

Quantum algorithm for simulating real time evolution of lattice Hamiltonians

Jeongwan Haah, Microsoft Research

Challenges in Quantum Computing, June 13, 2018

Hamiltonian Simulation

"...If you want to make a simulation of nature, you'd better make it quantum mechanical."

R. Feynman

- Condensed matter/high energy/AMO physics
- Quantum chemistry
- Linear equation solver
- Optimization as ground state finding

Conceptually, it is manifestation of determinism in physics.

Problem

Input: a local Hamiltonian $H=\sum_X h_X$ (NOT "low-weight" Hamiltonian as in Hamiltonian complexity theory)

Output: Time-evolution unitary $U_t^H = \exp(-itH)$

- H is huge as a matrix; exp(V).
- Output = poly(V, t) elementary gates
- Sufficient to produce $U \simeq U_t^H$ to accuracy ϵ in operator norm

Previous algorithms

- "Infinitesimal time evolutions commute."
 - $e^{-it(A+B)} \simeq \left(e^{-\frac{itA}{n}}e^{-\frac{itB}{n}}\right)^n$ (Lloyd 1996)
 - Higher order (randomized) Suzuki: $V(VT)^{1+\frac{1}{(2)k}}/\epsilon^{\frac{1}{(2)k}}$ (Childs et al. 2017)
 - For local interactions it was claimed that $(VT)^{1+\frac{1}{k}}/\epsilon^{\frac{1}{k}}$ gates suffice. (Jordan-Lee-Preskill 2014)
- For sparse Hermitian $2^n \times 2^n$ matrices:
 - Taylor series: $\tilde{O}\left(n^2T\log\frac{1}{\epsilon}\right)$
 - Quantum signal processing: $\tilde{O}\left(n^2T + n\log\frac{1}{\epsilon}\right)$

Our Result

For any bounded local (time-independent) Hamiltonian on Euclidean lattices, we can write a quantum circuit U of depth $O\left(t\log^{\alpha}\left(\frac{tV}{\epsilon}\right)\right)$ and total gate count $O\left(tV\log^{\alpha}\left(\frac{tV}{\epsilon}\right)\right)$ such that $\left|\left|U-U_{t}^{H}\right|\right| \leq \epsilon$ for a const $\alpha>0$.

For time-dependent case, we need H be slowly varying and each term must be efficiently computable.

Lieb-Robinson Bounds

Quantum Circuit Decomposition

Absolute Lightcone even in nonrelativistic systems

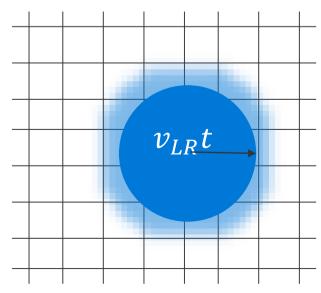
• $A_X(t) = e^{itH} A_X e^{-itH}$ acts everywhere once t > 0, but not substantially everywhere.

Lieb-Robinson 1972 Hastings, Koma 2004,2006 Nachtergaele-Sims 2006 Premont-Schwarz et al. 2010

