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! What is an analog quantum simulator? What are relevant problems?



! When and in what sense can we hope quantum simulators  
  to provide a speedup over classical computers?
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! 20-50 qubit quantum devices
! Noisy intermediate scale quantum computers

! When and in what sense can we hope quantum simulators  
  to provide a speedup over classical computers



Trustworthy quantum information

! Analog(ue) quantum simulators

! Not BQP-complete, what is computational power?

! Error correction/fault tolerance unavailable

! Address interesting physics problems

! Robustness?



! Quantum simulators should solve problems  
   inaccessible to classical computers

! When can it be claimed that a system has been successfully simulated?

! Testable advantage?



Analog quantum simulators



! “Analog”, rather than discrete

Analog quantum simulators

Cirac, Zoller, Nature Physics 8, 264 (2012)

! Probing questions in physics (not so much quantum chemistry)

! Local Hamiltonians with some levels of control 
! Noise levels

! Classes of preparations and measurements

n! System size 



! Cold atoms in optical lattices most advanced

Analog quantum simulators

Bloch, Dalibard, Nascimbene, Nature Physics 8, 267 (2012) 
Parsons, Mazurenko, Chiu, Ji, Greif, Greiner, Science, 353, 1253 (2016) 

! Global control over              sites (1D-3D)

! Bosons and fermions

! Some tuneability

! Time-of-flight and in-situ measurements

n ⇠ 105

! Towards programmable potentials



n  53

Zhang, Pagano, Hess, Kyprianidis, Becker, Kaplan,  
Gorshkov, Gong, Monroe 551, 601 (2017) 
Blatt, Roos, Nature Phys 8, 277 (2012) 

! Trapped ions

Analog quantum simulators

!  

! Universal control

! Some global gates easier than others

! Tomographically complete measurements

! Optical microtraps

!                     , long-ranged Isingn ⇠ 50⇥ 50

Labuhn, Barredo, Ravets, Léséleuc, Macrì, Lahaye, Browaeys, 
Nature 534, 667 (2016)

! Polaritonic/photonic architectures

! Large, but intrisically open and noisy

Wertz, Ferrier, Solnyshkov, Johne, Sanvitto, Lemaitre, Sagnes, Grousson,  
Kavokin, Senellart, Malpuech, Bloch, Nature Phys 6, 860 (2010)



n  53

Zhang, Pagano, Hess, Kyprianidis, Becker, Kaplan,  
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Blatt, Roos, Nature Phys 8, 277 (2012) 

! Trapped ions

Analog quantum simulators

!  

! Universal control

! Some global gates easier than others

! Tomographically complete measurements

! Cold atoms in Rydberg states

!  Programmable

Bernien, Schwartz, Keesling, Levine, Omran, Pichler, Choi,  
Zibrov, Endres, Greiner, Vuletic, Lukin, Nature 551, 579 (2017)

! Polaritonic/photonic architectures

! Large, but intrisically open and noisy

Wertz, Ferrier, Solnyshkov, Johne, Sanvitto, Lemaitre, Sagnes, Grousson,  
Kavokin, Senellart, Malpuech, Bloch, Nature Phys 6, 860 (2010)



What can they probe?



! Time-dependent problems (“quenches”)

What can they probe?

! E.g. probe equilibration and thermalisation
⇢(t) = e�itH⇢eitH

Eisert, Friesdorf, Gogolin, Nature Phys 11, 124 (2015)

! Dynamical phase transitions
Zhang, Pagano, Hess, Kyprianidis, Becker, Kaplan, Gorshkov, Gong, Monroe, Nature 551, 601 (2017)



! Time-dependent problems (“quenches”)

A

What can they probe?

n
o
d
d

| (0)i = |0, 1, . . . , 0, 1i! Imbalance as function of time for                                     
  under Bose-Hubbard Hamiltonian (MPQ)

Best available classical tensor network  
simulation, bond dimension 5000 

Trotzky, Chen, Flesch, McCulloch, Schollwoeck, Eisert, Bloch, Nature Phys 8, 325 (2012)



! Slow parameter variations (reminiscent of adiabatic quantum algorithms)

What can they probe?

! E.g., Kibble-Zurek dynamics (1D-2D)

  ! Probing scaling laws of correlations

Braun, Friesdorf, Hodgman, Schreiber, Ronzheimer, Riera, del Rey,  
Bloch, Eisert, Schneider, Proc Natl Acad Sci 112, 3641 (2015)



! Ground state problems

What can they probe?

