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Why New Assumptions?

Diversifying sources of trust Interactions with other communities

New conclusions!

Not previously known from 

existing assumptions + 

ideal obfuscation

First nontrivial task where

security is “for free”



Motivation: Searching on Encrypted Data

Want a cryptographic solution?

Sure, bring it on!



Motivation: Searching on Encrypted Data

How about 

Searchable Symmetric Encryption?

Are you kidding me?

It doesn’t support fuzzy searches, 

and leaks the access pattern.



Motivation: Searching on Encrypted Data

Then it looks like you want

Homomorphic Encryption (HE)!

Get real…

My life is too short to wait for this to run.



Motivation: Searching on Encrypted Data

Got it.

So what you probably want is 

honest-majority 3PC. It’s very fast.

I don’t like non-collusion assumptions.

… but you make them all the time, 

whether you like it or not.

I don’t care. Can’t make them here.



Motivation: Searching on Encrypted Data

[Excited] Wait!!!

I have a solution which is as secure as HE 

and even faster than 3PC!

Hmmm….

I don’t like the color of your shirt.

AES

RSADDH

LWE

LPN

LSN

Hmmm….



Motivation: Searching on Encrypted Data

[Excited] Wait!!!

I have a solution which is as secure as HE 

and even faster than 3PC!

Hmmm….

Awesome!
When do we start?

Hmmm….



Computing on Encrypted Data

𝐗

Offline Online

Client

Server

𝑠𝑘

෡𝐗

secret data

repeat many times

𝑞𝑖

ො𝑞𝑖

ො𝑎𝑖

𝑠𝑘
⇒ 𝑞𝑖(𝐗)

Learns nothing about 

𝐗 and 𝑞𝑖

Unlike SSE
[SWP00, CGKO06,…] 

Stateless!

Unlike ORAM
[GO96,…] 

Sublinear

| ො𝑎𝑖| ≪ |𝐗|

Unlike circuit-

based 2PC
[Yao86,GMW87,…]



Functionalities

• Private Information Retrieval (PIR) 
[Chor-Goldreich-Kushilevitz-Sudan 95, Kushilevitz-Ostrovsky 97] 

– 𝐗 ∈ 0,1 𝑁 is a database, 𝑞𝑖 𝐗 = 𝐗[𝑞𝑖]

– “Secret-key PIR with preprocessing” 

[Boyle-I-Pass-Wootters 17, Canetti-Holmgren-Richelson 17] 

– Typical goal: “doubly efficient” PIR in the RAM model

• We aim to minimize assumptions and/or efficiency in Boolean circuit model

Weaker than public preprocessing 

[Beimel-I-Malkin 00, Lin-Mook-Wichs 23]

… but similar when client is distributed, e.g., in MPC applications

Is this                 so much cheaper than               this?

MUX
x

i
xi Mod 2 IP

x
<x,y>

y



Functionalities

• Private Information Retrieval (PIR) 
[Chor-Goldreich-Kushilevitz-Sudan 95, Kushilevitz-Ostrovsky 97] 

– 𝐗 ∈ 0,1 𝑁 is a database, 𝑞𝑖 𝐗 = 𝐗[𝑞𝑖]

– “Secret-key PIR with preprocessing” 

[Boyle-I-Pass-Wootters 17, Canetti-Holmgren-Richelson 17] 

– Typical goal: “doubly efficient” PIR in the RAM model

• We aim to minimize assumptions and/or efficiency in Boolean circuit model

• Encrypted Matrix-Vector Product (EMVP) 
– 𝐗 ∈ 𝔽𝑚×𝑤 is a matrix, 𝑞𝑖 ∈ 𝔽𝑤 a vector, 𝑞𝑖 𝐗 = 𝐗𝑞𝑖

– Output is typically short, can be securely post-processed



EMVP for Encrypted Fuzzy Search

Existing Users New User

𝑤 ≈ 10,000

HE / GC 

Much faster via 

3PC



Public-Data EMVP for Encrypted Fuzzy Search

Document embeddings 
Web search

query

Linearly Homomorphic Encryption



EMVP from Homomorphic Encryption

• Easy from HE for degree-2 polynomials [BGN05,Gen09,…]

• Possible from linearly homomorphic encryption?

