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Reductions

P V

x, w x

w′ x′ 

(x, w) ∈? R

(x′ , w′ ) ∈? R′ 

completeness

if , then (x, w) ∈ R
⟨P, V⟩ → (x′ , w′ ) ∈ R′ 

soundness

if , then for any  
w.h.p. 

x ∉ L(R) P̃
⟨P̃, V⟩ → x′ ∉ L(R′ )

later: knowledge soundness



Folding/accumulation schemes [BCLMS21, KST21]

Folding scheme for  is a reduction from    to .R R × R⋆ R⋆

R R⋆

R⋆R

R⋆R

R⋆

P V

 x, w, x⋆, w⋆  x, x⋆

w′ x′ 

    (x, w) ∈? R ∧ (x⋆, w⋆) ∈ R⋆

(x′ ⋆, w′ ⋆) ∈? R⋆



Hash-based recipe [Kil92, Mic00, BCS16, ...]

interactive oracle proof

P V

x, w x

0/1

P V

x, w x

0/1

succinct argument

Merkle trees

interactive oracle reduction

P V

x, w x

x′ w′ 

P V

x, w x

x′ w′ 

succinct reduction

Merkle trees

P V

x, w x

0/1

succinct non-interactive 
argument

Fiat–Shamir

Fiat–Shamir P V

x, w x

x′ w′ 

succinct non-interactive 
reduction

our focus



Interactive oracle reductions [BCGGRS19, BMNW25]

P V

x, y, w x

w′ x′ 

(x, y, w) ∈? R

(x′ , y′ , w′ ) ∈? R′ 

 y

 y′ 

completeness

if , then (x, y, w) ∈ R
⟨P, V⟩ → (x′ , y′ , w′ ) ∈ R′ 

soundness

if , then 
for any  w.h.p.  

s.t. 

y ∉ L(Rx)
P̃ ⟨P̃, V⟩ → x′ , y′ 

y′ ∉ L(R′ x′ 
)

.Rx := {(y, w) : (x, y, w) ∈ R}



Interactive oracle reductions [BCGGRS19, BMNW25]

P V

x, y, w x

w′ x′ 

(x, y, w) ∈? R

(x′ , y′ , w′ ) ∈? R′ 

completeness

if , then (x, y, w) ∈ R
⟨P, V⟩ → (x′ , y′ , w′ ) ∈ R′ 

soundness

if , then 
for any  w.h.p.  

s.t. 

Δ(y, L(Rx)) > δ
P̃ ⟨P̃, V⟩ → x′ , y′ 

Δ(y′ , L(R′ x′ 
)) > δ

 y

 y′ 

fraction of indices 
where  differ.

Δ(y, y′ ) :=
y, y′ 

.Rx := {(y, w) : (x, y, w) ∈ R}



IOR examples

 f

P V

f

0/1

f ∈? C

proximity test

P V

x, w

α ∈ 𝔽, Π1, Π2

(x, w) ∈ R

Π1 + α ⋅ Π2 ∈? C

x

 Π1 ∈ 𝔽n

 Π2 ∈ 𝔽n

reduction to proximity

Fix linear code .C ⊂ 𝔽n



A "trivial" folding scheme
(x, w) ∈? R b′ =? 1

f ∈? C

b =? 1

b ∧ b′ =? 1

R R⋆

R⋆

our goal

reduction to 
proximity

proximity 
test

Can we do better? 

• faster prover?


• smaller verifier?



Can we do better?

(x, w) ∈? R g ∈? C

f ∈? C

h ∈? C

R R⋆

R⋆

our goal

reduction to 
proximity

proximity 
batching



Proximity batching

P V

f, g

γ, f, g

    f ∈? C ∧ g ∈? C

f + γ ⋅ g ∈? C

 f

 g

γ ← 𝔽

completeness

if , then f, g ∈ C
f + γ ⋅ g ∈ C

soundness

if  or , 
then w.h.p. 

Δ( f, C) > δ Δ(g, C) > δ
Δ( f + γ ⋅ g, C) > δ

think , distance of  is δ = 1/3 C 2/3



Proximity batching

P V

f, g

i, α, h

    f ∈? C ∧ g ∈? C

h ∈? {u ∈ C : u[i] = α}

 f

 g

γ ← 𝔽

completeness

since , h := f + γ ⋅ g
h ∈ C ∧ h[i] = α

 h := f + γ ⋅ g

i ← [n] α := f [i] + γ ⋅ g[i]

soundness

assume unique  with 


w.p. , 

u ∈ C Δ(h, u) ≤ δ

δ u[i] ≠ α

amplify with  queriesO(λ)

 u  f + γ ⋅ g

if , then f, g ∈ C f + γ ⋅ g ∈ C

if  or , 
then w.h.p. 

