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Hamiltonian Simulation

"...IT you want to make a simulation of nature,
youd better make it guantum mechanical’”

— R. Feynman
« Condensed matter/high energy/AMO physics
« Quantum chemistry
 Linear equation solver
« Optimization as ground state finding

Conceptually, it is manifestation of determinism in physics.



Problem

Input: a local Hamiltonian H = ),y hy
(NOT “low-weight” Hamiltonian as in Hamiltonian complexity theory)

Output: Time-evolution unitary Uf = exp(—itH)

« H is huge as a matrix; exp(V).
« Qutput = poly(V, t) elementary gates

. Sufficient to produce U = U/ to accuracy € in operator
norm




Previous algorithms

“Infinitesimal time evolutions commute”
itA  itB\Il

e tA+E) ~ (e e n ) (Lloyd 1996)

Higher order (randomized) Suzuki: V(VT)HW/EW (Childs et al. 2017)

1 1
For local interactions it was claimed that (VT)' "k /ek gates suffice.

(Jordan-Lee-Preskill 2014)
« For sparse Hermitian 2™ X 2™ matrices:

+  Taylor series: 0 (nZTlogé)

Quantum signal processing: O (nzT + 7’11085)



Our Result

For any bounded local (time-independent) Hamiltonian on
Fuclidean lattices, we can write a quantum circuit U of depth

0 (t log?® (te—v)) and total gate count O (tV log?® (%)) such

that “U— U{’” < eforaconsta > 0.

For time-dependent case, we need H be slowly varying and
each term must be efficiently computable.



L iep-Robinson Bounds
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Quantum Circuit Decomposition




Absolute ng NTCONE even in nonrelativistic systems

o Ay (t) = et Ay et acts everywhere once t > 0,

Lieb-Robinson 1972
Hastings, Koma 2004,2006
Nachtergaele-Sims 2006

but not substantially everywhere. Premont-Schwarz et al. 2010
4
1 [Ax (D), By]ll < 21X 2 where € = dist(X,Y)
H_Q —_ 2 hX
(z ){’ Xl

|| Ay (t; H) — Ax(t; Hy)|| < |X|—==— where £ = dist(X, Q°)

« Independent of interaction detalil,
put only locality and strength (¢ ).

« Holds not only for lattices,
put also for bounded degree graphs.




Curing Naive Decomposition (©Osborne 2006)

ia,

X

(H — Hy — Hg)

+itH 4 +itHpg

e
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Schroedinger equation by an almost local Hamiltonian.

X

Almost local!



Further Simplification

] (1~ 1y iy
LO¢
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—itHyyp

()’

[ Ax(t; H) — Ax(t; Ho)ll < |X]| =~

where £ = dist(X, Q°)

e_itHYUB




terative Decomposition

! ~ With error 0(¢) We choose t =1
L = 0(vt +log(1/e))
o |

| ,itHy [
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Higher dimensions
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Implementing small blocks

« Requirements

Block size ~ Overlap size £ = O(vt + log(1/€:r))
(we take t = 1 and repeat T times.)

#(Blocks) < VT. It suffices to have €, < V—ET

)

Each block has to be good to eq < €/VT.

» Full gate count =
#(Lieb-Robinson blocks) x cost[ Size log(V—ET), accuracy V—GT

« Already we have poly (3, log e)) algorithms.



Linear combination of unitaries Sory et o 20 -

U = alUl + azUz + -+ anUn

1. Prepare: B|0) = |a) < Zj\@\j) on ancilla.
mplement 3, /)| ® Uj

Apply B~1.

Measure the ancilla, abort it nonzero.
Success probability can be boosted.

« A Hamiltonian is a linear combination of O(V) unitaries.

(—itH)k
o

A e

. ‘o ,—itH ~
Soise” Y o



Quantum signal processing (Low-chuang 2016

H = alUl T azl]z T anUn
can be inferred from a unitary

(2la)al - 1) (2 UK UJ-)
J

+ Q5P Xa g laKal » Xg f(Aa) [a)al

«  Much fewer ancilla qubits than Taylor series approach

. Lower gate count O (nZT + nlogi)

« Unsure how to use for time-dependent Hamiltonians



Microsoft Quantum Development Kit

G ate CO U nt eSU m ates http://www.Microsoft.com/quantum
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Optimality:

Any general algorithm must have Q(VT) gates.



Any circuit is time-evolution

Us = exp(—i - ilog(Us))
is the exponential of a local Hermitian operator

* Any quantum circuit is the time-evolution
of a piecewise constant (time-dependent)
 local Hamiltonian




HOw expressive Is a Circuit?

 In each column of
k =log, T qubits
any f:{0,1}* - {0,1}
can be computed.

. There are 22° = 27T such
functions.

o Thus, 2TV/1082T maps can be
expressed.

* exp (ﬁ(TV)), even if we turn
it into a {0,1}-valued function.




Argument combined

»  Depth-T circuits on V' qubits
can express exp(Q(TV)) Boolean functions.

« A general Hamiltonian simulation algorithm for time T
can implement every such function.

. G quantum gates can only express 226 different
functions.

G = Q(TV)
Fven if we care a local observable only.



B0NUS:
_ieb-Robinson bound for (un)bounded H

- H = Yy hy such that ||hy]| < o0 and ||[hy, hy]l| < K
- Then,

tvVK !
1 Ax (£ H) — Ay (&5 H)I| < |x] 59

where £ = dist(X, Q°)
0 Previously, H had to consist of two “terms”

(Premont-Schwarz et al. 2010)




| ocal Hamiltonian simulation
S as efficient as possible.

- Local interaction limits speed of correlation propagation.

- Lieb-Robinson bounds give a natural decomposition

of time-evolution unitary into log(VT /e)-sized blocks.

- Each block is again a Hamiltonian time-evolution with polylog(VT /€) alg.
- Covers fermion.

- Gate complexity O(VT) is optimal, because time-evolution is expressive.

- Algorithms for low energy sectors...?



