Exponential improvements to the average-case hardness of random circuits

Shaun Datta
Stanford University

FOCS 2025

To be posted as arXiv:2411.04566

v2 soon!

Exponential improvements to the average-case hardness of random circuits

Shaun Datta
Stanford University

Joint work with Adam Bouland, Bill Fefferman, Felipe Hernández

Sampling from random circuits—why should I care?

To understand the power of near-term quantum experiments Many random sampling experiments: how hard are they to simulate?

Sampling from random circuits—why should I care?

- To understand the power of near-term quantum experiments Many random sampling experiments: how hard are they to simulate?
- To separate classical and quantum computation. Is $BPP \neq BQP$? We have excellent oracular (blackbox) evidence. What about whitebox?
- **Dream 1:** $BQP \not\subset BPP$ (way beyond current techniques)
- **Dream 2:** $BQP \subseteq BPP \Rightarrow PH$ collapses (still seems difficult to show)
- Dream 3: $sampBQP \subseteq sampBPP \Rightarrow PH$ collapses This can be proven!* [e.g., TD04, BJS10, AA10]

*Caveat: result is brittle—pertains to worst-case, exact sampling How far can we push these separations?

Sampling from random circuits—why should I care?

- To understand the power of near-term quantum experiments Many random sampling experiments: how hard are they to simulate?
- To separate classical and quantum computation. Is $BPP \neq BQP$? We have excellent oracular (blackbox) evidence. What about whitebox?
- **Dream 1:** $BQP \not\subset BPP$ (way beyond current techniques)
- **Dream 2:** $BQP \subseteq BPP \Rightarrow PH$ collapses (still seems difficult to show)
- **Dream 3:** $sampBQP \subseteq sampBPP \Rightarrow PH$ collapses This can be proven!* [e.g., TD04, BJS10, AA10]
 - *Caveat: result is brittle—pertains to worst-case, exact sampling How far can we push these separations?

Lastly, cryptography, e.g. from [Khurana Tomer '24b]

Sampling from random circuits

Computational task (Random Circuit Sampling, BosonSampling, IQP, ...):

- 1. Initialize a fiducial starting state
- 2. Evolve by a random circuit
- 3. Measure to generate a sample

Fig. from GRS '19

For BosonSampling,

$$\Pr(\mathcal{A} = s) \propto \left| \text{Per} \left(\begin{array}{c} \cdots \\ \vdots \\ \cdots \end{array} \right) \right|^{2}$$

$$\int = \mathcal{N}(0,1)$$

From sampling to computing

Prior work [AA10, BFNV19] established that classical computers cannot sample from random circuits...

...if it is #P-hard to estimate an output probability to within $\pm \delta$:

Random Circuit Sampling (RCS): $\delta = 2^{-n-O(\log n)}$

BosonSampling: $\delta = \exp(-n\log n - n - O(\log n))$

Permanent-of-Gaussians Conjecture (PGC) [AA10]

From sampling to computing

Prior work [AA10, BFNV19] established that classical computers cannot sample from random circuits...

...if it is #P-hard to **estimate** an output probability to within $\pm \delta$:

Random Circuit Sampling (RCS): $\delta = 2^{-n-O(\log n)}$

BosonSampling: $\delta = \exp(-n\log n - n - O(\log n))$

Central open problem: prove one of these conjectures for any random sampling task!

What's the status of proving these conjectures?

We want to show it is hard to estimate output probabilities to $\pm \delta$, but so far we have only proven it is hard to $\pm \delta' \ll \delta$

"Robustness"

"Robustness gap"

For example, for BosonSampling:

AA10	$e^{-O(n^4)}$
BFLL21	$e^{-6n\log n - O(n)}$
Kro22	$e^{-4n\log n - O(n)}$
[This work]	$e^{-n\log n - n - O(n^{\varepsilon})} \forall \varepsilon > 0$
Goal: PGC	$e^{-n\log n - n - O(\log n)}$

Why has progress been so difficult?

- Classical algorithms have solved related tasks [e.g., EM18, JJL21]
- Prior proofs are limited by barriers:
 - Depth barrier for RCS (Napp, et al. '22)
 - Jerrum-Sinclair-Vigoda barrier for BosonSampling
 - Convexity barrier (AA10), Noise (BFLL21), "Born rule" barrier (Kro22), ...

In this work, we overcome all the known proof barriers.

Second result: hardness of sampling

[This work] There is no classical sampler that succeeds for

$$\geq 1 - 2^{-\tilde{O}(\sqrt[3]{N})}$$
 fraction of instances of size N

Trivial:
$$\geq 1 - 2^{-\tilde{O}(N)}$$

But we want to show: $\geq 1 - 1/\text{poly}(N)$

This is the first nontrivial hardness of average-case sampling result!

