
Scott	Aaronson	(University	of	Texas,	Austin)	
Simons	Institute,	Berkeley,	June	12,	2018	

Based	on	joint	work	with	Lijie	Chen	(CCC’2017,	arXiv:
1612.05903)	and	on	forthcoming	work	

Papers	and	slides	at	www.scottaaronson.com	

Quantum	Supremacy	and	its	
Applications	

HELLO 
HILBERT 
SPACE 



#1	Application	of	quantum	computing:	Disprove	Gil	
Kalai!		(And	the	Extended	Church-Turing	Thesis)	

|		〉	
Might	actually	be	able	to	achieve	in	the	next	couple	
years,	e.g.	with	Google’s	72-qubit	Bristlecone	chip.		

“Obviously	useless	for	anything	else,”	but	who	cares?	

QUANTUM	SUPREMACY	



The	Sampling	Approach	
Put	forward	by	A.-Arkhipov	2011	(BosonSampling),	

Bremner-Jozsa-Shepherd	2011	(IQP	Model),	and	others	

PostBQP	

PostBPP	

PostBQP:	where	we	allow	postselection	
on	exponentially-unlikely	measurement	
outcomes	

PostBPP:	Classical	randomized	subclass	

Theorem	(A.	2004):	PostBQP	=	PP	

PostBPP	is	in	the	polynomial	hierarchy 

Consider	problems	where	the	goal	is	to	sample	from	a	
desired	distribution	over	n-bit	strings 

Compared	to	problems	with	a	single	valid	output	(like	
FACTORING),	sampling	problems	can	be	

(1)  Easier	to	solve	with	near-future	quantum	devices,	and	

(2)  Easier	to	argue	are	hard	for	classical	computers! 

(We	“merely”	give	up	on:	practical	applications,	fast	
classical	way	to	verify	the	result…?) 



The	Random	Quantum	
Circuit	Proposal	

Generate	a	quantum	circuit	C	on	n	qubits	in	a	√n×√n	
lattice,	with	d	layers	of	random	nearest-neighbor	gates	

Apply	C	to	|0〉⊗n	and	measure.		Repeat	T	times,	to	obtain	
samples	x1,…,xT	from	{0,1}n		

Check	whether	x1,…,xT	solve	the	“Heavy	Output	
Generation”	(HOG)	problem—e.g.,	do	at	least	2/3	of	the	
xi’s	have	more	than	the	median	probability?	

	(takes	classical	exponential	time,	which	is	OK	for	n≈70)	

Publish	C.		Challenge	skeptics	to	generate	samples	
passing	the	test	in	a	reasonable	amount	of	time	



xxe−

xe−



Our	Strong	Hardness	Assumption	
There’s	no	polynomial-time	classical	algorithm	A	such	
that,	given	a	uniformly-random	quantum	circuit	C	with	n	
qubits	and	m>>n	gates,	

( ) ( )nnn

C
CCA −⊗⊗

Ω+≥⎥⎦
⎤

⎢⎣
⎡ > 2

2
1median00 whether guesses Pr

2

Note:	There	is	a	polynomial-time	classical	algorithm	that	
guesses	with	probability	

m4
1

2
1
+≈

(just	expand	〈0|⊗nC|0〉⊗n	out	as	a	sum	of	4m	terms,	then	
sample	a	few	random	ones)	



Theorem:	Assume	SHA.		Then	given	as	input	a	random	
quantum	circuit	C,	with	n	qubits	and	m>>n	gates,	there’s	no	
polynomial-time	classical	algorithm	that	even	passes	our	
statistical	test	for	C-sampling	w.h.p.	

Proof	Sketch:	Given	a	circuit	C,	first	“hide”	which	amplitude	
we	care	about	by	applying	a	random	XOR-mask	to	the	
outputs,	producing	a	C’	such	that	 nnn CzC ⊗⊗⊗

= 00'0

Now	let	A	be	a	poly-time	classical	algorithm	that	passes	the	
test	for	C’	with	probability	≥0.99.		Suppose	A	outputs	
samples	x1,…,xT.		Then	if	xi	=z	for	some	i∈[T],	guess	that		

median00
2
≥

⊗⊗ nnC

Otherwise,	guess	that	with	probability	
122

1
+

− n
T

Violates	
SHA!	

