i 7! |1i |ii |x(i)i

to get the state

1p
N

k

⇣
|0i
X

i2Tk

kx(0)k |ii |x(0)i+ |1i
X

i2Tk

kx(i)k |ii |x(i)i
⌘

6: Apply a Hadamard to the first register to get

1p
2N

k

|0i
X

i2Tk

⇣
kx(0)k |ii |x(0)i+kx(i)k |ii |x(i)i

⌘
+

1p
2N

k

|1i
X

i2Tk

⇣
kx(0)k |ii |x(0)i�kx(i)k |ii |x(i)i

⌘

7: Measure the first register and if the outcome is |1i then s:=s+1
8: end for
9: Output s

r

.

For the analysis, just note that the probability of measuring |1i is:

1

2N
k

 
|T

k

| kx(0)k2 +
X

i2Tk

kx(i)k2 � 2

X

i2Tk

hx(0), x(i)i
!

= F
k

(x(0)).

By Hoeffding bounds, to estimate F
k

(x(0)) with error ⌘ we would need O(

1

⌘

2 ) samples. For
the running time, we assume all unitaries are efficient either because the quantum states can be
prepared directly by some quantum procedure or given that the classical vectors are stored in the
QRAM as described in Appendix A, hence the algorithm runs in time ˜O(

1

⌘

2 ). We can of course
use amplitude estimation and save a factor of ⌘. Depending on the application one may prefer
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Remark$2:$$

Comparable$accuracy$to$classical$classifiers$

Classifica@on$$
[KL$18]$

QSFA Quantum Slow Feature Analysis
Require:

Matrices X 2 Rn⇥d and ˙X 2 Rn⇥d in QRAM, parameters ✏, ✓, �, ⌘ > 0.
Ensure:

A state |Y i such that | |Y i � |Y i |  ✏, with Y = A+

✓,�

A✓,�

Z

1: Create the state |Xi := 1

kXkF

P
n

i=1

kx(i)k |ii |x(i)i
2: (Whitening algorithm) Map |Xi to |Zi with | |Zi � |Zi |  ✏ and Z = XB�1/2.
3: (Projection in slow feature space) Project |Zi onto the slow eigenspace of A using threshold ✓

and precision � (i.e. A+

✓,�

A✓,�

Z)
4: Perform amplitude amplification and estimation on the register |0i with the unitary U im-

plementing steps 1 to 3, to obtain |Y i with | |Y i � |Y i |  ✏ and an estimator kY k with
multiplicative error ⌘.

We conclude this section by stating the main dimensionality reduction theorem of this paper.

Theorem 6 (QSFA algorithm). Let X =

P
i

�
i

u
i

vT
i

2 Rn⇥d and its derivative matrix ˙X 2
Rn logn⇥d stored in QRAM as described in Appendix A. Let ✏, ✓, �, ⌘ > 0. There exists a quan-
tum algorithm that produces as output a state |Y i with | |Y i � |A+

✓,�

A✓,�

Zi |  ✏ in time

˜O

✓⇣
(X)µ(X) log(1/") + (µ(X)+µ(

˙

X))

�✓

⌘
||Z||

||A+
✓,�A✓,�Z||

◆
and an estimator kY k with |kY k�kY k | 

⌘ kY k with an additional 1/⌘ factor.

Proof. QSFA consists of two steps. The first step is the whitening, which can be performed in time
˜O((X)µ(X) log(1/✏)) and provide the state |Zi (see Theorem 5).

The second step is the projection in the slow feature space. Using Theorems 2,3, and 4, we
know that the projection (without the amplitude amplification) takes time equal to the ratio µ
over the threshold parameter, and since the matrix is the product of matrices, the parameter µ is
the sum of the µ’s, namely we have that the second step takes time ˜O(

(µ(X)+µ(

˙

X)

�✓

).
Finally, the amplitude amplification and estimation depends on the size of the projection of

|Zi onto the slow eigenspace of A, more precisely it corresponds to the factor ˜O(

||Z||
||A+

✓,A✓,Z|| ).

