
VerITAS: Verifying Image 
Transformations at Scale

Trisha Datta, Binyi Chen, Dan Boneh

Stanford University





C2PA: A Content Provenance Standard

embedded certified
signing key  sk1

location
timestamp
   signature verify metadata by 

checking C2PA signature
C2PA



Not just news organizations…



Is this a cat-and-mouse game?

Now every verifier must run a brittle filter:

• Is this a picture-of-picture?

• Can attacker defeat the filter?

The picture-of-picture attack:

ML Generated Image

C2PA camera

C2PA Image

Many other challenges

(1) Key extraction and revocation (PKI)

(2) Privacy → group signatures

(3) GPS spoofing

  [see Chimera, UCLA, to appear at Usenix Sec. 2025][ Rivadeneira, “Harms Modelling in the C2PA,” 2022 ]

https://datatracker.ietf.org/meeting/113/materials/slides-113-hrpc-harms-modelling-in-the-c2pa-witness-00


A Problem: Post-Processing

Newspapers often process photos before publication
• At minimum, need to resize (90 MB → 8 MB)
• Allowable operations from the Associated Press:

 cropping, grayscale, blurring…

Problem: browser cannot verify the C2PA signature of a processed photo

???processed
photo

The solution proposed by C2PA is not ideal … can we do better?



A Cryptographic Solution: zk-SNARKs!

Edited
Ops

I know (Orig, sig) such that:
    1. sig is a valid signature on Orig
    2. Edited is the result of applying Ops to Orig
    3. metadata(Edited) = metadata(Orig)

Laptop has: 

Editor creates a proof 𝜋 that:

     signature

Orig

Editor has:

⇒  Laptop verifies  𝜋  and shows metadata to user

witness
statement

Do we need 
ZK ZK?

(blur, resize, …)



How to prove?

I know (Orig, sig) such that:

  1. sig is a valid signature on Orig

  2. Edited is the result of applying Ops to Orig

  3. metadata(Edited) = metadata(Orig)

 

?



Verifying Edits in a SNARK Prover

•PhotoProof (Naveh and Tromer, 2016): a few minutes to 
generate photo editing proofs for 128 x 128 pixel image

•New tools enable faster development and bigger statements!
• Plonky2 library  (“Plonk PIOP” + FRI PCS)

• Write arithmetic circuit C
edit

   s.t.    C
edit

(Orig) = Edited

Our work: proof for a 6000 x 4000 image using Plonky2

•resize, crop, grayscale, blur → proof gen. time ≤ 4 minutes

•Proof size:   ≈100 KB (≪image size),   verification time: 0.7 sec
(can shrink proof with recursion)



Verifying Signatures in a SNARK Prover

I know (Orig, sig) such that:

  1. sig is a valid signature on Orig

  2. Edited is the result of applying Ops to Orig

  3. metadata(Edited) = metadata(Orig)

 

?

Problem:  the SNARK proof must check that a pair  (Orig, h) 

satisfies h = hash(Orig)...but Orig is 90MB!



I know (Orig, hash) such 
that:
     hash = Poseidon(Orig)

I know (Orig, hash) such 
that:
     hash = SHA256(Orig)

Too slow for 
90 MB!

Attempt 1 Attempt 2
I know (Orig, hash) such that:
     hash = 
Poseidon(LatticeHash(Orig))

We propose two methods:

SNARK-friendly hash
…but still too slow for 

90MB!

Verify Hash Verify Hash

(1) Verify Lattice Hash

I know (Orig, hash) such that:
     hash = PCS(Orig)

(2) Verify a PCS

good for camera and prover

great for prover!

Verifying Signatures in a SNARK Prover



Verifying Signatures in a SNARK Prover

Method 1: lattice hash

Orig
sk

𝛔

sign(hash(Orig))

Orig,𝛔
editor

Edited,𝜋

Method 2: use polynomial commitment scheme (PCS)

Orig
sk

𝛔

sign(PCS(Orig))

Orig,𝛔
editor

Edited,𝜋

𝜋 proves edits 
and valid sig

𝜋 proves 
edits only

verify 𝛔 
verify 𝜋

PCS(Orig),𝛔



How is Method 2 secure?

Edited,𝜋

PCS(Orig),𝛔

Problem: what if Orig ≠ Orig’ ??

→ Then edited image is unrelated to camera’s image

Solution: non-black-box use of PLONK!

PLONK proof 𝜋 proves that C
edit

(Orig’) = Edited

where Orig’ is provided as witness data

verify 𝛔 
verify 𝜋



Partial explanation of how to produce PLONK proof 𝜋:

1. Encode C
edit

 execution 

tableaux as a polynomial 

T(x)

2. Generate proof:
a. Compute com

T
 = PCS(T(x))

b. Prove gates evals in tableaux are correct
c. Prove circuit wiring in tableaux is correct

Some T(x) evaluations 

encode the witness Orig’

Edited,𝜋

PCS(Orig),𝛔

PLONK proof 𝜋 proves that C
edit

(Orig’) = Edited

where Orig’ is provided as witness data

How is Method 2 secure?

This works even if tableaux is 
committed via multiple polynomials!

verify 𝛔 
verify 𝜋



Signing PCS(Orig) takes signature verification out 
of the SNARK circuit

… but computing a PCS commitment is 
not feasible on a commercial camera

○ Suitable for a cloud AI image generator

○ Can be offloaded to an untrusted server

Tradeoffs of Signing PCS vs. Lattice Hash 

Edited,𝜋
PCS(Orig),𝛔

verify 𝛔 
verify 𝜋



Verifying Signatures in a SNARK Prover

I know (Orig, sig) such that:

  1. sig is a valid signature on Orig

  2. Edited is the result of applying Ops to Orig

  3. metadata(Edited) = metadata(Orig)

 



Succinct proofs have become practical and easy to use

•An amazing success of theory of CS 

•Development driven by blockchain 
but many non-blockchain applications

C2PA: a playground for many cryptographic techniques
•Many challenges to explore…

Conclusions

IEEE S&P’25: https://eprint.iacr.org/2024/1066.pdf 

https://eprint.iacr.org/2024/1066.pdf