Start of the proof sketch

The standard worst-to-average-case reduction

[Lipton91, AA10]

$$Per(R(t)) := Per((1-t)R + tW)$$

has three desirable properties:

• Polynomial in t of degree n

(For RCS, degree \approx number of gates m)

- $R(t) \approx R$ for small t
- Per(R(1)) = Per(W)

$$\operatorname{Per}\left(\left(1-t\right) \middle| R \sim \mathcal{N}(0,1)^{n \times n} \middle| + t \middle| W \in \{0,1\}^{n \times n} \right)$$

The standard worst-to-average-case reduction

[Lipton91, AA10]

$$Per(R(t)) := Per((1-t)R + tW)$$

has three desirable properties:

- Polynomial in t of degree n
- $R(t) \approx R$ for small t
- Per(R(1)) = Per(W)

Key idea: polynomial extrapolation Infer Per(W) from noisy estimates to Per(R(t)) for small values of t

Fig. from Bouland Fefferman Nirkhe Vazirani '19

What controls robustness?

Polynomial extrapolation is ill-conditioned

Error blowup given by the Remez inequality: estimating degree d polynomial to error $\leq \delta$ on interval $[0,\Delta]$ incurs $\delta(1/\Delta)^d$ blowup

Moral: to improve robustness, need to decrease extrapolation distance $1/\Delta$ or decrease the polynomial degree d

New techniques to decrease $1/\Delta$ and d

- Dilution
- Coefficient extraction
- The square trick
- Magnification
- Rare events lemmas

The focus of today's talk

Dilution: technique to decrease $1/\Delta$ and d

Prior work used a worst-case circuit on n qubits

Instead, consider the circuit W_n acting on n qubits:

Where W_A is worst-case circuit on $n^{arepsilon}$ qubits, any constant arepsilon>0

Where R_B is random but fixed circuit on $n-n^{\varepsilon}$ qubits

Let $p_{\mathcal{Y}}(\mathcal{C})$ be probability to measure y from circuit \mathcal{C}

By construction output probability "factorizes"

$$p_{0^n}(W_n) = p_{0^{n\varepsilon}}(W_A) \cdot p_{0^{n-n\varepsilon}}(R_B)$$

Observation: $p_{0}^{\epsilon}(W_{A})$ is #P-hard to estimate multiplicatively by padding

New worst-to-average-case reduction by dilution

Goal: estimate
$$p_0(W_A) = \frac{p_0(W_n)}{p_0(R_B)}$$
 Need multiplicative estimates

Denominator: can estimate R_B by assumption \checkmark **Numerator**: W_n is a worst-case circuit

- Implement previous worst-to-average-case reduction!
- But only extrapolate over gates in W_{A}
 - i.e., correlated circuits $\mathcal{C}(t_i)$ all share R_B
- Degree of p(t) is $supp(W_A) = O(n^{\varepsilon})$
- So blow-up is $\frac{1}{(n^{\varepsilon})^{n^{\varepsilon}}} = \frac{1}{2^{n^{\varepsilon} \log(n^{\varepsilon})}}$

New worst-to-average-case reduction by dilution

Goal: estimate
$$p_0(W_A) = \frac{p_0(W_n)}{p_0(R_B)}$$
 Need multiplicative estimates

Denominator: can estimate R_B by assumption \checkmark

Numerator: W_n is a worst-case circuit

- But only extrapolate over gates in $W_{\!\scriptscriptstyle A}$
 - i.e., correlated circuits $\mathcal{C}(t_i)$ all share R_B
- Degree of p(t) is $\mathrm{supp}(W_A) = O(n^{\varepsilon})$
- We get robustness $\delta = 2^{-n-n^{\varepsilon}\log n^{\varepsilon}}$

 2^{-n} would suffice to show no classical sampler

Feature: our hardness argument circumvents the depth barrier

Random circuits have a phase transition in depth from easy to hard Reason: **entanglement**

Efficient classical algorithms can exploit shallow depth, e.g., Napp, et al. '22

By contrast, prior hardness arguments were agnostic to depth

Our argument requires anticoncentration, which requires log depth [Dalzell, et al. '22 & Deshpande, et al. '22]

Dilution does not trivially extend to BosonSampling!