Of	course	we’d	like	hardness	of	random	circuit	
sampling	based	on	a	weaker	complexity	

assumption.		Recent	partial	progress	in	that	
direction	by	Bouland,	Fefferman,	Nirkhe,	

Vazirani	arXiv:1803.04402		



Time-Space	Tradeoffs	for	
Simulating	Quantum	Circuits	

Given	a	general	quantum	circuit	with	n	qubits	and	m>>n	
two-qubit	gates,	how	should	we	simulate	it	classically?	

“Schrödinger	way”:	

Store	whole	wavefunction	

O(2n)	memory,	O(m2n)	time	

n=40,	m=1000:	Feasible	but	
requires	TB	of	RAM	

“Feynman	way”:	

Sum	over	paths	

O(m+n)	memory,	O(4m)	time	

n=40,	m=1000:	Infeasible	but	
requires	little	RAM	

Best	of	both	worlds?	



Theorem:	Let	C	be	a	quantum	circuit	with	n	qubits	and	d	
layers	of	gates.		Then	we	can	compute	each	transition	
amplitude,	〈x|C|y〉,	in	dO(n)	time	and	poly(n,d)	memory	

Proof:	Savitch’s	Theorem!		Recursively	divide	C	into	two	
chunks,	C1	and	C2,	with	d/2	layers	each.		Then	

{ }
∑
∈

=
nz

yCzzCxyCx
1,0

21 ||||||

C1	
C2	

Can	do	better	for	nearest-neighbor	circuits,	or	when	more	
memory	is	available	

This	algorithm	still	doesn’t	falsify	the	SHA!		Why	not?	



What	About	Errors?	

k	bit-flip	errors	⇒	deviation	from	the	uniform	
distribution	is	suppressed	by	a	1/exp(k)	factor.		Without	
error-correction,	can	only	tolerate	a	few	errors.		Will	
come	down	to	numbers.	

Verification	

Needs	to	be	difficult	but	not	impossible	(like	Bitcoin	
mining).		Partly	using	our	recursive	approach,	Pednault	
et	al.	from	IBM	and	Chen	et	al.	from	Alibaba	have	now	
shown	how	to	handle	up	to	~70	qubits	classically.		
Perfectly	consistent	with	what	we’re	trying	to	do!	



Random	Bits	are	Obviously	Useless…	

1101000011010011110110110011001100010100100110100011111011110100 



Certified	Random	Bits:	Who	Needs	‘Em?	

PostBQP	

PostBPP	

PostBQP:	where	we	allow	postselection	
on	exponentially-unlikely	measurement	
outcomes	

PostBPP:	Classical	randomized	subclass	

Theorem	(A.	2004):	PostBQP	=	PP	

PostBPP	is	in	the	polynomial	hierarchy 

For	private	use:	
Cryptographic	
keys	(a	big	one!) 

For	public	use:		
Election	auditing,	lotteries,	
parameters	for	cryptosystems,	
zero-knowledge	protocols,	proof-
of-stake	cryptocurrencies… 

Trivial	Quantum	Randomness	Solution!	

H	|0〉	

Problem:	What	if	your	quantum	hardware	was	
backdoored	by	the	NSA?		(Like	the	DUAL_EC_DRBG	
pseudorandom	generator	was?)		Want	to	trust	a	
deterministic	classical	computer	only 



Earlier	Approach:	Bell-Certified	
Randomness	Generation	

Colbeck	and	Renner,	Pironio	et	al.,	Vazirani	and	Vidick,	
Coudron	and	Yuen,	Miller	and	Shi… 

Upside:	Doesn’t	need	a	QC;	uses	only	“current	
technology”	(though	loophole-free	Bell	violations	are	only	~2	
years	old)	

Downside:	If	you’re	getting	the	random	bits	over	the	
Internet,	how	do	you	know	Alice	and	Bob	were	separated?	