! Hubbard model, probing  
  high-Tc superconductivity

! Many-body localization (1D-2D)

 ! Cooled to create a magnetic    
   state with long-range order      ! Debated in 2D

Schreiber, Hodgman, Bordia, Lüschen, Fischer, Vosk,  
Altman, Schneider, Bloch, Science 349, 842 (2015) 

Mazurenko, Chiu, Ji, Parsons, Kanász-Nagy, Schmidt, Grusdt,  
Demler, Greif, Greiner, Nature 545, 462 (2017)  
Esslinger, Ann Rev Cond Mat Phys 1, 129 2010



! Many-body localization (1D-2D)

     ! Debated in 2D

Short times can be  
efficiently simulated

1D systems can be efficiently simulated,  
2D systems not with known algorithms

What can they probe?

! Cleverer simulation method?

! Quantum simulators
Existing quantum simulators outperform state-of-the-art  
algorithms on classical supercomputers



BPP

BQP

! Intermediate problems
To be safe against “lack of imagination”, we must prove the  
hardness of the task in a complexity-theoretic sense

Intermediate problems



Super-polynomial quantum advantages?



U 2 U(m)

1      1      0       0      0       

1      0      0       1      0       

Sampling from a distribution close in    norm to boson sampling distribution is 
"computationally hard" with high probability if the unitary     is chosen from Haar  
measure and     increases sufficiently fast with     (                      )

U
m n m 2 ⌦(n5)

l1

! IQP and random universal circuits
Bremner, Montanaro, Shepherd: Phys Rev Lett 117, 080501 (2016)  
Bremner, Jozsa, Shepherd, arXiv:1005.1407  
Boixo, Isakov, Smelzanski, Babbush, Ding, Jiang, Bremner, Martinis, Neven, Nature Physics 14, 595-600 (2018)

! Ising-type interactions (but, period 56 of unit cell)
Gao, Wang, Duan, Phys Rev Lett, 118, 040502 (2017)

! Boson sampling
Aaronson, Arkhipov, Th Comp 9, 143 (2013)

Complexity-theoretic quantum advantages

! Aim: Find some problem with strong evidence for quantum advantage



Complexity-theoretic quantum advantages

! Verification and testing? Black-box  
  verification seems out of question

! Aim: Find some problem with strong evidence for quantum advantage



! Challenging prescription: It this possible to scale it up to provably    
   hard regimes, in an architecture close to a quantum simulation?

! Aim: Find some problem with strong evidence for quantum advantage

Hamiltonian quantum simulation architectures



Hamiltonian quantum simulation architectures

! Aim: Find some problem with strong evidence for quantum advantage

Combine benefits of both worlds

! Hamiltonian quench architecture

! Low periodicity of the interaction Hamiltonian (NN or NNN)

! Hardness proofs with    -norm error (under some assumptions)l1

Bermejo-Vega, Hangleiter, Schwarz, Raussendorf, Eisert, Phys Rev X 8, 021010 (2018) 
Hangleiter, Bermejo-Vega, Schwarz, Eisert, Quantum 2, 65 (2018) 



Random Quasi-periodic Translationally invariant

Hamiltonian quantum simulation architectures

! Aim: Find some problem with strong evidence for quantum advantage

Combine benefits of both worlds

Bermejo-Vega, Hangleiter, Schwarz, Raussendorf, Eisert, Phys Rev X 8, 021010 (2018) 
Hangleiter, Bermejo-Vega, Schwarz, Eisert, Quantum 2, 65 (2018) 



Simple Ising models

! Quench to                                                   and evolve under H =
X

(i,j)2E

ZiZj +
⇡

4

X

i2V

Zi U = eiH

! Measure all qubits in    -basisX

! Prepare     qubits in             square lattice in product 

  with                           ,             i.i.d. randomly

N n⇥m

| �i = ⌦n,m
i,j=1(|0i+ ei�i,j |1i)

�i,j 2 {0,⇡/4} { , }
! Reminscient of disordered optical lattices

Schreiber, Hodgman, Bordia, Lüschen, Fischer, Vosk, Altman, Schneider, Bloch, Science 349, 842 (2015) 

Mandel, Greiner, Widera, Rom, Hänsch, Bloch, Nature, 425, 937 (2003) 

! Controlled coherent collisions long realized

! Single-site addressing possible (within limits)

Bakr, Gillen, Peng, Foelling, Greiner, Nature 462, 74–77 (2009) 
Weitenberg, Endres, Sherson, Cheneau, Schauß, Fukuhara, Bloch, Kuhr, Nature 471, 319 (2011) 

Bermejo-Vega, Hangleiter, Schwarz, Raussendorf, Eisert, Phys Rev X 8, 021010 (2018) 
Hangleiter, Bermejo-Vega, Schwarz, Eisert, Quantum 2, 65 (2018) 
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Quantum simulators outperforming classical computers in complexity 
! Theorem (Hardness of classical sampling):