First, this term is roughly the same if we look at Z instead of Z. Note also that Z is the whitened
data, which means that each whitened vector should look roughly the same on each direction. This
implies that the ratio should be proportional to the ratio of the dimension of the whitened data
over the dimension of the output signal. We will see in the following sections that in the case of
the MNIST dataset this ratio is small enough.

5 Quantum Frobenius Distance classifier

In this section we provide a novel quantum classification algorithm, called Quantum Frobenius
Distance Classifier (QFD), whose running time is logarithmic in the dimension and number of
data points, assuming that the training dataset as quantum states is efficiently preparable, namely
it is either stored in QRAM as described in Appendix A or comes directly from some quantum
process. The classification algorithm assigns a test point x(0) to the cluster k whose points have
minimum normalized average squared `

2

distance to x(0).
Let X

k

be defined as the matrix whose rows are the vectors corresponding to the k-th cluster,
and |T

k

| is the number of elements in the cluster. For the test point x(0), define the matrix
X(0) 2 R|Tk|⇥d which just repeats the row x(0) |T

k

| times. Then, we define

F
k

(x(0)) =
kX

k

�X(0)k2
F

2(kX
k

k2
F

+ kX(0)k2
F

)

,

which corresponds to the average normalized squared distance between x(0) and the cluster k. Let
h : X ! [K] our classification function. We assign to x(0) a label according to the following rule:
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h(x(0)) := argmin

k2[K]

F
k

(x(0)) (4)

We will estimate F
k

(x(0)) efficiently using the algorithm below. From our QRAM construction
we know we can create a superposition of all vectors in the cluster as quantum states, have access
to their norms and to the total number of points and norm of the cluster (see also Appendix A).
We define N

k

= kX
k

k2
F

+ kX(0)k2
F

= kX
k

k2
F

+ |T
k

| kx(0)k2.

QFE 4 Frobenius Distance Estimator
Require:

QRAM access to the matrix X
k

of cluster k and to a test vector x(0). Error parameter ⌘ > 0.
Ensure:

An estimate F
k

(x(0)) such that |F
k

(x(0))� F
k

(x(0))| < ⌘.

1: s:=0
2: for r = O(1/⌘2) do
3: Create the state

1p
N

k

⇣p
|T

k

| kx(0)k |0i+ kX
k

k
F

|1i
⌘
|0i |0i

4: Apply the unitary that maps:

|0i |0i 7! |0i 1p
|T

k

|

X

i2Tk

|ii and |1i |0i 7! |1i 1

kX
k

k
F

X

i2Tk

kx(i)k |ii

to the first two registers to get

1p
N

k

⇣
|0i
X

i2Tk

kx(0)k |ii+ |1i
X

i2Tk

kx(i)k |ii
⌘
|0i

5: Apply the unitary that maps

|0i |ii |0i 7! |0i |ii |x(0)i and |1i |ii |0i 7! |1i |ii |x(i)i

to get the state

1p
N

k

⇣
|0i
X

i2Tk

kx(0)k |ii |x(0)i+ |1i
X

i2Tk

kx(i)k |ii |x(i)i
⌘

6: Apply a Hadamard to the first register to get

1p
2N

k

|0i
X

i2Tk

⇣
kx(0)k |ii |x(0)i+kx(i)k |ii |x(i)i

⌘
+

1p
2N

k

|1i
X

i2Tk

⇣
kx(0)k |ii |x(0)i�kx(i)k |ii |x(i)i

⌘

7: Measure the first register and if the outcome is |1i then s:=s+1
8: end for
9: Output s

r

.

For the analysis, just note that the probability of measuring |1i is:

1

2N
k

 
|T

k

| kx(0)k2 +
X

i2Tk

kx(i)k2 � 2

X

i2Tk

hx(0), x(i)i
!

= F
k

(x(0)).

