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Consider a geometric approach to analyzing a particular setting of the
Monge—Kantorovich problem and its connection to Schur—Horn theory.
We begin by analyzing the finite-dimensional setting (as in Brezis 2018).

Then we consider the Monge—Kantorovich problem on the diffeomor-
phism group of the annulus. This is a particular interesting case of the
general infinite-dimensional problem, as presented in, for example, Evans
and Gangbo and McCann.

We relate these problems, respectively, to the classical Schur—Horn the-
orem, and its infinite-dimensional generalization to the diffeomorphism
group of the annulus as proved in Bloch, Flashcka, Ratiu 93. We also
consider the dual problems. In addition, we relate these problems to the
gradient flows discussed in work with Brockett, Ratiu, Flashcka, Karp



1. THE FINITE DIMENSIONAL CASE

Brezis introduces the following finite-dimensional setting.
Consider two sets X,Y consisting of m points {P;} and {N;}, 1 <i < m,
i.e.,

(1.1) X={P,P....,P,)}, Y ={N,Ny...,N,}.

Let ¢: X xY — R be a smooth “cost” function. Brezis introduces three
problems denoted M, K, and D (for dual):

(1.2) M := min,cg, Z (P, No(i)),
i=1
where S,, is the permutation group of {1,...,m}, and
(1.3) K = miny Z a;;c(P, N;j) | A= (a;;)is doubly stochastic

ij=1
For our purposes, we formulate the dual problem as:
(1.4)

D = Supgsz%R’d,:y_)R {Z(@(B) - ¢(Nz)>

1=1




Brezis proves that M = K = D. We shall consider these equalities from
the point of view of majorization and dynamics. It is clear, for example,
that M > K since a permutation matrix (every row and column has
exactly one entry equal to 1 and all other entries equal to 0) is a special
case of a doubly stochastic matrix (all entries are > 0 and the sum of
all entries in each row and each column is 1). We shall also show this
is true in our infinite-dimensional setting. We also show that K > D in
both cases. Brezis also shows D > M in the finite case completing the
equalities.



1.1. The adjoint orbit and dynamical setting. We can arrive also at this
finite setting by considering the problem of minimizing Trace(LN), where
L belongs to the isospectral set of skew Hermitian matrices defined by the
purely imaginary diagonal matrix A and NV is a constant skew Hermitian
matrix, as in Bloch, Brockett, Ratiu [1992].

More precisely we consider
(1.5) ming||L — N||* := ming (L — N, L — N) := ming (6"A© — N,07A6 — N)
where © belongs to the group of unitary matrices. This is equivalent to
minimizing Trace(LN) and is the Monge problem M in this setting.

We arrive at the solution by following the gradient dynamics
(1.6) L=[L,[L,N]]
which is the gradient flow of Trace(LN) on an adjoint orbit of the unitary
group U(n) with respect to the normal metric.



Theorem 1.1. Equation (1.6) is the gradient flow of Trace(LN) with respect to the
normal metric on an adjoint orbit of U(n). For N diagonal with distinct diagonal
entries and L having initial condition with distinct eigenvalues, there are n! equilibria
corresponding to the n! diagonal matrices with rearranged eigenvalues. The stable

equilibrium is the one having the same ordering as the entries of N, after dividing
both by 1.



1.2. Convexity in finite dimensions. We now consider the Brezis equalities
M = K = D from the Lie theoretic point of view presented above. We
begin by recalling the following:

Let x = (z1,...,%,) € R"; then S,z denotes the orbit of z under the sym-
metric group on n letters, i.e., the collection of all points (z,x),...,Zsu)),

where s ranges over all n! permutations. For C' C R", C' denotes the convex
hull of C, i.e., the smallest convex set containing C'.

Theorem 1.2. Schur’s Theorem. (1923) Let A be a Hermitian matriz with eigenval-
ues \;, arranged in non-increasing order. Let A = (A1, ..., \;) and A° = (A1q, ..., An)

be the diagonal of A. Then

——

A € S\

Theorem 1.3. Horn’s Theorem. (Horn 54) Let A € R", with components arranged in

non-increasing order. If A’ € S, )\, there is a Hermitian matriz A with eigenvalues
A\ whose diagonal is A°.



Schur-Horn theorem.

Let di,...,d, and \q,..., )\, be two sequences of real numbers arranged
in nondecreasing order.
Then there exists a Hermitian matrix with diagonal entries di,...,d,
and eigenvalues \q,..., )\, if and only if
dip < N\

di+dy < A\ + N\o

di+dy---+d,= N +X... \,.