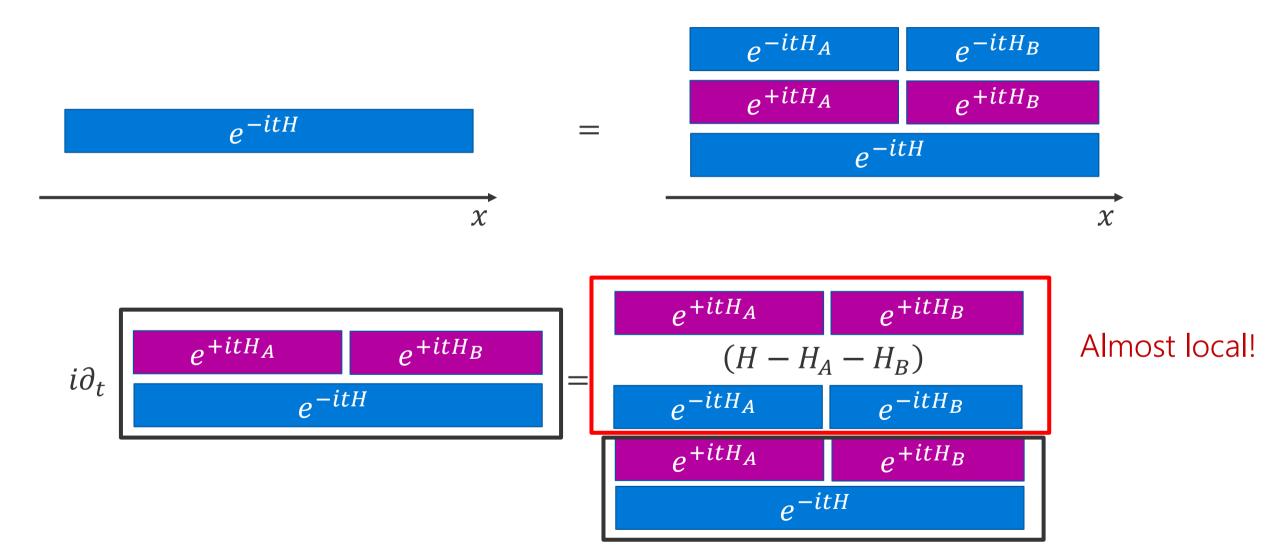
$$||[A_X(t),B_Y]|| \le 2|X| \frac{(\zeta t)^\ell}{\ell!}$$
 where $\ell = dist(X,Y)$

$$||A_X(t;H) - A_X(t;H_\Omega)|| \le |X| \frac{(\zeta t)^\ell}{\ell!}$$
 where $\ell = dist(X,\Omega^c)$

- Independent of interaction detail, but only locality and strength (ζ).
- Holds not only for lattices, but also for bounded degree graphs.

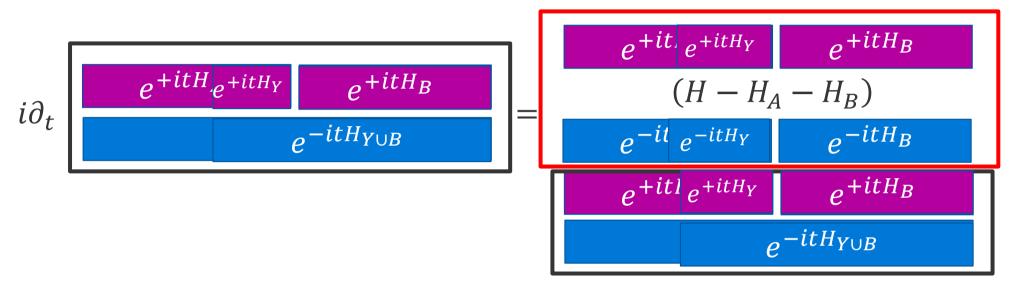


Curing Naïve Decomposition (Osborne 2006)



Schroedinger equation by an almost local Hamiltonian.

Further Simplification



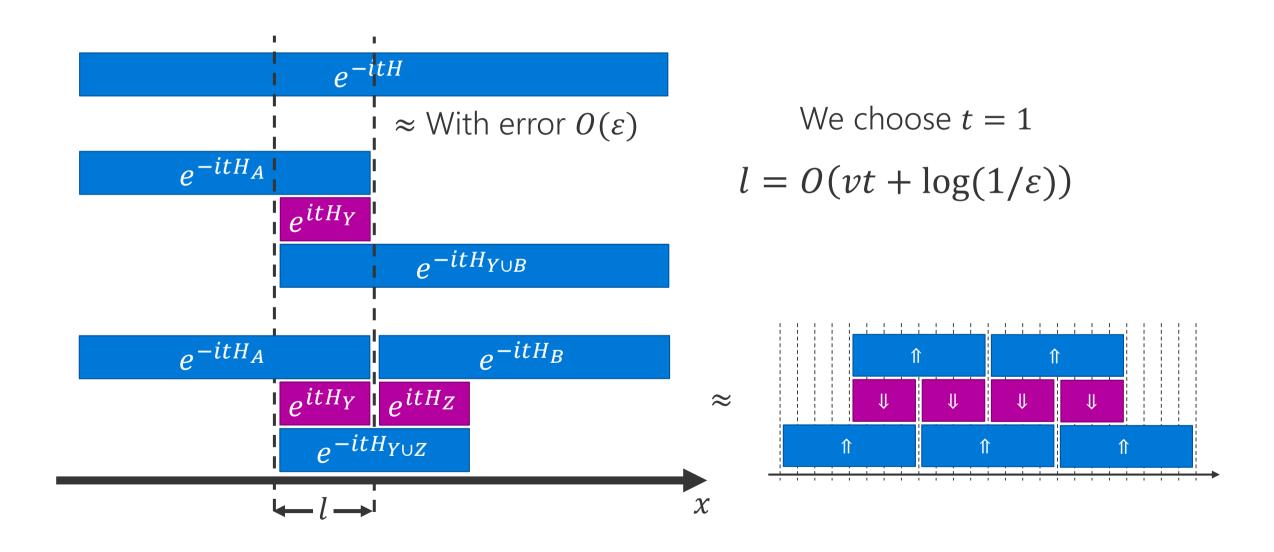
$$||A_X(t;H) - A_X(t;H_{\Omega})|| \le |X| \frac{(\zeta t)^{\ell}}{\ell!}$$
 where $\ell = dist(X,\Omega^c)$