By Hoeffding bounds, to estimate F
k

(x(0)) with error ⌘ we would need O(

1

⌘

2 ) samples. For
the running time, we assume all unitaries are efficient either because the quantum states can be
prepared directly by some quantum procedure or given that the classical vectors are stored in the
QRAM as described in Appendix A, hence the algorithm runs in time ˜O(

1

⌘

2 ). We can of course
use amplitude estimation and save a factor of ⌘. Depending on the application one may prefer
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Accuracy$$
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Comparable$accuracy$to$classical$classifiers$
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QSFA Quantum Slow Feature Analysis
Require:

Matrices X 2 Rn⇥d and ˙X 2 Rn⇥d in QRAM, parameters ✏, ✓, �, ⌘ > 0.
Ensure:

A state |Y i such that | |Y i � |Y i |  ✏, with Y = A+

✓,�

A✓,�

Z

1: Create the state |Xi := 1

kXkF

P
n

i=1

kx(i)k |ii |x(i)i
2: (Whitening algorithm) Map |Xi to |Zi with | |Zi � |Zi |  ✏ and Z = XB�1/2.
3: (Projection in slow feature space) Project |Zi onto the slow eigenspace of A using threshold ✓

and precision � (i.e. A+

✓,�

A✓,�

Z)
4: Perform amplitude amplification and estimation on the register |0i with the unitary U im-

plementing steps 1 to 3, to obtain |Y i with | |Y i � |Y i |  ✏ and an estimator kY k with
multiplicative error ⌘.

We conclude this section by stating the main dimensionality reduction theorem of this paper.

Theorem 6 (QSFA algorithm). Let X =

P
i

�
i

u
i

vT
i

2 Rn⇥d and its derivative matrix ˙X 2
Rn logn⇥d stored in QRAM as described in Appendix A. Let ✏, ✓, �, ⌘ > 0. There exists a quan-
tum algorithm that produces as output a state |Y i with | |Y i � |A+

✓,�

A✓,�

Zi |  ✏ in time

˜O

✓⇣
(X)µ(X) log(1/") + (µ(X)+µ(

˙

X))

�✓

⌘
||Z||

||A+
✓,�A✓,�Z||

◆
and an estimator kY k with |kY k�kY k | 

⌘ kY k with an additional 1/⌘ factor.

Proof. QSFA consists of two steps. The first step is the whitening, which can be performed in time
˜O((X)µ(X) log(1/✏)) and provide the state |Zi (see Theorem 5).

The second step is the projection in the slow feature space. Using Theorems 2,3, and 4, we
know that the projection (without the amplitude amplification) takes time equal to the ratio µ
over the threshold parameter, and since the matrix is the product of matrices, the parameter µ is
the sum of the µ’s, namely we have that the second step takes time ˜O(

(µ(X)+µ(

˙

X)

�✓

).
Finally, the amplitude amplification and estimation depends on the size of the projection of

|Zi onto the slow eigenspace of A, more precisely it corresponds to the factor ˜O(

||Z||
||A+

✓,A✓,Z|| ).

First, this term is roughly the same if we look at Z instead of Z. Note also that Z is the whitened
data, which means that each whitened vector should look roughly the same on each direction. This
implies that the ratio should be proportional to the ratio of the dimension of the whitened data
over the dimension of the output signal. We will see in the following sections that in the case of
the MNIST dataset this ratio is small enough.

5 Quantum Frobenius Distance classifier

In this section we provide a novel quantum classification algorithm, called Quantum Frobenius
Distance Classifier (QFD), whose running time is logarithmic in the dimension and number of
data points, assuming that the training dataset as quantum states is efficiently preparable, namely
it is either stored in QRAM as described in Appendix A or comes directly from some quantum
process. The classification algorithm assigns a test point x(0) to the cluster k whose points have
minimum normalized average squared `

2

distance to x(0).
Let X

k

be defined as the matrix whose rows are the vectors corresponding to the k-th cluster,
and |T

k

| is the number of elements in the cluster. For the test point x(0), define the matrix
X(0) 2 R|Tk|⇥d which just repeats the row x(0) |T

k

| times. Then, we define

F
k

(x(0)) =
kX

k

�X(0)k2
F

2(kX
k

k2
F

+ kX(0)k2
F

)

,

which corresponds to the average normalized squared distance between x(0) and the cluster k. Let
h : X ! [K] our classification function. We assign to x(0) a label according to the following rule:
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Proof.