Simply shrink worst-case instance W' to have size $n^{\varepsilon} \times n^{\varepsilon} \ \forall \varepsilon > 0$

Per(W') is still #P-hard (padding)

Idea: extrapolate $Per[(1-t)R + t W_{dilute}]$ to t=1

Good news: degree $O(n^{\varepsilon})$, extrapolation distance $O(n^{\varepsilon})$

Bad news: if $W_{\rm dilute}$ has small support e.g. $O(n^{2\varepsilon})$ nonzero entries, then $\Pr(W_{\rm dilute}) = 0$

So polynomial extrapolation does not encode information about $\operatorname{Per}(W')$ $\ \ \otimes$

$$Per(W_{dilute}) = 0$$

Key idea: coefficient extraction

Consider instead Per(R(t)) :=

 $W' \in \{0, \pm 1\}^{n^{\varepsilon} \times n^{\varepsilon}}$

Key idea: coefficient extraction

Consider:

- $Per(R(1)) = Per(R + W_{dilute})$ is uninteresting

• However,
$$\operatorname{Per}(R(t))$$
 still encodes $\operatorname{Per}(W')$:
$$\operatorname{Per}(R(t)) = t^{n^{\varepsilon}}(\operatorname{Per} W')(\operatorname{Per} R_D) + \sum_{l=0}^{n^{\varepsilon}-1} c_l t^l$$

Want: Per W'

Idea: estimate Per R_D with a recursive call to average-case algo

Feature: our hardness argument circumvents the JSV barrier

Jerrum-Sinclair-Vigoda (JSV) '04: *BPP* algorithm to approximate the permanent of a **nonnegative** matrix to small relative error

But prior proof techniques were **insensitive** to the difference between nonnegative and mixed sign matrices

By contrast, our proof is **sensitive** to mixed signs

Our reduction obtains the worst-case permanent to small relative error For this to be hard, it needs to have both positive and negative entries

What are the implications for hardness of sampling?

Recall the "moral":

To improve robustness, need to decrease extrapolation distance $1/\Delta$ or decrease the polynomial degree d

Claim: estimating $\operatorname{Per}(R(t))$ at $t = O\left(\frac{1}{\sqrt{n}}\right)$

⇒ hardness of sampling!

Problem: such R(t) are very far from iid Gaussian in TVD—no guarantee algorithm works out-of-distribution

We will show that we *can* estimate these quantities if our average-case algorithm works with sufficiently high probability!

Going out of distribution: rare events lemma

Observe: $R + t_{\rm shift}W$ is also Gaussian, with shifted mean $t_{\rm shift}$

We prove:

tail event w.p. $\leq e^{-t_{\rm shift}^2}$ under \mathcal{G} has prob. $\leq 1/\mathrm{poly}(n)$ under $\mathcal{G}_{\rm shift}$

If tail event \equiv average-case algorithm fails, then for $\mathcal{G}_{\text{shift}}$, algorithm fails w.p. $\leq 1/\text{poly}(n)$ if it fails w.p. $\leq e^{-o(n)}$ for \mathcal{G}

Hardness of sampling

Combined with a second rare events lemma, we show that this implies:

[This work] There is no classical sampler that succeeds for

$$\geq 1 - 2^{-\tilde{O}(\sqrt[3]{N})}$$
 fraction of instances of size N

Trivial: $\geq 1 - 2^{-\tilde{O}(N)}$

But we want to show: $\geq 1 - 1/\text{poly}(N)$

Caveat: because we estimate R(t) far out of distribution, we require a slight generalization of permanent anticoncentration.

With no proof barriers in the way, can we at last prove PGC?

Thank you! Questions?

http://bit.ly/401GEzy

Anticoncentration conjecture for shifted Gaussian permanents

- Theorem 2 (hardness of sampling) assumes $\operatorname{Per}(R(t))$ to anticoncentrate
- This is not implied by standard PACC, as the matrices are out of distribution!

Conjecture. There exists a polynomial f such that for all n and $\epsilon > 0$,

$$\Pr_{R \sim \mathcal{N}(0,1)^{n \times n}} \left[|\operatorname{Per}(R+tW)| < \frac{\sqrt{n!}}{f(n,1/\epsilon)} \right] < \epsilon,$$

for arbitrary matrix |PerW| with entries bounded by 1 and $t = O(\frac{1}{\sqrt{n}})$.

Anticoncentration conjecture for shifted Gaussian permanents

Conjecture. There exists a polynomial f such that for all n and $\epsilon > 0$,

$$\Pr_{R \sim \mathcal{N}(0,1)^{n \times n}} \left[|\operatorname{Per}(R + tW)| < \frac{\sqrt{n!}}{f(n, 1/\epsilon)} \right] < \epsilon,$$

for arbitrary matrix |PerW| with entries bounded by 1 and $t = O(\frac{1}{\sqrt{n}})$.

Numerical evidence for anticoncentration conjecture

Box plots for the distribution of $|\operatorname{Per}(R+tW)|$ for n=10 and $n^{\varepsilon}=5$. For five equally spaced values of $t\in[0,\frac{1}{\sqrt{n}}]$, we generate 30 such R and W.

Note: Very little variation for increasing t, as conjectured