Equivalent: If d;, \; are as above there exists a Hermitian matrix with
these as diagonal entries and eigenvalues respectively if and only if the
vector (dy,...,d,) is in the permutohedron generated by (\,..., \,).
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Definition 1.4. For x € R", let * denote the vector obtained by rearranging the
components of x in nonincreasing order. We say that y majorizes x, written x < y, if

n n
i+ ta <y +...y, for 1<k<n-—1, and Zx}k:Zy;
j=1 j=1

Definition 1.5. An n x n real matrix P is called doubly stochastic it P;; > 0, and the
sum of all entries in each row and each column is 1.

=
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Theorem 1.6. (a) P is doubly stochastic if and only if Pe = e and ¢'P = ¢,
where e is the column vector all of whose entries are 1, and €' is its transpose.
(b) P is doubly stochastic if and only if Pr < x for all x € R"
(c) < y if and only if there is a doubly stochastic P such that x = Py.
(d) The set of doubly stochastic matrices is the convex hull of its extreme points,
which are precisely the permutation matrices.
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Remark 1.7. {z |z < y} = S,y.

The Schur theorem now follows easily. Diagonalize the Hermitian ma-
trix A, A = Q\Q*, Q unitary, )\ real diagonal. Then A; = Z]‘ 1Qi* N, If
@ is unitary, the matrix P;; = |Q;;|* must be doubly stochastic. Theorem
1.6(d) then gives the conclusion. Horn proved the converse by a rather
intricate argument, deducing that when z < A\, there must be a doubly
stochastic matrix P of the form P; = |Q;;|>, with @ unitary, satisfying
r = P)\; QAQ" is then the desired Hermitian A having eigenvalues )\; and

diagonal z.
We can see clearly from these considerations that M > K.
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We note that problem K can be also be formulated in slightly more
general form as follows.

We allow the cost matrix to be non-square, n x m, n # m. In much of our
analysis below we will require the square case which we will stipulate.

Suppose we are given nonnegative numbers c¢;;, p;, pi,t=1....n, 5=
1,...,m, satisfying

(L.7) D=
i=1 j=1

The goal is to minimize over p;; > 0

19 )BT
i=1 j=1
subject to the constraints

(1.9) Zﬁsz =4, Zﬂzj =y -
j=1 1=1

For m = n and normalizing so that the sums are unity we recover K.
More generally, we can consider m =# n.
Can do the dual problem similarly.
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2. THE SDIFF AND SMEAS SETTING

Many of the ideas above generalize to an appropriate infinite-dimensional
setting based on our work on the infinite-dimensional Schur—Horn theo-
rem in Bloch, Flaschka, Ratiu, Inv. Math.

Consider the following (initially smooth) setting; SDiff(.4) is the group
of C'*° area preserving diffeomorphisms of the annulus

A={0<2z<1} x{exp(2mif) | 0 <O < 1}
(more generally, one could consider Sobolev maps in H® for some s > 2).

Its Lie algebra g is identified with the Poisson algebra of functions z

satisfying
Oz
%(Z(), 9) = O, 20 = O, 1.

The Hamiltonian vector field X, will then be tangent to the boundary.
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We next consider SMeas(.4), the group of invertible measure preserving
transformations of the annulus. Each g € SMeas(A) determines a unitary
operator P, on L*(A) by P,x = xog. The strong operator topology induces
a topology on SMeas(.A). It is traditionally called the weak topology, because
the strong and weak operator topologies coincide on unitary operators.

We now want to define majorization and doubly stochastic operators in
this setting. We use the following.

Definition 2.1. (Ryff) Let f € L([0,1]). Set m(y) = ‘{z | f(2) > y}| (absolute value
denotes Lebesgue measure on [0, 1]) and, for 0 < z < 1, set

f*(z) = sup{y | m(y) > z}.
The nonincreasing, right continuous function f* is called the nonincreasing rearrange-
ment of f.
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Definition 2.2. Definition . Let f,g € L'([0,1]). We say that f majorizes g (written
g=f)i

[ sa< [ rea ozs<a
0 0

/Olg*(z) gz = /Olf*(z) az.

Definition 2.3. A linear operator P on L([0, 1]) is called doubly stochastic if Pf < f
for all f € LY([0,1]).

Theorem 2.4. (Ryff) In L([0,1]): g < f if and only if there is a doubly stochastic
P such that g = Pf. The set Q(f)={g| g < f} is weakly compact and convex. Its
set of extreme points is {f* o ¢ | ¢ is a measure preserving transformation of [0, 1]}.
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2.1. Some spectral results. The following results are proved in Bloch,
Flashcka, Ratiu: so we shall omit the proofs.