$$e^{-itH_A} \qquad e^{-itH_B} \qquad e^{-itH_A} \qquad e^{-itH_B}$$

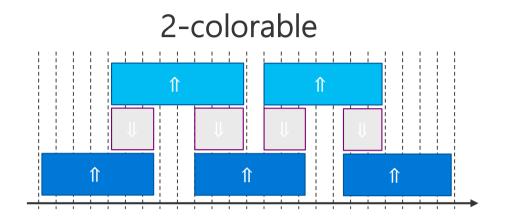
$$= \qquad e^{+itH_A} \qquad e^{+itH_B} \qquad \simeq \qquad e^{+itH_Y} \qquad e^{+itH_B}$$

$$e^{-itH_Y} \qquad e^{-itH_Y} \qquad e^{-itH_$$

Iterative Decomposition



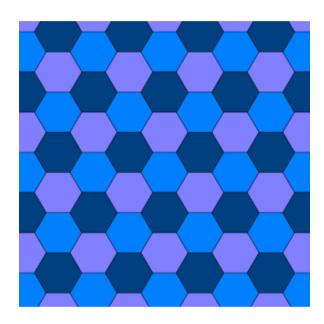
Higher dimensions



- + Color 1
- Color 1 ∩ 2
- + Color 2

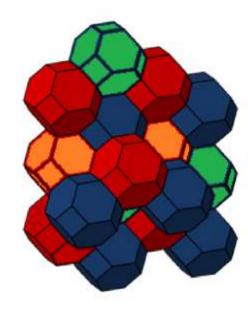
 $2\alpha - 1$ layers per unit time

3-colorable



- + Color 1
- Color 1 ∩ 2
- + Color 2
- Color $(1 \cup 2) \cap 3$
- + Color 3

4-colorable



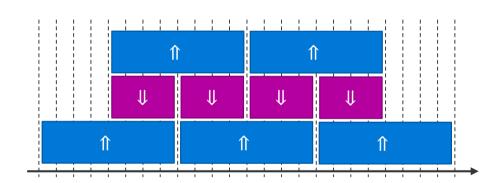
- + Color 1
- Color 1 ∩ 2
- + Color 2
- Color $(1 \cup 2) \cap 3$

.

Implementing small blocks

- Requirements
 - Block size \sim Overlap size $\ell = O(vt + \log(1/\varepsilon_{LR}))$ (we take t=1 and repeat T times.)
 - #(Blocks) < VT. It suffices to have $\epsilon_{LR} < \frac{\epsilon}{VT}$.
 - $\ell = O\left(\log\left(\frac{VT}{\epsilon}\right)\right)$
 - Each block has to be good to $\epsilon_{\blacksquare} < \epsilon/VT$.

• Already we have $poly\left(\ell,\log\left(\frac{1}{\epsilon}\right)\right)$ algorithms.



