Hash-based Folding Schemes

William Wang (NYU)

Reductions

completeness

if
$$(x, w) \in R$$
, then $\langle \mathbf{P}, \mathbf{V} \rangle \to (x', w') \in R'$

soundness

if
$$x \notin L(R)$$
, then for any $\tilde{\mathbf{P}}$ w.h.p. $\langle \tilde{\mathbf{P}}, \mathbf{V} \rangle \to x' \notin L(R')$

later: knowledge soundness

Folding/accumulation schemes [BCLMS21, KST21]

Folding scheme for R is a reduction from $R \times R_{\star}$ to R_{\star} .

Hash-based recipe [Kil92, Mic00, BCS16, ...]

Interactive oracle reductions [BCGGRS19, BMNW25]

completeness

if
$$(x, y, w) \in R$$
, then $\langle \mathbf{P}, \mathbf{V} \rangle \to (x', y', w') \in R'$

soundness

if
$$y \not\in L(R_x)$$
, then for any $\tilde{\mathbf{P}}$ w.h.p. $\langle \tilde{\mathbf{P}}, \mathbf{V} \rangle \to x', y'$ s.t. $y' \not\in L(R'_{x'})$

$$R_x := \{(y, w) : (x, y, w) \in R\}.$$

Interactive oracle reductions [BCGGRS19, BMNW25]

completeness

if
$$(x, y, w) \in R$$
, then $\langle \mathbf{P}, \mathbf{V} \rangle \to (x', y', w') \in R'$

soundness

if
$$\Delta(y,L(R_x))>\delta$$
, then for any $\tilde{\mathbf{P}}$ w.h.p. $\langle \tilde{\mathbf{P}},\mathbf{V}\rangle \to x',y'$ s.t. $\Delta(y',L(R_{x'}'))>\delta$

$$R_x := \{(y, w) : (x, y, w) \in R\}.$$
 $\Delta(y, y') := \text{fraction of indices}$ where y, y' differ.

IOR examples

reduction to proximity

$$(x, w) \in R$$

proximity test

 $f \in_{?} C$

$$f$$
 f
 V
 V
 $O/1$

$$\Pi_1 + \alpha \cdot \Pi_2 \in_? C$$

A "trivial" folding scheme

- faster prover?
- smaller verifier?

Can we do better?

Proximity batching

completeness

if
$$f, g \in C$$
, then
$$f + \gamma \cdot g \in C$$

soundness

if
$$\Delta(f,C) > \delta$$
 or $\Delta(g,C) > \delta$, then w.h.p. $\Delta(f+\gamma\cdot g,C) > \delta$

think $\delta = 1/3$, distance of C is 2/3

Proximity batching

completeness

if $f, g \in C$, then $f + \gamma \cdot g \in C$

since
$$h := f + \gamma \cdot g$$
,
 $h \in C \land h[i] = \alpha$

soundness

if
$$\Delta(f,C) > \delta$$
 or $\Delta(g,C) > \delta$,
then w.h.p. $\Delta(f+\gamma \cdot g,C) > \delta$

assume unique $u \in C$ with $\Delta(h, u) \leq \delta$

w.p.
$$\delta$$
, $u[i] \neq \alpha$

amplify with $O(\lambda)$ queries

$$\alpha := f[i] + \gamma \cdot g[i]$$

$$h \in_{?} \{u \in C : u[i] = \alpha\}$$

Zooming out

Constrained codes

Multilinear extension: for $u \in \mathbb{F}^n$ there is a unique multilinear polynomial $\hat{u} : \mathbb{F}^{\log n} \to \mathbb{F}$ such that

$$\hat{u}(\mathbf{x}) = u[\text{int}(\mathbf{x})] \text{ for } \mathbf{x} \in \{0,1\}^{\log n}$$