A =

˙ZT

˙Z =

1

a

KX

k=1

X

i,i02Tk
i<i0

(z(i)� z(i0))(z(i)� z(i0))T

= (B�1/2

)

T

1

a

KX

k=1

X

i,i02Tk
i<i0

(x(i)� x(i0))(x(i)� x(i0))TB�1/2

= (B�1/2

)

T

˙XT

˙XB�1/2

This will in fact allow us to whiten the data with a quantum procedure. In practice, the matrix
A is usually approximated with a small fraction of all the possible derivatives, roughly linear (and
not quadratic) on the number of data points. In our case we take the number of rows of the
derivative matrix to be just double the number of data points without compromising the accuracy.

SFA - Algorithm 1 (Classical) Slow Feature Analysis
Require:

Input X 2 Rn⇥d (normalized and polynomially expanded), and K < d 2 N
Ensure:

Y = ZW , where Z = XB�1/2 is the whitened input signal, and W 2 Rd⇥(K�1) are the K � 1

eigenvectors of the matrix A =

˙ZT

˙Z corresponding to the smallest eigenvalues

1: Whiten the signal: Z := XB�1/2, and create ˙Z from Z.
2: Perform PCA on the derivative covariance matrix A =

˙ZT

˙Z of the whitened data.
3: Return Y = ZW , the projection of whitened data onto W , the K�1 slowest eigenvectors of A

3 Quantum algorithms for machine learning

We start by stating some known results that we will use in the following sections.

Definition 1. The vector state |xi for x 2 Rn is defined as 1

||x||
P

i2[n]

x
i

|ii .

Proposition 1. (Phase estimation [Kit96]) Let U be a unitary operator, with eigenvectors |v
j

i
and eigenvalues e◆✓j for ✓

j

2 [�⇡,⇡], i.e. we have U |v
j

i = e◆✓j |v
j

i for j 2 [n]. For a precision
parameter ✏ > 0, there exists a quantum algorithm that runs in time O(T (U)logn/") and with
probability 1�1/poly(n) maps a state |�

i

i =
P

j2[n]

↵
j

|v
j

i to the state
P

j2[n]

↵
j

|v
j

i | ¯✓
j

i such that
¯✓
j

2 ✓
j

± " for all j 2 [n].

Proposition 2. (Amplitude amplification and estimation [BHMT02]) If there is unitary operator
U such that U |0il = |�i = sin(✓) |x, 0i+cos(✓) |G, 0?i then sin

2

(✓) can be estimated to multiplica-
tive error ⌘ in time O(

T (U)

⌘ sin(✓)

) and |xi can be generated in expected time O(

T (U)

sin(✓)

).

We will provide algorithms for a quantum computer that has quantum access to classical data
through a structure called QRAM which allows for creating quantum states efficiently from classical
data stored in a data structure. We say that a dataset is efficiently loaded in the QRAM, if the
size of the data structure is linear in the dimension and number of data points and the time to
enter/update/delete an element is polylogarithmic in the dimension and number of data points.
In Appendix A we show how to construct such data structures. We also assume that the classical
data is stored already polynomially expanded and scaled to zero mean and unit variance.

We first recall some known results about the power of quantum computers to perform linear
algebraic procedures efficiently. In what follows we follow the convention that the matrices have
been stored in QRAM normalized, i.e. kMk

2

 1 (see [KP17] for an efficient procedure for this
normalization).