– Simple for public-data EMVP hiding 𝑞𝑖 but not 𝐗

– Upgrade to EMVP via masking

• Run public EMVP with public matrix 𝐗′ = 𝐗 + 𝐑

• Client recovers 𝐗𝑞 = 𝐗′𝑞 − 𝐑𝑞

– Use trapdoored matrix 𝐑 to improve client computation

 [Braverman-Newman 25, Vaikuntanathan-Zamir 25] 

 We propose new TDM constructions with better concrete efficiency



Field-Agnostic EMVP?

• Field-agnostic protocols only make black-box use of 𝔽

– Typical feature of honest-majority MPC protocols

– Possible also with no honest majority

      [Naor-Pinkas 99, I-Prabhakaran-Sahai 09, Applebaum-Avron-Brzuska 15] 

• None of the existing EMVP protocols is field agnostic

– Lattice-based: sampling noise, rounding, 𝑞 ≫ 𝑝

– Inherent to linearly homomorphic encryption [AAB15]

• Advantages of field-agnostic protocols

– Concrete efficiency

– Client can be easily distributed



Our Results: EMVP

• Feasibility result for field-agnostic EMVP

– Assuming LPN over general 𝔽

• In fact, even in parameter regimes not known to imply PKE or CRH

– Everything optimal up to polylog factors

   … but not concretely efficient

• Concretely efficient EMVP under new assumptions

– Variants of “Learning Subspace with Noise” [Dodis-Kalai-Lovett 09]

– Can get < 1.1x cleartext costs for realistic matrix sizes

• Based on our cryptanalysis

[BCHIKMRR25]



Our Results: Secret-Key PIR

• Feasibility of low-communication sk-PIR from LPN

– ≈ 𝑁𝜀 communication

– Strong evidence that public-key cryptography is not needed

• Doubly efficient PIR impossible from black-box OWF [Lin-Mook-Wichs 25]

• Minimizing computation in Boolean circuit model

– Server implemented by circuit of size ≈ 4𝑁

• Much better than previous approaches, including heuristics

• Downside: only slightly sublinear in the RAM model

– Based on a new variant of LSN

[CIMR25]



Technical Approach: Secret Dual Codes

𝐷 = span 𝐃 𝐼𝑤 𝐃′

𝑛 =  𝑤 + 𝑘

𝑤

𝐶 = 𝐷⊥ = span 𝐂Query Code

𝑛

𝑘𝐂

Data Code

• Pseudorandom codes over 𝔽 determined by secret key 𝑠𝑘
• Optionally: structured codes for better efficiency



EMVP Protocol

Offline:

𝐼𝑤 𝐃′

𝑛 =  𝑤 + 𝑘

𝑛

𝑘

𝑤

𝐂

෡𝐗 = 𝐗𝐃 + 𝐑

Pseudorandom matrix determined by 𝑠𝑘 

𝐗 𝐗′

𝐃 =



EMVP Protocol

Offline:

Online:

𝐼𝑤 𝐃′

𝑛 =  𝑤 + 𝑘

𝑛

𝑘

𝑤

𝐂

෡𝐗 = 𝐗𝐃 + 𝐑

෥𝑞𝑖 =
𝑞𝑖 

0𝑘 +  𝑐𝑖

Random codeword in 𝐶

⇒ 𝐗𝑞𝑖 = ෡𝐗 ෥𝑞𝑖 − 𝐑 ෥𝑞𝑖

⇑ ෥𝑞𝑖 ⇓ ෡𝐗 ෥𝑞𝑖

𝐃 =



Efficiency: Storage and Communication

Offline:

Online:

𝐼𝑤 𝐃′

𝑛 =  𝑤 + 𝑘

𝑛

𝑘

𝑤

𝐂

෡𝐗 = 𝐗𝐃 + 𝐑

෥𝑞𝑖 =
𝑞𝑖 

0𝑘 +  𝑐𝑖

Storage overhead: 1 + 𝑘/𝑤

⇒ 𝐗𝑞𝑖 = ෡𝐗 ෥𝑞𝑖 − 𝐑 ෥𝑞𝑖

⇑ ෥𝑞𝑖 ⇓ ෡𝐗 ෥𝑞𝑖

𝐃 =

Upload overhead: 1 + 𝑘/𝑤

No download overhead…



Efficiency: Online Computation

Offline:

