
Exponential improvements 
to the average-case hardness 

of random circuits 

Shaun Datta
Stanford University

FOCS 2025
To be posted as 

arXiv:2411.04566 
v2 soon!



Exponential improvements 
to the average-case hardness 

of random circuits 

Shaun Datta
Stanford University

Joint work with Adam Bouland, Bill Fefferman, 

Felipe Hernández



Sampling from random circuits—why should I care?

To understand the power of near-term quantum experiments
Many random sampling experiments: how hard are they to simulate?
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Sampling from random circuits—why should I care?

To understand the power of near-term quantum experiments
Many random sampling experiments: how hard are they to simulate?

To separate classical and quantum computation. Is 𝐵𝑃𝑃 ≠ 𝐵𝑄𝑃? 
We have excellent oracular (blackbox) evidence. What about whitebox?

Dream 1: 𝐵𝑄𝑃 ⊄ 𝐵𝑃𝑃 (way beyond current techniques)

Dream 2: 𝐵𝑄𝑃 ⊆ 𝐵𝑃𝑃 ⇒ 𝑃𝐻 collapses (still seems difficult to show)

Dream 3: 𝑠𝑎𝑚𝑝𝐵𝑄𝑃 ⊆ 𝑠𝑎𝑚𝑝𝐵𝑃𝑃 ⇒ 𝑃𝐻 collapses
This can be proven!* [e.g., TD04, BJS10, AA10]

*Caveat: result is brittle—pertains to worst-case, exact sampling
How far can we push these separations?

We have yet to realize this dream!

?𝐵𝑃𝑃
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Lastly, cryptography, e.g. from [Khurana Tomer ‘24b]
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Pr  = 𝑠 ∝ Per
⋯

⋮ ⋱ ⋮
⋯

2

= 𝒩(0,1)
     

Sampling from random circuits

Computational task (Random Circuit Sampling, BosonSampling, IQP, …):
1. Initialize a fiducial starting state

2. Evolve by a random circuit 

3. Measure to generate a sample

Fig. from GRS ’19

For BosonSampling, 



Prior work [AA10, BFNV19] established that classical computers cannot 
sample from random circuits… 

…if it is #𝑃-hard to estimate an output probability to within ±𝛿:

Random Circuit Sampling (RCS):  𝛿 = 2−𝑛−𝑂(log𝑛)

BosonSampling:    𝛿 = exp(−𝑛log𝑛 − 𝑛 − 𝑂 log𝑛 ) 
  

From sampling to computing

Permanent-of-Gaussians Conjecture 
(PGC) [AA10]



Prior work [AA10, BFNV19] established that classical computers cannot 
sample from random circuits… 

…if it is #𝑃-hard to estimate an output probability to within ±𝛿:

Random Circuit Sampling (RCS):  𝛿 = 2−𝑛−𝑂(log𝑛)

BosonSampling:    𝛿 = exp(−𝑛log𝑛 − 𝑛 − 𝑂 log𝑛 ) 
  

From sampling to computing

Central open problem: prove one of these conjectures for any random sampling 
task! 



What’s the status of proving these conjectures?

We want to show it is hard to estimate output probabilities to 
± 𝛿, but so far we have only proven it is hard to ±𝛿′ ≪ 𝛿

For example, for BosonSampling:

AA10 𝑒−𝑂(𝑛4)

BFLL21 𝑒−6𝑛 log 𝑛−𝑂(𝑛)

Kro22 𝑒−4𝑛 log 𝑛−𝑂(𝑛)

Goal: PGC 𝑒−𝑛 log 𝑛−𝑛−𝑂(log 𝑛)

“Robustness” “Robustness gap”

AA10 𝑒−𝑂(𝑛4)

BFLL21 𝑒−6𝑛 log 𝑛−𝑂(𝑛)

Kro22 𝑒−4𝑛 log 𝑛−𝑂(𝑛)

[This work] 𝑒−𝑛 log 𝑛−𝑛−𝑂(𝑛𝜀) ∀𝜀 > 0

Goal: PGC 𝑒−𝑛 log 𝑛−𝑛−𝑂(log 𝑛)



Why has progress been so difficult?

• Classical algorithms have solved related tasks [e.g., EM18, JJL21]

• Prior proofs are limited by barriers:

• Depth barrier for RCS (Napp, et al. ‘22)
• Jerrum-Sinclair-Vigoda barrier for BosonSampling

• Convexity barrier (AA10), Noise (BFLL21), “Born rule” barrier (Kro22), …

In this work, we overcome all the known proof barriers.



Second result: hardness of sampling
[This work] There is no classical sampler that succeeds for  

    ≥ 1 − 2
− ෨𝑂

3
𝑁

 fraction of instances of size 𝑁

Trivial:   ≥ 1 − 2− ෨𝑂 𝑁

But we want to show: ≥ 1 − 1/poly(𝑁)

This is the first nontrivial hardness of average-case sampling result!



