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Important practical applications in

- R.oute planning

- Scheduling

- Resource allocation
- Power management
- Design



QRQuanttum optimization?



QRQuanttum optimization?

Quantum alaorithms for optimization:

Proven advantace Heuristics
- Grover search - Quantum annealing
- Quantum Walks - Adiaratic alaorithms
- Backtracking - QAOA
- Shortest path - VRE
- Minimum weiaght - Quantum machine

spanning tree learning



QRQuanttum optimization?

Quantum alaorithms for optimization:

Proven advantace Heuristics
- Grover search - Quantum annealing
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What arout Linear Proarams (LPs) and Semidefinite
Proarams (SDPs)?
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A ceneralization of Linear proarams (LPs). Let X € R™"

OPT =min Tr(CX)
ssEe TeAX)'< b; ' for albj € [m],
X>=0
Assumptions ans formalization

- n X n variagle matrix X, with m constraints.

Assume || C||, ||Aj]l < 5 and s-sparse.

A priori known Bounds Tr(X) < Rand 3 7oy <r.
Goal: additive e-approximation of the optimum.

Examples: MAMCUT, Lovasz theta numrer,
Sum-of-Sauares, General Adversary Bound, ...
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Simplex algorithm for linear proarams. (Dantzig, 1941

Ellipsoid method in polynomial time. (Khachiyan, 1979)
- Also works for SDPs! (Grétschel, Lovdsz, Schrijver, [988)
State of the art methods: (Lee, Sidtord, Wong, 20I15)

(@) (m(m2 + n” + mns) Iogo(l)(mnR/s)) :

- Arora and Kale (2008):
Worse error-dependence, Better in n and m in certain
cases.
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SDP feassirlility proglem

Tr(A;X) < b; #orall je[m]
TP =1

Find X with Tr(X) =1 such that

Tr(AjX)<bj+¢6 #$oralljec[m]

or conclude that the prorlem is infeasigle.
[N case the proelem is infeasigle, But a j—approximation
exists we allow roOth solutions.]



Basic iterative algorithm



Basic iterative algorithm

Set y© .= 0 e R™



Basic iterative algorithm

Set y© .= 0 e R™
For t=0.. %8



Basic iterative algorithm

Set y© .= 0 e R™
For =10, Iog(")

- Let HOS— il Tr(z_eH(/-t[)(t))

Sy yj(t)Aj and X =




Basic iterative alaorithm
Set y© .= 0 e R™
For t=0..l

o e () g
Le’t H(t) = ijl-yj Aj and D — m
- Tryto #ind j € [m]: Tr (A;X) > b;.
Once found j set y(t+1) = y(t) 4 g¢;



Basic iterative algorithm

Set y© .= 0 e R™
For 10", 'og(")

e_H(f)
Tr(e*"’(t))
- Tryto #ind j € [m]: Tr (A;X) > b;.
Once found j set y(t+1) = y(t) 4 g¢;
- |# por all _/ & [m] TI‘(AjX) < bj—{-5
Can simvply output "(approximately) feasigle”

- Let HO = D yj(t)Aj and X :=



Basic iterative algorithm

Set y© .= 0 e R™
For 10", 'og(")

o m (t) 4. R e_H(t)
= Le’t H(t) = Zj:]-yj Aj 8I"\d X = m
- Tryto #ind j € [m]: Tr (A;X) > b;.
Once found j set y(t+1) = y(t) 4 g¢;
- |# por all _/ & [m] TI‘(AjX) < bj—{-5
Can simvply output "(approximately) feasigle”

Conclude that the prorlem is infeasirle



Basic iterative algorithm
Set y© .= 0 e R™

Fori—10.. 'og(")
o m (t) 4. R e_H(t)
= Le’t H(t) = Zj:]-yj Aj 8I"\d X = m
- Tryto #ind j € [m]: Tr (A;X) > b;.
Once found j set y(t+1) = y(t) 4 g¢;
- |# por all _/ & [m] TI‘(AjX) < bj—{-5
Can simvply output "(approximately) feasigle”

Conclude that the prorlem is infeasirle

Proof of correctness By Lee, Raghavendra and Steurer 'IS.
(Very similar to the algorithm of Arora and Kale 'O8)
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Set y© .= 0 e R™

For t=0.. &

i e m (t) 5. = e_H(t)
Let HO= R0 e X = e

- Tryto #ind j € [m]: Tr (A;X) > b;.
Once found j set y(t+1) = y(t) 4 g¢;
- |# por all _/ & [m] TI‘(AjX) < bj—{-5
Can simvply output "(approximately) feasigle”
Conclude that the proelem is infeasigle

Proof of correctness By Lee, Raghavendra and Steurer 'IS.
(Very similar to the algorithm of Arora and Kale 'O8)

Application to Quantum SDP-solvina Brandado et al. ’Ib)I1.
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Preparing X

Suppose we can Query the position and value of the non-zero
elements of the sparse matrices A;, then we can implement

L i
Usetect = »_ LiXil ® Uj, such that U; = { e, ] ,
j=1
usina O (s) Queries and aates.

