
with Benedikt Bünz, Alessandro Chiesa, Giacomo Fenzi, Pratyush Mishra, Wilson Nguyen

Hash-based Folding Schemes
William Wang (NYU)

Reductions

P V

x, w x

w′ x′

(x, w) ∈? R

(x′ , w′) ∈? R′

completeness

if , then (x, w) ∈ R
⟨P, V⟩ → (x′ , w′) ∈ R′

soundness

if , then for any  
w.h.p.

x ∉ L(R) P̃
⟨P̃, V⟩ → x′ ∉ L(R′)

later: knowledge soundness

Folding/accumulation schemes [BCLMS21, KST21]

Folding scheme for is a reduction from to .R R × R⋆ R⋆

R R⋆

R⋆R

R⋆R

R⋆

P V

 x, w, x⋆, w⋆ x, x⋆

w′ x′

 (x, w) ∈? R ∧ (x⋆, w⋆) ∈ R⋆

(x′ ⋆, w′ ⋆) ∈? R⋆

Hash-based recipe [Kil92, Mic00, BCS16, ...]

interactive oracle proof

P V

x, w x

0/1

P V

x, w x

0/1

succinct argument

Merkle trees

interactive oracle reduction

P V

x, w x

x′ w′

P V

x, w x

x′ w′

succinct reduction

Merkle trees

P V

x, w x

0/1

succinct non-interactive
argument

Fiat–Shamir

Fiat–Shamir P V

x, w x

x′ w′

succinct non-interactive
reduction

our focus

Interactive oracle reductions [BCGGRS19, BMNW25]

P V

x, y, w x

w′ x′

(x, y, w) ∈? R

(x′ , y′ , w′) ∈? R′

 y

 y′

completeness

if , then (x, y, w) ∈ R
⟨P, V⟩ → (x′ , y′ , w′) ∈ R′

soundness

if , then 
for any w.h.p.  

s.t.

y ∉ L(Rx)
P̃ ⟨P̃, V⟩ → x′ , y′

y′ ∉ L(R′ x′
)

.Rx := {(y, w) : (x, y, w) ∈ R}

Interactive oracle reductions [BCGGRS19, BMNW25]

P V

x, y, w x

w′ x′

(x, y, w) ∈? R

(x′ , y′ , w′) ∈? R′

completeness

if , then (x, y, w) ∈ R
⟨P, V⟩ → (x′ , y′ , w′) ∈ R′

soundness

if , then 
for any w.h.p.  

s.t.

Δ(y, L(Rx)) > δ
P̃ ⟨P̃, V⟩ → x′ , y′

Δ(y′ , L(R′ x′
)) > δ

 y

 y′

fraction of indices 
where differ.

Δ(y, y′) :=
y, y′

.Rx := {(y, w) : (x, y, w) ∈ R}

IOR examples

 f

P V

f

0/1

f ∈? C

proximity test

P V

x, w

α ∈ 𝔽, Π1, Π2

(x, w) ∈ R

Π1 + α ⋅ Π2 ∈? C

x

 Π1 ∈ 𝔽n

 Π2 ∈ 𝔽n

reduction to proximity

Fix linear code .C ⊂ 𝔽n

A "trivial" folding scheme
(x, w) ∈? R b′ =? 1

f ∈? C

b =? 1

b ∧ b′ =? 1

R R⋆

R⋆

our goal

reduction to
proximity

proximity
test

Can we do better?

• faster prover?

• smaller verifier?

Can we do better?

(x, w) ∈? R g ∈? C

f ∈? C

h ∈? C

R R⋆

R⋆

our goal

reduction to
proximity

proximity
batching

Proximity batching

P V

f, g

γ, f, g

 f ∈? C ∧ g ∈? C

f + γ ⋅ g ∈? C

 f

 g

γ ← 𝔽

completeness

if , then f, g ∈ C
f + γ ⋅ g ∈ C

soundness

if or , 
then w.h.p.

Δ(f, C) > δ Δ(g, C) > δ
Δ(f + γ ⋅ g, C) > δ

think , distance of is δ = 1/3 C 2/3

Proximity batching

P V

f, g

i, α, h

 f ∈? C ∧ g ∈? C

h ∈? {u ∈ C : u[i] = α}

 f

 g

γ ← 𝔽

completeness

since , h := f + γ ⋅ g
h ∈ C ∧ h[i] = α

 h := f + γ ⋅ g

i ← [n] α := f [i] + γ ⋅ g[i]

soundness

assume unique with

w.p. ,

u ∈ C Δ(h, u) ≤ δ

δ u[i] ≠ α

amplify with queriesO(λ)

 u f + γ ⋅ g

if , then f, g ∈ C f + γ ⋅ g ∈ C

if or , 
then w.h.p.