Constrained codes:

$$C_{\mathbf{x},\alpha} := \{ u \in C : \hat{u}(\mathbf{x}) = \alpha \}$$

Fact:
$$\{u \in C : u[i] = \alpha\} = C_{\operatorname{int}^{-1}(i),\alpha}$$

$$\inf(0,0,0) = 1 \\ \inf(0,0,0) = 2 \\ \inf(0,1,0) = 3 \\ \vdots$$

int(1,1,1) = 8

Constrained code reductions

reduction toolbox

$$f_{1} \in_{?} C_{\mathbf{x}_{1},\alpha_{1}} \qquad f_{2} \in_{?} C_{\mathbf{x}_{2},\alpha_{2}}$$

$$f_{1} + \gamma \cdot f_{2} \in_{?} C_{\mathbf{y},\beta}$$

WARP [BCFW25]

an essentially optimal hash-based folding scheme for R1CS (and more)

Under the hood:

- instantiable with any linear code
- proximity batching for $\{u \in C : u \text{ encodes an R1CS witness}\}$

Matrices $A, B, C \in \mathbb{F}^{M \times N}$ with S non-zero entries

Instance $x \in \mathbb{F}^{N-k}$, witness $w \in \mathbb{F}^k$

$$R_{\mathsf{R1CS}} = \left\{ (x, w) : \mathbf{A} \begin{bmatrix} x \\ w \end{bmatrix} \circ \mathbf{B} \begin{bmatrix} x \\ w \end{bmatrix} = \mathbf{C} \begin{bmatrix} x \\ w \end{bmatrix} \right\}$$

Prover cost:

- O(S) F-ops (linear time)
- O(k) random oracle queries

Verifier cost:

- $O(\log N + \log M + \lambda)$ F-ops
- $O(\lambda \cdot \log k)$ random oracle queries

Instantiable with any F sufficiently large for soundness.

Knowledge soundness

knowledge soundness (no witness)

for any $\tilde{\mathbf{P}}$ w.h.p. $\langle \tilde{\mathbf{P}}, \mathbf{V} \rangle \to x', y'$:

given \bar{y}' s.t.

$$\Delta(y', \bar{y}') \leq \delta, \ \bar{y}' \in L(R'_{x'})$$

₩

$$\mathbf{E}(x, y, \tilde{\mathbf{P}}, \bar{y}') \rightarrow \bar{y} \text{ s.t.}$$

$$\Delta(y, \bar{y}) \leq \delta, \ \bar{y} \in L(R_x)$$

how does extractor E work?

straightline: E runs P in one shot

rewinding: ${f E}$ can restore ${f P}$ to arbitrary states

- only expected polynomial time
- worse concrete efficiency
- incompatible with UC security

Extraction strategies

C has an efficient error corrector (Reed–Solomon codes)

- straightline extraction
- no linear-time encodable codes (of practical interest)

C does not have an efficient error corrector (expander codes, RAA codes)

- rewinding extraction
- linear-time encodable codes

WARP: straightline extraction, even if C does not have an efficient error corrector

Straightline extraction for any linear code

traditionally, error-correct

then $\Delta(f,C) \leq \delta$ and $\Delta(g,C) \leq \delta$ by proximity gap

erase disagreement set by proximity gap with mutual correlated agreement

given the new codeword

$$f + \gamma \cdot g \qquad \qquad \text{if } \Delta(f + \gamma \cdot g, C) \leq \delta$$
 identify disagreement set

Straightline extraction for any linear code

Three steps

- 1. Leverage the new codeword
 - New definition of round-by-round knowledge soundness
- 2. Proximity gap with mutual correlated agreement (known for any linear code)
- 3. Erasure correction (known for any linear code)

Applicable to linear-time succinct arguments

Blaze, BaseFold, Brakedown, ...

Some open questions

- Open questions for succinct arguments → folding schemes
 - Linear-time folding over small fields
 - Linear-time folding with constant round complexity
- Straightline extraction for hash-based succinct arguments

https://ia.cr/2024/474

https://ia.cr/2024/1731

https://ia.cr/2025/753