Let us store y() in QRAM usina the data structure of
Kerenidis and Prakash. (y(!) is sparse = QR.AM is small)

; (1) —H® -
USelect g |: o 2 :| ,g |: o ; :| ~A:g X
O(1) O(1/6) O(v/n)

Preparation of X has O (@s) Query and time complexity.
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Violated constraints

Decide i# Tr (A;X) < b £

- Can Rre done using (’)( ) copies of X

62
- With Query and cate complexity O ().

Now we use the auantum OR_ lemma of Harrow et al. 1

using its fast implementation due to Brandao et al. Il

- Find JjE [m] such that Tr (AJX) = bj
- Or conclude that for all j € [m] we have Tr(A;X) < bj+6

The aBove proelem can ge solved with O (L) copies of X

with Query and aate complexity O <f5>

The overall Query and aate complexity is O (*ﬁs + \gs>
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Shadow tomoaraphy

- Given samples of p € C"™" and m meas. operators M;
- #ind y € R™ such that H:=} T, y;M; satisfies

]
for all j € [m] that [Tr(M;p) — Tr <Mje>‘ <.

Tr (e=H)

4
Aaronson showed how to solve using O(MM) samples.

Qur SDP solver recovers it in a aate efficient way
incurring O (y/m) aate and @uery complexity overhead.

Further applications

- Quantum state diserimination with maximal total
success proragility.

- Optimal measurement desian.



Summary

Quantum SDP solver



Sunmmary

Quantum SDP solver
- Query and @ate complexity O ((\/E i ?) 65—4) ;



Sunmmary

Quantum SDP solver
- Query and @ate complexity O ((\/E i ?) 65—4) ;

Matching Iower rounds £or Ps (and hence SDPs)



Summary

Quantum SDP solver
- Query and @ate complexity O ((\/E i ?) 557> ;

Matching Iower rounds £or Ps (and hence SDPs)

- Q(yv/m+ \/n) in sparse matrix access input model.



Summary

Quantum SDP solver
- Query and @ate complexity O ((\/E i ?) 557> ;

Matching Iower rounds £or Ps (and hence SDPs)

- Q(yv/m+ \/n) in sparse matrix access input model.
- Q(yv/m/6) in Block-encoding input model.



Summary

Quantum SDP solver
- Query and @ate complexity O ((\/E i ?) 557> ;

Matching Iower rounds £or Ps (and hence SDPs)

- Q(yv/m+ \/n) in sparse matrix access input model.
- Q(yv/m/6) in Block-encoding input model.

Open auestions/$uture research



Summary

Quantum SDP solver
- Query and @ate complexity O ((\/E i ?) 557> ;

Matching Iower rounds £or Ps (and hence SDPs)

- Q(yv/m+ \/n) in sparse matrix access input model.
- Q(yv/m/6) in Block-encoding input model.

Open auestions/$uture research

- Prorlem specific fine—tuned alcorithms?



Summary

Quantum SDP solver
- Query and @ate complexity O ((\/E i ?) 557> ;

Matching Iower rounds £or Ps (and hence SDPs)

- Q(yv/m+ \/n) in sparse matrix access input model.
- Q(yv/m/6) in Block-encoding input model.

Open auestions/$uture research

- Prorlem specific fine—tuned algorithms?
- Tight Quantum rounds £or the § dependence?



Summary

Quantum SDP solver
- Query and @ate complexity O ((\/E i ?) 557> ;

Matching Iower rounds £or Ps (and hence SDPs)

- Q(yv/m+ \/n) in sparse matrix access input model.
- Q(yv/m/6) in Block-encoding input model.

Open auestions/$uture research

- Prorlem specific fine—tuned algorithms?
- Tight Quantum rounds £or the § dependence?
- Speed-ups using other, e, interior point methods?
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