VerITAS: Verifying Image
Transformations at Scale

Trisha Datta, Binyi Chen, Dan Boneh
Stanford University

These look like prizewinning photos.
Theyre Al fakes.

Artificially generated images of real-world news events proliferate on stock image sites, blurring truth and fiction

By Will Qremus and Pranshu Verma

C2PA: A Content Provenance Standard

Nikon, Canon, Sony eye tamper- Partnership for greater trust in
resistant digital signatures to combat | |digital photography: Leica and
deepfakes Content Authenticity Initiative

2

)

location
f timestamp " tadata b
embedded certified : Verily metadata by
signing key sk, SGIEIITE D L checking C2PA signature J

C2PA

A\ Adobe B|B|C intel B® Microsoft k4 SONY

GGGGGG

Not just news organizations...

C2PA in DALL-E3

C2PA standard, OpenAl's implementation, and C2PA metadata

" App or device used
App or device used
ChatGPT
OpenAI-API Ingredients
Al tool used ! 2® imagewebp
Hiﬁ @ Jan 31,2024
] DALL-E
Actions About this Content Credential v
W Created Issued by
Created a new file or content OpenAl
Issued on
(3 Jan 31,2024 at 5:35 PM PST

Is this a cat-and-mouse game?

The picture-of-picture attack:

Many other challenges

(1) Key extraction and revocation (PKIl) C2PA camera

(2) Privacy — group signatures ‘

(3) GPS spoofing
Now every v | C2PA Image |

* |s this
e (Can attacker defeat the filter?

[see Chimerd, Rivddeneiap deaarran Usbmibe Segz 2025 C2PA,” 2022]

https://datatracker.ietf.org/meeting/113/materials/slides-113-hrpc-harms-modelling-in-the-c2pa-witness-00

A Problem: Post-Processing

Newspapers often process photos before publication
* At minimum, need to resize (90 MB — 8 MB)
* Allowable operations from the Associated Press:
cropping, grayscale, blurring...

Problem: browser cannot verify the C2PA signature of a processed photo

processed
photo

The solution proposed by C2PA is not ideal ... can we do better?

A Cryptographic Solution: zk-SNARKSs!

Editor has: "’

B signature

55

. Orig

Y
withess

Editor creates a proof & that:

Laptop has:

Edited

. (blur, resize, ...)

o= [

J

Y
statement

| know (Orig, sig) such that:

1. sig is a valid signature on Orig
2. Edited is the result of applying Ops to Orig 7K 7K?
3. metadata(Edited) = metadata(Orig)

Do we need

= Laptop verifies & and shows metadata to user

How to prove?

| know (Orig, sig) such that:

1. sig is a valid signature on Orig

T

2. Edited is the result of applying Ops to Orig

3. metadata(Edited) = metadata(Orig)

Verifying Edits in a SNARK Prover

*PhotoProof (Naveh and Tromer, 2016): a few minutes to
generate photo editing proofs for 128 x 128 pixel image

*New tools enable faster development and bigger statements!
* Plonky2 library (“Plonk PIOP” + FRI PCS)
* Write arithmetic circuit C_,. s.t. Cedit(Orig) = Edited

t

Our work: proof for a 6000 x 4000 image using Plonky2

*resize, crop, grayscale, blur — proof gen. time < 4 minutes

e Proof size: =100 KB (Kimage size), verification time: 0.7 sec
(can shrink proof with recursion)

Verifying Signatures in a SNARK Prover

| know (Orig, sig) such that:

1. sig is a valid signature on Orig

2. Edited is the result of applying Ops to Orig /
3. metadata(Edited) = metadata(Orig)

Problem: the SNARK proof must check that a pair (Orig, h)
satisfies h = hash(Orig)...but Orig is 90MB!

Verifying Signatures in a SNARK Prover

We propose two methods:

Attempt 1 Attempt 2 (1) Verify Lattice Hash
Verify Hash Verify Hash | know (Orig, hash) such that:

hash =
Poseidon(LatticeHash(Orig))

| know (Orig, hash) such | know (Orig, hash) such
that: good for camera and prover

that:
hash =@ng) hash =@r 1) (2) Verify a PCS

| know (Orig, hash) such that:

\/
v - .
Too slow for SNARK-friendly hash hash = PCS(Orig)
90 MB! ...but still too slow for great for prover!

90MB!

Verifying Signatures in a SNARK Prover

. 7 proves edits
Method 1: lattice hash and valid sig
, =62 Orig,0 Edited,
N7~ > | editor —>

sign(hash(Orig))

verify o
verify

JT proves
Method 2: use polynomial commitment scheme (PCS) edits only

Orig,o Edited,
> | editor —>
PCS(Orig),o

sign(PCS(Orig))

How is Method 2 secure?

PLONK proof 7 proves that C_, (Orig’) = Edited
where Orig’ is provided as witness data

Problem: what if Orig # Orig’ ?7?

verify o
verify

Edited,t

\\

PCS(Orig),o

-

— Then edited image is unrelated to camera’s image

Solution: non-black-box use of PLONK!

How is Method 2 secure?

verify o
verify

PLONK proof 7 proves that C_, (Orig’) = Edited
where Orig’ is provided as witness data

Edited,t

\\

PCS(Orig),o

-

Partial explanation of how to produce PLONK proof 7x:

1. Encode C_,. execution 2. Generate proof:
tableaux as a polynomial a. Compute com_= PCS(T(x))
b. Prove gates evals in tableaux are correct
T(x) c. Prove circuit wiring in tableaux is correct

l

Some T(x) evaluations
encode the witness Orig’

This works even if tableaux is

>

committed via multiple polynomials!

Tradeoffs of Signing PCS vs. Lattice Hash

Signing PCS(Orig) takes signature verification out

of the SNARK circuit

|

verify o
verify

Edited,

PCS(Orig),o

-

... but computing a PCS commitment is
not feasible on a commercial camera

o Suitable for a cloud Al image generator
o Can be offloaded to an untrusted server

Verifying Signatures in a SNARK Prover

| know (Orig, sig) such that:

1. sig is a valid signature on Orig

NN

2. Edited is the result of applying Ops to Orig

3. metadata(Edited) = metadata(Orig)

Conclusions

Succinct proofs have become practical and easy to use
* An amazing success of theory of CS

*Development driven by blockchain
but many non-blockchain applications

C2PA: a playground for many cryptographic techniques
*Many challenges to explore...

IEEE S&P’25: https://eprint.iacr.org/2024/1066.pdf

https://eprint.iacr.org/2024/1066.pdf