Theorem 2.5. Spectral Theorem. Let v € L*(A) N L>*(A), and set

[p:/xpdm, peZt.
A

There exists a unique, nonincreasing, right-continuous function A on [0, 1] such that

1
Ip:/ N(z)dz, peZ”.
0

Theorem 2.6. Diagonalization Theorem. Let x € L*(A) N L>®(A) and let )\ be as
in the Spectral Theorem. Define Ao(z,0) = A(z) There exists a measure preserving
map P A\ 21 = A\ 2o, with Z; of measure zero, such that x =20 1.

LT



Theorem 2.7 (Ryff). In L*([0,1]) N L>¥([0,1]): g < f if and only if there is a doubly *
stochastic operator P such that g = Pf. The set Q(f) = {g | g < f} is weakly

compact and convez. Its set of extreme points is {f* o ¢ | ¢ is a measure preserving
transformation of [0, 1]}.



We now need an analogue of the permutation group in our setting in
order to formulate the Schur and Horn theorems. This corresponds to
the Weyl group of the unitary group, generalized to our setting.

The analogue of the Weyl group to our setting is group W of invertible
measure preserving transformations of [0, 1]. The action of the the Weyl
group W on A\ (which is a function of 2z alone) is just right composition
of an element of L*([0,1]) by an invertible measure preserving transforma-
tions of [0,1]. The Weyl semigroup W is the closure of W in in the strong
operator topology and consists of not necessarily invertible measure pre-
serving transformations of [0,1] ([?, Theorem 5]). The action of W on X is
again right composition.
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Theorem 2.8. Schur’s Theorem. Let v € L*(A) N L>®(A), let w(z) be the zeroth *
Fourier coefficient of x,

W(x)(z):/() x(z,0)do,

and let X\ be as in the spectral theorem. Then w(x) belongs to the closed convex

hull of the orbit of the Weyl semigroup W through \ which happens precisely when
m(z) < A,

Theorem 2.9. Horn’s Theorem. Let A\ be a bounded, nonincreasing function on
0, 1] and let X lie in the closed convex hull of the Weyl semigroup orbit through A,

(2.1) W-X={\o¢| ¢ is a measure preserving transformation of [0, 1]}.
Then there exists an x € L*([0,1]) N L>([0,1]) such that

(i) X(z) = n(x)(z) = / oz ) i,

(1) // ztupdt”dz—/ 2Wdz, pe .



2.2. Problems M and K. We formulate these two problems in our setting
and then prove that M implies K. In both problems, and later in the
dual problem D, the integrand c(z,y) of the cost function is a continuous
real-valued function on R" x R".

Problem K. The analogue of K in our infinite dimensional setting is the
following. Consider the class of probability measures ;1 on R" x R" with
proj = pt, projypt = p~. We wish to find p which minimizes

(2.2 T = /  da)dulzy).

Problem M. The analogue of M in our infinite dimensional setting is
the following. Given are two nonnegative Radon measures u", = on R”
satisfying y*(R") = u~(R"). Consider the class of measurable 1-1 mappings
s : R" — R" which rearrange u" to y~, su(u*) = u~ (s denotes push forward
of measures), i.e.,

(23) /X B(s(x)dp* () = / h(s(@)du(y),

Y
for any continuous function h, where X is the support of ;4 and Y is the

support of 1~. We want to find s which minimizes

2.4) 115 = [ clasta)dn’ (o).
The cost function is often chosen to be quadratic:

c(z,y) = 3llz — yl*.
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This corresponds to the Wasserstein distance W5.

Definition 2.10. Let f*, f~ : R" — R be smooth functions with compact supports.
The Wasserstein distance W5 between them is given by

] o
25) e Ot I ey

where the infimum is over all nonnegative Radon measures p with projections p* =
frdx, p= = f-dy, ie., u*, u~= are assumed to be given by the smooth densities f*, f~.

In our finite dimensional setting we can think of s(A) = ©7A0 and ¢ =
IN =L =[N —©A0].

We can show that M > K. Thus, in the context of our infinite dimen-
sional setting, we consider the cost function

(2.6) —(2(2,0),2) = — /O 1/01x(z,<9)zdzd9.

Dynamics:

T = {QU, {$7Z}}

for the z, 0 Poisson bracket.
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Related: Dynamical approach to total positivity with Steve Karp in
CMP etc.

Totally positive matrices: all minors positive. Origins: Gantmacher-
Krein, Schoenberg in the 1930’s.

Use similar dynamical techniques and gradient flows to prove topological
results for totally positive Grassmannians, flag varieties and amplituhe-
dra

Applications: Vibrations in mechanical systems, diminishing sign changes
in a sequence, statistics, Markov processes, representation theory, high
energy physics.
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