Childs-Wiebe 2012, Berry et al. 2014

$$U = \alpha_1 U_1 + \alpha_2 U_2 + \dots + \alpha_n U_n$$

- 1. Prepare: $B|0\rangle = |\alpha\rangle \propto \sum_{j} \sqrt{\alpha_{j}} |j\rangle$ on ancilla.
- 2. Implement $\sum_{j} |j\rangle\langle j| \otimes U_{j}$
- 3. Apply B^{-1} .
- 4. Measure the ancilla, abort if nonzero.
- 5. Success probability can be boosted.
- A Hamiltonian is a linear combination of O(V) unitaries.

• So is
$$e^{-itH} \simeq \sum_{k=0}^K \frac{(-itH)^k}{k!}$$
.

Quantum signal processing (Low-Chuang 2016)

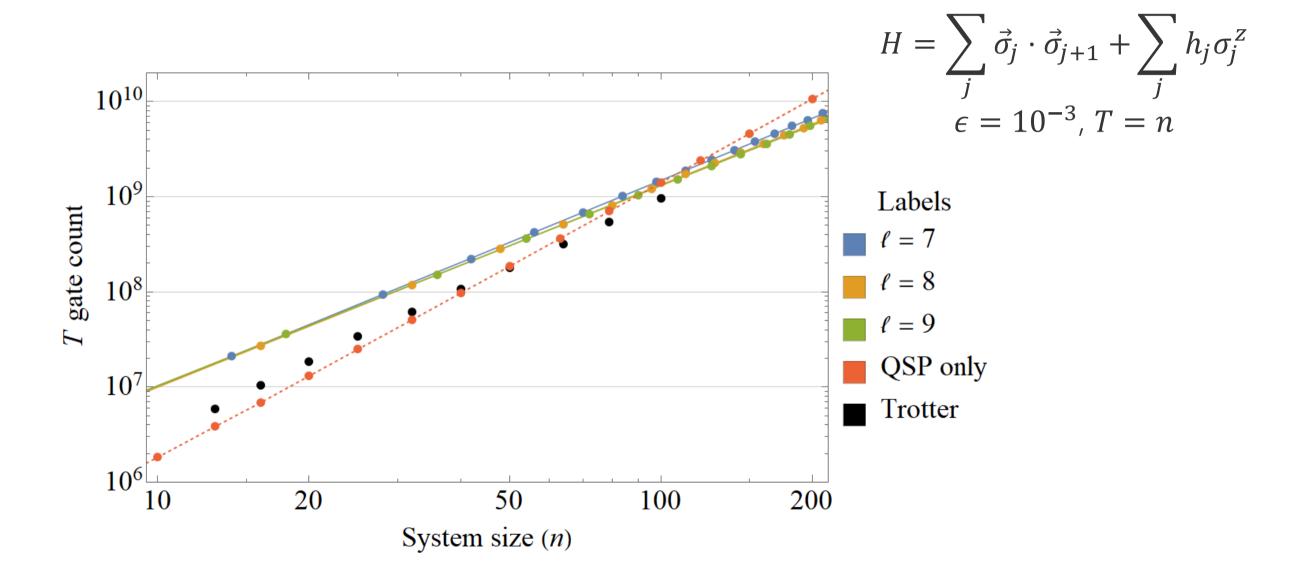
$$H = \alpha_1 U_1 + \alpha_2 U_2 + \dots + \alpha_n U_n$$
 can be inferred from a unitary

$$(2|\alpha\rangle\langle\alpha|-1)\left(\sum_{j}|j\rangle\langle j|\otimes U_{j}\right)$$

- QSP: $\sum_a \lambda_a |a\rangle\langle a| \mapsto \sum_a f(\lambda_a) |a\rangle\langle a|$
- Much fewer ancilla qubits than Taylor series approach
- Lower gate count $\tilde{O}\left(n^2T + n\log\frac{1}{\epsilon}\right)$
- Unsure how to use for time-dependent Hamiltonians

Gate count estimates

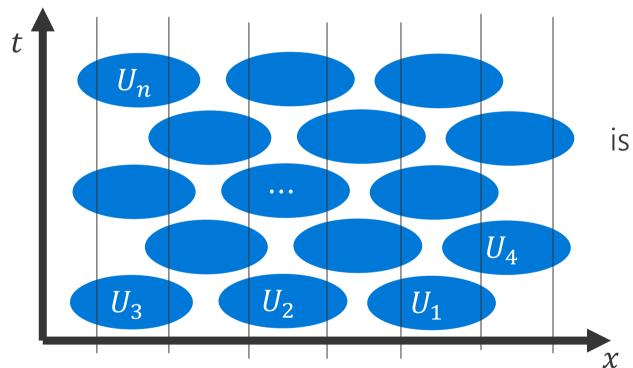
Microsoft Quantum Development Kit http://www.Microsoft.com/quantum



Optimality:

Any general algorithm must have $\widetilde{\Omega}(VT)$ gates.