Start of the proof sketch



The standard worst-to-average-case reduction

Per 𝑅 𝑡 ≔  Per( 1 − 𝑡 𝑅 + 𝑡𝑊) 

has three desirable properties:

• Polynomial in 𝑡 of degree 𝑛

• 𝑅(𝑡) ≈ 𝑅 for small 𝑡

• Per 𝑅 1 = Per(𝑊)

[Lipton91, AA10]

(For RCS, degree ≈ number of gates 𝑚)



Fig. from Bouland Fefferman Nirkhe Vazirani ‘19 

Per 𝑅 𝑡 ≔  Per( 1 − 𝑡 𝑅 + 𝑡𝑊) 

has three desirable properties:

• Polynomial in 𝑡 of degree 𝑛

• 𝑅(𝑡) ≈ 𝑅 for small 𝑡

• Per 𝑅 1 = Per(𝑊)

Key idea: polynomial extrapolation

Infer Per(𝑊) from noisy estimates to 
Per 𝑅 𝑡  for small values of 𝑡

𝑡

Per(𝑅 𝑡 )

The standard worst-to-average-case reduction
[Lipton91, AA10]



What controls robustness?

Polynomial extrapolation is ill-conditioned

Error blowup given by the Remez inequality: 
estimating degree 𝑑 polynomial to error ≤ 𝛿 
on interval [0, Δ] incurs 𝛿 Τ1 Δ 𝑑  blowup

Moral: to improve robustness, need to 
decrease extrapolation distance 1/Δ or 
decrease the polynomial degree 𝑑

∆
𝑡

>

𝑝(𝑡)

𝛿 Τ1 Δ 𝑑

𝑞(𝑡)



New techniques to decrease 1/Δ and 𝑑

• Dilution

• Coefficient extraction

• The square trick

• Magnification

• Rare events lemmas

The focus of 
today’s talk



Prior work used a worst-case circuit on 𝑛 qubits

Instead, consider the circuit 𝑊𝑛 acting on 𝑛 qubits:
Where 𝑊𝐴 is worst-case circuit on 𝑛𝜀  qubits, any constant 
𝜀 > 0

Where 𝑅𝐵  is random but fixed circuit on 𝑛 − 𝑛𝜀  qubits

Let 𝑝𝑦 𝐶  be probability to measure 𝑦 from circuit 𝐶

By construction output probability “factorizes”
𝑝0𝑛 𝑊𝑛 = 𝑝

0𝑛𝜀 𝑊𝐴 ⋅ 𝑝
0𝑛−𝑛𝜀 (𝑅𝐵)

Observation: 𝑝
0𝑛𝜀 (𝑊𝐴) is #𝑃-hard to estimate 

multiplicatively by padding

𝑛𝜀

𝑛 − 𝑛𝜀

Dilution: technique to decrease 1/Δ and 𝑑



New worst-to-average-case reduction by dilution

Goal: estimate 𝑝0 𝑊𝐴 =
𝑝0 𝑊𝑛

𝑝0(𝑅𝐵)
 

Denominator: can estimate 𝑅𝐵 by assumption ✓

Numerator: 𝑊𝑛 is a worst-case circuit

- Implement previous worst-to-average-case reduction!

- But only extrapolate over gates in 𝑊𝐴

- i.e., correlated circuits 𝐶(𝑡𝑖) all share 𝑅𝐵

- Degree of 𝑝 𝑡  is supp 𝑊𝐴 = 𝑂 𝑛𝜀  

- So blow-up is 
1

𝑛𝜀 𝑛𝜀 =
1

2𝑛𝜀 log 𝑛𝜀

𝑛𝜀

𝑛 − 𝑛𝜀

𝑛𝜀

𝑛 − 𝑛𝜀

Need 
multiplicative 

estimates



New worst-to-average-case reduction by dilution

Goal: estimate 𝑝0 𝑊𝐴 =
𝑝0 𝑊𝑛

𝑝0(𝑅𝐵)
 

Denominator: can estimate 𝑅𝐵 by assumption ✓

Numerator: 𝑊𝑛 is a worst-case circuit     ✓

- Implement previous worst-to-average-case reduction!

- But only extrapolate over gates in 𝑊𝐴

- i.e., correlated circuits 𝐶(𝑡𝑖) all share 𝑅𝐵

- Degree of 𝑝 𝑡  is supp 𝑊𝐴 = 𝑂 𝑛𝜀  

- We get robustness 𝛿 = 2−𝑛−𝑛𝜀log 𝑛𝜀

𝑛𝜀

𝑛 − 𝑛𝜀

𝑛𝜀

𝑛 − 𝑛𝜀

Need 
multiplicative 

estimates

2−𝑛 would suffice to 
show no classical 

sampler



Feature: our hardness argument circumvents the 
depth barrier

Random circuits have a phase transition in depth from easy to hard

Reason: entanglement

Efficient classical algorithms can exploit shallow depth, e.g., Napp, et al. ’22

By contrast, prior hardness arguments were agnostic to depth

Our argument requires anticoncentration, which requires log depth 
[Dalzell, et al. ‘22 & Deshpande, et al. ‘22]



Dilution does not trivially extend to BosonSampling!