Theorem 1 (Singular Value Estimation [KP17]). Let M 2 Rn⇥d be a matrix with singular value
decomposition M =

P
i

�
i

u
i

vT
i

stored in the data structure described in Appendix A. Let " > 0
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This will in fact allow us to whiten the data with a quantum procedure. In practice, the matrix
A is usually approximated with a small fraction of all the possible derivatives, roughly linear (and
not quadratic) on the number of data points. In our case we take the number of rows of the
derivative matrix to be just double the number of data points without compromising the accuracy.
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Input X 2 Rn⇥d (normalized and polynomially expanded), and K < d 2 N
Ensure:

Y = ZW , where Z = XB�1/2 is the whitened input signal, and W 2 Rd⇥(K�1) are the K � 1

eigenvectors of the matrix A =

˙ZT

˙Z corresponding to the smallest eigenvalues

1: Whiten the signal: Z := XB�1/2, and create ˙Z from Z.
2: Perform PCA on the derivative covariance matrix A =

˙ZT

˙Z of the whitened data.
3: Return Y = ZW , the projection of whitened data onto W , the K�1 slowest eigenvectors of A

3 Quantum algorithms for machine learning

We start by stating some known results that we will use in the following sections.

Definition 1. The vector state |xi for x 2 Rn is defined as 1
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(✓) can be estimated to multiplica-
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).

We will provide algorithms for a quantum computer that has quantum access to classical data
through a structure called QRAM which allows for creating quantum states efficiently from classical
data stored in a data structure. We say that a dataset is efficiently loaded in the QRAM, if the
size of the data structure is linear in the dimension and number of data points and the time to
enter/update/delete an element is polylogarithmic in the dimension and number of data points.
In Appendix A we show how to construct such data structures. We also assume that the classical
data is stored already polynomially expanded and scaled to zero mean and unit variance.

We first recall some known results about the power of quantum computers to perform linear
algebraic procedures efficiently. In what follows we follow the convention that the matrices have
been stored in QRAM normalized, i.e. kMk

2

 1 (see [KP17] for an efficient procedure for this
normalization).

Theorem 1 (Singular Value Estimation [KP17]). Let M 2 Rn⇥d be a matrix with singular value
decomposition M =
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stored in the data structure described in Appendix A. Let " > 0
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Figure 2: Sensitivity analysis of the parameter µ for the matrices X and ˙X while increasing n
and d. The graphs show the value of the Frobenius norm and the max `

1

-norm as two options
for µ. For the MNIST dataset, we see that both the Frobenius norm and the maximum l

1

norm
are practically constant when we increase the number of data points in the training set, with
values of the order of 102 and 10 respectively. When we increase the dimension of the data points,
the Frobenius norm increases slowly to values around 10

2, while the maximum `
1

norm remains
practically constant and below 10.

much since we only add higher order terms and note that all entries of the matrices are smaller
than 1, since kXk

max

 kXk
2

 1. On the other hand, the scaling and normalization of X helps
keeping the l

1

norm even lower.
What is important to state here is that one can gain a factor 103 by taking the correct quantum

algorithm for performing linear algebra and not just an off-the-shelf one. Such decisions will be
crucial in reaching the real potential of quantum computing for machine learning applications.

Condition number for the matrix X. For the condition number of the input matrix, first we plot
it while increasing the number of data points and see that indeed the condition number is stable,
in fact decreasing. Note also that we do not need to have the real condition number in the run-
ning time but a threshold under which we ignore the smaller eigenvalues. In fact, by consider a
conditioning threshold which retains 99.5% of the singular values and which does not considerably
penalise the accuracy, and we achieve a behaviour of growing much more slowly as we increase the
dimension and with a value around 10

2.

Error parameters. There are four error parameters, " for the matrix multiplication procedure, �
and ✓ for the projection procedure, and ⌘ for the estimate in the classification. For ", it appears
only within a logarithm in the running time, so we can take it to be rather small. In our ex-
periments we took it to be as small as 10

�5. For the projection, we took � ⇡ 1/20 and from the
simulations we have that ✓ ⇡ 0.3 for polynomial expansion 2 and ✓ ⇡ 0.05 for polynomial expansion
3. Last, it is enough to take ⌘ = 1/10. Note also, that these parameters are pretty stable when in-
creasing the dimension, they only depend on whether we perform a polynomial expansion of 2 or 3.