Δ(f, C) > δ Δ(g, C) > δ
Δ(f + γ ⋅ g, C) > δ

Zooming out

(x, w) ∈? R g ∈? C

f ∈? C

h ∈? {u ∈ C : u[i] = α}

R R⋆

R⋆

our goal

reduction to
proximity

proximity
batching

Constrained codes
Multilinear extension: for there is a unique multilinear polynomial

 such that

 for

Constrained codes:

Fact:

u ∈ 𝔽n

̂u : 𝔽log n → 𝔽

̂u(x) = u[𝗂𝗇𝗍(x)] x ∈ {0,1}log n

Cx,α := {u ∈ C : ̂u(x) = α}

{u ∈ C : u[i] = α} = C𝗂𝗇𝗍−1(i),α 𝗂𝗇𝗍(0,0,0) = 1
𝗂𝗇𝗍(0,0,0) = 2
𝗂𝗇𝗍(0,1,0) = 3

⋮
𝗂𝗇𝗍(1,1,1) = 8

Constrained code reductions

f1 ∈? Cx1,α1
f2 ∈? Cx2,α2

f1 + γ ⋅ f2 ∈? Cy,β

f ∈? Cy,β

f ∈? Cx1,α1
∩ ⋯ ∩ Cxt,αt

reduction toolbox

(x, w) ∈? R g ∈? Cx,α

f ∈? C

h ∈? Cy,β

reduction to
proximity

proximity
batching

WARP [BCFW25]

an essentially optimal hash-based folding scheme for R1CS (and more)

Matrices with non-zero entries

Instance , witness

A, B, C ∈ 𝔽M×N S

x ∈ 𝔽N−k w ∈ 𝔽k

R𝖱𝟣𝖢𝖲 = {(x, w) : A [x
w] ∘ B [x

w] = C [x
w]}

Prover cost:

• -ops (linear time)

• random oracle queries

O(S) 𝔽
O(k)

Verifier cost:

• -ops

• random oracle queries

O(log N + log M + λ) 𝔽

O(λ ⋅ log k)

Instantiable with any sufficiently large for soundness.𝔽

Under the hood:
• instantiable with any linear code

• proximity batching for {u ∈ C : u encodes an R1CS witness}

Knowledge soundness

P V

x, y, w x

w′ x′

(x, y, w) ∈? R

(x′ , y′ , w′) ∈? R′

knowledge soundness (no witness)

for any w.h.p. :

given s.t. 

 s.t. 

P̃ ⟨P̃, V⟩ → x′ , y′

ȳ′

Δ(y′ , ȳ′) ≤ δ, ȳ′ ∈ L(R′ x′
)

⇓
E(x, y, P̃, ȳ′) → ȳ
Δ(y, ȳ) ≤ δ, ȳ ∈ L(Rx)

 y

 y′

how does extractor work?

straightline: runs in one shot

rewinding: can restore to arbitrary states

• only expected polynomial time

• worse concrete efficiency

• incompatible with UC security

E
E P

E P

Extraction strategies
 has an efficient error corrector (Reed–Solomon codes)

• straightline extraction

• no linear-time encodable codes (of practical interest)

C

 does not have an efficient error corrector (expander codes, RAA codes)

• rewinding extraction

• linear-time encodable codes

C

WARP: straightline extraction, even if does not have an efficient error correctorC

Straightline extraction for any linear code

f + γ ⋅ g

f
erasure-correct

identify disagreement set

g
erasure-correct

if Δ(f + γ ⋅ g, C) ≤ δ

then and by proximity gapΔ(f, C) ≤ δ Δ(g, C) ≤ δ

erase disagreement set by proximity gap with mutual correlated agreement

given the new codeword

traditionally, 
error-correct

Straightline extraction for any linear code
Three steps

1. Leverage the new codeword

• New definition of round-by-round knowledge soundness

2. Proximity gap with mutual correlated agreement (known for any linear code)

3. Erasure correction (known for any linear code)

Applicable to linear-time succinct arguments

• Blaze, BaseFold, Brakedown, ...

Some open questions
• Open questions for succinct arguments → folding schemes

• Linear-time folding over small fields

• Linear-time folding with constant round complexity

• Straightline extraction for hash-based succinct arguments

https://ia.cr/2024/474

https://ia.cr/2024/1731

https://ia.cr/2025/753

https://ia.cr/2024/474
https://ia.cr/2024/1731
https://ia.cr/2025/753