Simply shrink worst-case instance 𝑊′ to have size 
𝑛𝜀 × 𝑛𝜀  ∀𝜀 > 0

Per 𝑊′  is still #𝑃-hard (padding)

Idea: extrapolate Per[(1 − 𝑡)𝑅 + 𝑡 𝑊dilute ] to 𝑡 = 1

Good news: degree 𝑂 𝑛𝜀 , extrapolation distance  𝑂 𝑛𝜀

Bad news: if 𝑊dilute has small support e.g. 𝑂 𝑛2𝜀  nonzero 
entries, then Per(𝑊dilute) = 0

So polynomial extrapolation does not encode information 
about Per 𝑊′   

Per(𝑊dilute) = 0



Key idea: coefficient extraction

Consider instead Per 𝑅 𝑡 ≔



Key idea: coefficient extraction
Consider:

• Per 𝑅(1) = Per(𝑅 + 𝑊dilute) is uninteresting

• However, Per 𝑅(𝑡)  still encodes Per 𝑊′ : 

Per(𝑅(𝑡))  = 𝑡𝑛𝜀
(Per 𝑊’)(Per 𝑅𝐷) + ෍

𝑙=0

𝑛𝜀−1

𝑐𝑙𝑡
𝑙

Want: Per 𝑊’

Idea: estimate 
Per 𝑅𝐷  with a  
recursive call to 
average-case algo



Feature: our hardness argument circumvents 
the JSV barrier
Jerrum-Sinclair-Vigoda (JSV) ‘04: 𝐵𝑃𝑃 algorithm to approximate the 
permanent of a nonnegative matrix to small relative error

But prior proof techniques were insensitive to the difference between 
nonnegative and mixed sign matrices

By contrast, our proof is sensitive to mixed signs
Our reduction obtains the worst-case permanent to small relative error

For this to be hard, it needs to have both positive and negative entries



What are the implications for hardness of sampling?

Recall the “moral”:

To improve robustness, need to decrease 
extrapolation distance 1/Δ or decrease the 
polynomial degree 𝑑

Claim: estimating Per 𝑅 𝑡  at 𝑡 = 𝑂
1

𝑛

⟹ hardness of sampling!

Problem: such 𝑅(𝑡) are very far from iid 
Gaussian in TVD—no guarantee algorithm 
works out-of-distribution

∆
𝑡

>

𝑝(𝑡)

𝛿 Τ1 Δ 𝑑

𝑞(𝑡)

=  𝑂
1

𝑛

We will show that we can estimate 
these quantities if our average-case 

algorithm works with sufficiently 
high probability! 



We prove: 

tail event w.p. ≤ 𝑒−𝑡shift
2
 under 𝒢 has prob. ≤ 1/poly(𝑛) under 𝒢shift

If tail event ≡ average-case algorithm fails, then for 𝒢shift, 

algorithm fails w.p. ≤ 1/poly(𝑛) if it fails w.p. ≤ 𝑒−𝑂 𝑛  for 𝒢

Going out of distribution: rare events lemma
Observe: 𝑅 + 𝑡shift𝑊 is also Gaussian, with shifted mean 𝑡shift

𝑡shift

𝒢shift𝒢

𝑒−𝑡shift
2

1/poly(𝑛) 



Hardness of sampling 

Combined with a second rare events lemma, we show that this implies:

[This work] There is no classical sampler that succeeds for   

   ≥ 1 − 2
− ෨𝑂

3
𝑁

 fraction of instances of size 𝑁

Trivial:   ≥ 1 − 2− ෨𝑂 𝑁

But we want to show: ≥ 1 − 1/poly(𝑁)

Caveat: because we estimate 𝑅(𝑡) far out of distribution, we require a 

slight generalization of permanent anticoncentration.



With no proof barriers in the way, 
can we at last prove PGC?



Thank you! Questions?

http://bit.ly/401GEzy 

http://bit.ly/401GEzy


Anticoncentration conjecture for shifted Gaussian permanents

• Theorem 2 (hardness of sampling) assumes Per 𝑅 𝑡  to anticoncentrate

• This is not implied by standard PACC, as the matrices are out of distribution!

 



Anticoncentration conjecture for shifted Gaussian permanents

Standard PACC 
[AA11]

Proved
[EM18, JJL21]



Numerical evidence for anticoncentration conjecture

Box plots for the distribution of |Per 𝑅 + 𝑡𝑊 | for 𝑛 = 10 and 𝑛𝜀 = 5. For 

five equally spaced values of 𝑡 ∈ [0,
1

𝑛
], we generate 30 such 𝑅 and 𝑊.

Note: Very little variation for increasing 𝑡, as conjectured
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