Projection ratio. Our running time also depends on one last thing, the ratio between the norm of
the vector in the whitened space over the projected vector in the slow feature space. To estimate
this, we computed the average and the variance of this ratio among the vectors in the test set.
For an initial PCA dimension of 40 and polynomial expansion of degree 2, this ratio is 0.1 with
variance 0.0022, while for a polynomial expansion of degree 3 and a PCA dimension of 30 is 0.05
with 0.0007 variance.

Overall, putting the orders of all parameters together, we get that the rough estimate of the
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Figure 3: Sensitivity analysis of the condition number of X while increasing n and d. We plot the
condition number while increasing the number of data points in the training set and see that it
slowly decreases to reach values around 10

2. We also plot the condition number and the condition
threshold (that keeps 99.5% of the eigenvalues) while increasing the dimension of the data points.
While the real condition number increases, the condition threshold is stable around 10

2.

running time of the quantum classifier’s training and testing part is of the order of 107. Again,
we are not arguing that this is the precise number of steps of the quantum algorithm, but these
estimates, and more importantly the behaviour of the parameters as the dimension increases, give
further evidence that the quantum classifier can be more efficient that a classical classifier, whose
running time is of the order of 10

13 for the same input dimension. Moreover, the fact that all
parameters that appear in the running time of the quantum classifier seem to increase very slowly
(or not at all) as we increase the number and dimension of the data points leads us to believe
that one could still have an efficient quantum classifier with much higher number and dimension
of points, thus eventually providing much higher classification accuracy.

7 Conclusions

We provided evidence that quantum computers with quantum memories can be useful for solving
real-world problems by designing an efficient classifier. Benchmarked on the MNIST dataset, we
proved high accuracy classification, comparable to the best classical classifiers. The running time
of the quantum procedure is only logarithmic with respect to the dimension and number of data
points, thus allowing the quantum classifier to run on higher dimensional input.

It would be interesting to see if the same performance is achievable also on different dataset.
We believe our quantum algorithm for Dimensionality Reduction can find applications in many
other contexts. For instance, it can be used directly on processes that produce quantum data
that might be high dimensional. In this case, constructing the QRAM would not be a necessary
condition anymore. Moreover, we envision its utility in conjunction with other quantum machine
learning algorithms. For instance, Projective Simulation [MMDB17] is a Reinforcement Learning
algorithm based on a random walk over a graph. The graph represents the memory of an agent
that acts on a certain environment. The random walk start from a node (or superposition of
nodes) decided by an input-coupling function. QSFA could be used to treat and pre-process high-
dimensional input signals in agents that use Projective Simulation as input-coupling function of
external stimuli in the memory model of the agent. This would resemble even further what we
believe to be the current architecture of the brain, where SFA is used to model complex cells in the
primary visual cortex (V1: the first cortical area dedicated to visual processing), and Projective
Simulation is used to model high level cognitive functions which emerges from a model of an
episodic and compositional memory for the agent (so to model creativity, curiosity, and so on..).
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Hope$(and$some$evidence):$
Quantum$classifica@on$algorithms$can$handle$bigger$dimensions$(hence$be$

more$accurate),$since$their$running$@me$scales$much$more$favourably$with$

the$dimension.$$
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QRmeans$
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Repeat$un@l$convergence$
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Summary and open questions 

Summary$
QML$is$(one$of)$the$best$reason$to$build$quantum$computers$

-  $ Use$case:$Quantum$recommenda@on$systems$$

-  $ General$Methods:$Quantum$gradient$descent$for$linear$gradients$

-  $ Benchmarking:$Classifica@on$of$MNIST$dataset$

-  $$ML$data$has$some$hidden$structure$(e.g.$low$rank$approxima@ons)$

-  $$ML$is$very$robust$to$errors$

Open$Ques@ons$
Build$quantum$computers$and$QRAMs$

Find$new$quantum$methods$(Interior$point$methods,$fully$quantum$methods,…)$

Find$more$realRworld$applica@ons$$

Benchmark$hardware$via$applica@ons$$