Randomness	from	Quantum	
Supremacy	Experiments	

Upsides:	Requires	just	a	single	device—good	for	certified	
randomness	over	the	Internet.		Ideally	suited	to	NISQ	devices	

Caveats:	Requires	hardness	assumptions	and	initial	seed	
randomness.		Verification	(with	my	scheme)	takes	exp(n)	
time	

Key	Insight:	A	QC	can	solve	certain	sampling	problems	quickly
—but	under	plausible	hardness	assumptions,	it	can	only	do	so	
by	sampling	(and	hence,	generating	real	entropy)	

SEED 

 

C
H

A
LLE

N
G

E
S

 

 



Applications	

For	the	QC	owner:	
Private	randomness	

The	protocol	does	require	pseudorandom	challenges,	but:	

Even	if	the	pseudorandom	generator	is	broken	later,	the	
truly	random	bits	will	remain	safe	(“forward	secrecy”)	

Even	if	the	seed	was	public,	the	random	bits	can	be	private	

The	random	bits	demonstrably	weren’t	known	to	anyone,	
even	the	QC,	before	it	received	a	challenge	(freshness)	

For	those	connecting	over	the	
cloud:	Public	randomness	



The	Protocol	
1.	The	classical	client	generates	n-qubit	quantum	circuits	C1,
…,CT	pseudorandomly	(mimicking	a	random	ensemble)	

2.	For	each	t,	the	client	sends	Ct	to	the	server,	then	demands	
a	response	St	within	a	very	short	time	

In	the	“honest”	case,	the	response	is	a	list	of	k	samples	from	the	
output	distribution	of	Ct|0〉⊗n		

3.	The	client	picks	O(1)	random	iterations	t,	and	for	each	
one,	checks	whether	St	solves	“HOG”	(Heavy	Output	
Generation)	

4.	If	these	checks	pass,	then	the	client	feeds	S=〈S1,…,ST〉	into	
a	classical	randomness	extractor,	such	as	GUV	(Guruswami-
Umans-Vadhan),	to	get	nearly	pure	random	bits	



Main	Result	
Suppose	that	suitable	hardness	assumptions	hold,	and	that	
the	server	does	at	most	nO(1)	quantum	computation	per	
iteration.		Suppose	also	that	we	run	the	protocol,	for	T≤2n	
steps,	and	the	client	accepts	with	probability	>½.		Then	
conditioned	on	the	client	accepting,	the	output	bits	S	are	1/
exp(nΩ(1))-close	in	variation	distance	to	a	distribution	with	
min-entropy	Ω(Tn).	

( )
[ ]min 2
1: min log

Prx
D

H D
x

=

Which	means:	the	extractor	will	output	Ω(Tn)	bits	that	
are	exponentially	close	to	uniform	

Hardest	part:	show	accumulation	of	min-entropy	across	the	
T	iterations.		E.g.,	rule	out	that	the	samples	are	correlated	



Different	Approach	
Brakerski,	Christiano,	Mahadev,	Vazirani,	Vidick	arXiv:1804.00640	 

Method	for	a	QC	to	generate	random	bits,	assuming	the	
quantum	hardness	of	breaking	lattice-based	
cryptosystems	

Huge	advantage	of	the	BCMVV	scheme	over	mine:	
Polynomial-time	classical	verification!	

Advantage	of	mine:	Can	be	run	on	NISQ	devices!	

2-to-1	function	f,	
plus	trapdoor	

( )
2x

x y
x f x

+
→∑

f	
f(x)	

measurement	basis	
measurement	result	



Future	Directions	
Can	we	get	quantum	supremacy,	as	well	as	certified	
randomness,	under	more	“standard”	and	less	
“boutique”	complexity	assumptions?	

Can	we	get	polynomial-time	classical	verification	and	
NISQ	implementability	at	the	same	time?	

Can	we	get	more	and	more	certified	randomness	by	
sampling	with	the	same	circuit	C	over	and	over?		Would	
greatly	improve	the	bit	rate,	remove	the	need	for	a	PRF	

Can	we	prove	our	randomness	scheme	sound	even	
against	adversaries	that	are	entangled	with	the	QC?	



Conclusions	
We	might	be	close	to	~70-qubit	quantum	supremacy	
experiments.		We	can	say	nontrivial	things	about	the	hardness	
of	simulating	these	experiments,	but	we’d	like	to	say	more	

Certified	randomness	generation:	the	most	plausible	
application	of	very-near-term	QCs?	

This	application	requires	sampling	problems:	problems	with	
definite	answers	(like	factoring)	are	useless!	

Not	only	can	we	do	it	with	~70	qubits,	we	don’t	want	more.		
No	expensive	encoding	needed;	can	fully	exploit	hardware	

With	this	application,	all	the	weaknesses	of	sampling-based	
quantum	supremacy	experiments	become	strengths!	