Assuming three highly plausible complexity-theoretic conjectures are true a 
classical computer cannot efficiently sample from the outcome distribution  
of our scheme up to constant error in    distancel1

Bermejo-Vega, Hangleiter, Schwarz, Raussendorf, Eisert, Phys Rev X 8, 021010 (2018) 
Hangleiter, Bermejo-Vega, Schwarz, Eisert, Quantum 2, 65 (2018) 



The argument on a page

! It is #P-hard to approximate  
  the outcome distribution

! Universal quantum circuit for postBQP

! Relate quench architecture to post-selected   
  measurement-based quantum computing

! Relate hardness of computing  
  probabilities to hardness of 
  sampling with additive errors  
  U U 0Additive error ✏

A

x Stockmeyer theorem

M
ultiplicative  

error

sU 0(x)

1/
p
o
l
y
(n
)

! Anti-concentration 

! Average-case complexity
! Polynomial hierarchy (similar P   NP)6=

Hangleiter, Bermejo-Vega, Schwarz, Eisert, Quantum 2, 65 (2018) 
Mann, Bremner, arXiv:1711.00686 

Bouland, Fefferman, Nirkhe, Vazirani, arXiv:1803.04402



The argument on a page
! Theorem (Hardness of classical sampling):

Assuming three highly plausible complexity-theoretic conjectures are true a 
classical computer cannot efficiently sample from the outcome distribution  
of our scheme up to constant error in    distancel1



! This quantum simulation is intractable for classical computers 

Lesson

Bermejo-Vega, Hangleiter, Schwarz, Raussendorf, Eisert, Phys Rev X 8, 021010 (2018) 
Hangleiter, Bermejo-Vega, Schwarz, Eisert, Quantum 2, 65 (2018) 



! One can with          many measurements detect closeness in   -norm!✓(N) l1

Bermejo-Vega, Hangleiter, Schwarz, Raussendorf, Eisert, Phys Rev X 8, 021010 (2018) 
Hangleiter, Bermejo-Vega, Schwarz, Eisert, Quantum 2, 65 (2018)  
Hangleiter, Kliesch, Schwarz, Eisert, Quantum Sci Technol 2, 015004 (2017)  
Cramer et al, Nature Comm 1, 149 (2010)

Verifiable quantum devices showing a quantum advantage

! Ground state of fictious frustration-free Hamiltonian

! Much simpler than fault tolerance



! Trustworthy quantum devices can be verified, even if the  
  classical simulation is beyond reach
! Common prejudice: In order to be able to verify a quantum  
   simulation, one needs to be able to efficiently simulate it   

Verifiable quantum devices showing a quantum advantage



Summary, outlook and open questions

! Analog quantum simulators already outperform good classical algorithms



! Hope for feasible quantum simulators with superpolynomial speedup
! Analog quantum simulators already outperform good classical algorithms
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! Not fault tolerant, but can be certified: Bell test for quantum computing 
  - even if simulators exhibit quantum computational speedup

! Hope for feasible quantum simulators with superpolynomial speedup
! Analog quantum simulators already outperform good classical algorithms

! Closer to physically more interesting schemes?

! More structured problems, optimization?
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! Not fault tolerant, but can be certified: Bell test for quantum computing 
  - even if simulators exhibit quantum computational speedup

! Hope for feasible quantum simulators with superpolynomial speedup
! Analog quantum simulators already outperform good classical algorithms

! Closer to physically more interesting schemes?

! More structured problems, optimization?

! Robustness of quantum simulators? Readout?

Gluza, Schweigler, Krumnow, Rauer,  
Schmiedmayer, Eisert, in preparation

Summary, outlook and open questions



! Not fault tolerant, but can be certified: Bell test for quantum computing 
  - even if simulators exhibit quantum computational speedup

! Hope for feasible quantum simulators with superpolynomial speedup
! Analog quantum simulators already outperform good classical algorithms

! Closer to physically more interesting schemes?

! More structured problems, optimization?

! Robustness of quantum simulators? Readout?

! Space time trade offs?

(Mick Bremner)

Summary, outlook and open questions



! Not fault tolerant, but can be certified: Bell test for quantum computing 
  - even if simulators exhibit quantum computational speedup

! Hope for feasible quantum simulators with superpolynomial speedup
! Analog quantum simulators already outperform good classical algorithms

! Closer to physically more interesting schemes?

! More structured problems, optimization?

! Robustness of quantum simulators? Readout?

! Space time trade offs?

Thanks for your attention!
http://www.physik.fu-berlin.de/en/einrichtungen/ag/ag-eisert
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