Δ( f, C) > δ Δ(g, C) > δ
Δ( f + γ ⋅ g, C) > δ



Zooming out

(x, w) ∈? R g ∈? C

f ∈? C

h ∈? {u ∈ C : u[i] = α}

R R⋆

R⋆

our goal

reduction to 
proximity

proximity 
batching



Constrained codes
Multilinear extension: for  there is a unique multilinear polynomial 

 such that


  for  


Constrained codes: 




Fact: 

u ∈ 𝔽n

̂u : 𝔽log n → 𝔽

̂u(x) = u[𝗂𝗇𝗍(x)] x ∈ {0,1}log n

Cx,α := {u ∈ C : ̂u(x) = α}

{u ∈ C : u[i] = α} = C𝗂𝗇𝗍−1(i),α 𝗂𝗇𝗍(0,0,0) = 1
𝗂𝗇𝗍(0,0,0) = 2
𝗂𝗇𝗍(0,1,0) = 3

⋮
𝗂𝗇𝗍(1,1,1) = 8



Constrained code reductions

f1 ∈? Cx1,α1
f2 ∈? Cx2,α2

f1 + γ ⋅ f2 ∈? Cy,β

f ∈? Cy,β

f ∈? Cx1,α1
∩ ⋯ ∩ Cxt,αt

reduction toolbox

(x, w) ∈? R g ∈? Cx,α

f ∈? C

h ∈? Cy,β

reduction to 
proximity

proximity 
batching



WARP [BCFW25]

an essentially optimal hash-based folding scheme for R1CS (and more)

Matrices  with  non-zero entries


Instance , witness 


A, B, C ∈ 𝔽M×N S

x ∈ 𝔽N−k w ∈ 𝔽k

R𝖱𝟣𝖢𝖲 = {(x, w) : A [x
w] ∘ B [x

w] = C [x
w]}

Prover cost: 

•  -ops (linear time)


•  random oracle queries

O(S) 𝔽
O(k)

Verifier cost: 

•  -ops


•  random oracle queries 

O(log N + log M + λ) 𝔽

O(λ ⋅ log k)

Instantiable with any  sufficiently large for soundness.𝔽

Under the hood: 
• instantiable with any linear code


• proximity batching for {u ∈ C : u encodes an R1CS witness}



Knowledge soundness

P V

x, y, w x

w′ x′ 

(x, y, w) ∈? R

(x′ , y′ , w′ ) ∈? R′ 

knowledge soundness (no witness)

for any  w.h.p. :


given  s.t. 





 s.t. 

P̃ ⟨P̃, V⟩ → x′ , y′ 

ȳ′ 

Δ(y′ , ȳ′ ) ≤ δ, ȳ′ ∈ L(R′ x′ 
)

⇓
E(x, y, P̃, ȳ′ ) → ȳ
Δ(y, ȳ) ≤ δ, ȳ ∈ L(Rx)

 y

 y′ 

how does extractor  work?


straightline:  runs  in one shot


rewinding:  can restore  to arbitrary states

• only expected polynomial time

• worse concrete efficiency

• incompatible with UC security

E
E P

E P



Extraction strategies
 has an efficient error corrector (Reed–Solomon codes)


• straightline extraction


• no linear-time encodable codes (of practical interest)

C

 does not have an efficient error corrector (expander codes, RAA codes)


• rewinding extraction


• linear-time encodable codes

C

WARP: straightline extraction, even if  does not have an efficient error correctorC



Straightline extraction for any linear code

f + γ ⋅ g

f
erasure-correct

identify disagreement set

g
erasure-correct

if Δ( f + γ ⋅ g, C) ≤ δ

then  and  by proximity gapΔ( f, C) ≤ δ Δ(g, C) ≤ δ

erase disagreement set by proximity gap with mutual correlated agreement

given the new codeword

traditionally, 
error-correct



Straightline extraction for any linear code
Three steps 

1. Leverage the new codeword


• New definition of round-by-round knowledge soundness


2. Proximity gap with mutual correlated agreement (known for any linear code)


3. Erasure correction (known for any linear code)


Applicable to linear-time succinct arguments 

• Blaze, BaseFold, Brakedown, ...



Some open questions
• Open questions for succinct arguments → folding schemes


• Linear-time folding over small fields


• Linear-time folding with constant round complexity


• Straightline extraction for hash-based succinct arguments
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https://ia.cr/2024/1731 

https://ia.cr/2025/753
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https://ia.cr/2025/753