Any circuit is time-evolution

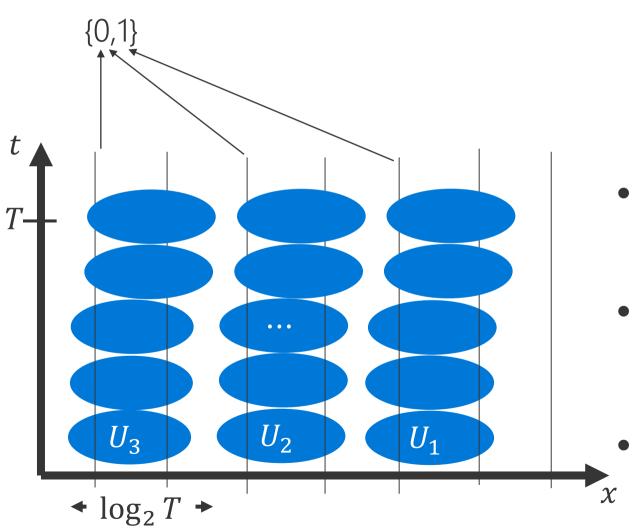


$$U_5 = \exp(-i \cdot i \log(U_5))$$

is the exponential of a local Hermitian operator

 Any quantum circuit is the time-evolution of a piecewise constant (time-dependent) local Hamiltonian

How expressive is a circuit?



- In each column of $k = \log_2 T$ qubits any $f: \{0,1\}^k \to \{0,1\}$ can be computed.
- There are $2^{2^k} = 2^T$ such functions.
- Thus, $2^{TV/\log_2 T}$ maps can be expressed.
 - $\exp\left(\widetilde{\Omega}(TV)\right)$, even if we turn it into a $\{0,1\}$ -valued function.

Argument combined

- Depth-T circuits on V qubits can express $\exp(\widetilde{\Omega}(TV))$ Boolean functions.
- A general Hamiltonian simulation algorithm for time *T* can implement every such function.
- G quantum gates can only express $2^{\tilde{O}(G)}$ different functions.

$$G = \widetilde{\Omega}(TV)$$

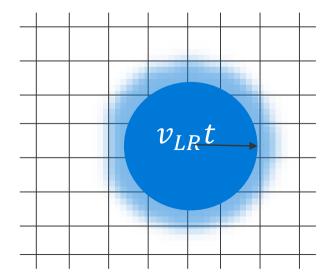
Even if we care a local observable only.

Bonus:

Lieb-Robinson bound for (un)bounded H

- $\cdot H = \sum_X h_X$ such that $||h_X|| < \infty$ and $||[h_X, h_Y]|| \le K$
- · Then,

$$||A_X(t;H) - A_X(t;H_{\Omega})|| \le |X| \frac{(\zeta t \sqrt{K})^t}{\ell!}$$

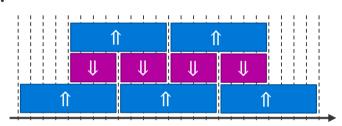


where $\ell = dist(X, \Omega^c)$

Previously, *H* had to consist of two "terms." (Premont-Schwarz et al. 2010)

Local Hamiltonian simulation is as efficient as possible.

- · Local interaction limits speed of correlation propagation.
- · Lieb-Robinson bounds give a natural decomposition of time-evolution unitary into $\log(VT/\epsilon)$ -sized blocks.



- Each block is again a Hamiltonian time-evolution with $polylog(VT/\epsilon)$ alg.
- · Covers fermion.
- · Gate complexity $\tilde{O}(VT)$ is optimal, because time-evolution is expressive.
- Algorithms for low energy sectors...?