Online:

𝐼𝑤 𝐃′

𝑛 =  𝑤 + 𝑘

𝑛

𝑘

𝑤

𝐂

෡𝐗 = 𝐗𝐃 + 𝐑

෥𝑞𝑖 =
𝑞𝑖 

0𝑘 +  𝑐𝑖

⇒ 𝐗𝑞𝑖 = ෡𝐗 ෥𝑞𝑖 − 𝐑 ෥𝑞𝑖

⇑ ෥𝑞𝑖 ⇓ ෡𝐗 ෥𝑞𝑖

𝐃 =

Use TDM!

1 + 𝑘/𝑤



Security?

Offline:

Online:

𝐼𝑤 𝐃′

𝑛 =  𝑤 + 𝑘

𝑛

𝑘

𝑤

𝐂

෡𝐗 = 𝐗𝐃 + 𝐑

෥𝑞𝑖 =
𝑞𝑖 

0𝑘 +  𝑐𝑖

⇒ 𝐗𝑞𝑖 = ෡𝐗 ෥𝑞𝑖 − 𝐑 ෥𝑞𝑖

⇑ ෥𝑞𝑖 ⇓ ෡𝐗 ෥𝑞𝑖

𝐃 =

𝑞𝑖 are the same ⇒ rank(෥𝑞𝑖) ≤ 𝑘 + 1 
𝑞𝑖 are random   ⇒ rank(෥𝑞𝑖) ≅ 𝑛

Want:

pseudorandom ෥𝑞𝑖



EMVP Protocol: For Real

Offline:

Online:

𝐼𝑤 𝐃′

𝑛 =  𝑤 + 𝑘

𝑛

𝑘

𝑤

𝐂

෡𝐗 = 𝐗𝐃 + 𝐑

෥𝑞𝑖 =
𝑞𝑖 

0𝑘 +  𝑐𝑖

⇑ ෡𝐐𝑖 ⇓ ෡𝐗෡𝐐𝑖

𝐃 =

• Idea: Make ෥𝑞𝑖 pseudorandom by adding “noise”

• Standard LPN or LWE noise hurts correctness

• Instead:

- Mixture noise: w/prob 𝜇 < 1, replace ෥𝑞𝑖 by a sample from a different distribution (e.g., uniform)

Repeat/encode to correct failures

- Planting noise: reveal a random low-dimensional subspace ෡𝐐𝑖 containing ෥𝑞𝑖

⇒ ෡𝐗 ෥𝑞𝑖 spanned by columns of ෡𝐗෡𝐐𝑖 

// with planting noise

dim(෡𝐐𝑖) overhead

… mitigated later



Learning Subspace with Noise
[Dodis-Kalai-Lovett 09]

𝔽𝑛

𝐶 ≈

𝔽𝑛

secret k-dimensional 

subspace 𝑈 𝐶  𝜇-mixed with 𝑈(𝔽𝑛) 



LSN: History

• First applied for leakage-resilient cryptography [DKL09]

– Similar applications from standard LPN [Yu-Zhang 16]

• Search-LSN studied by learning theory community 
[Chen-De-Vijayaraghavan 21]

– Instance of learning mixtures of linear subspaces

• Structured variants implicit in doubly-efficient secret-key PIR
[Boyle-I-Pass-Wootters 17, Canetti-Holmgren-Richelson 17]

– 𝐶 = secretly permuted Reed-Muller code

– Samples contain low-weight codewords

– Noise hides nonzero values ≈ split LSN noise

– So far withstood analysis [BHW19, BW21, BHMW21]



LSN: Known Attacks

• LSN is equivalent to LPN when 𝔽 is small and 𝑘 = 𝑛 − 1 [DKL09,CDV21]

• LSN in constant-rate regime:

– Implies LPN [DKL09,CIMR25]

• Idea: use dual-LPN search oracle to find sparse linear dependence of samples

– Better attacks on LSN are known [Raz09,DKL09,CDV21,CIMR25]

• Poly-time attack with constant noise rate 𝜇 < 1

• Quasipoly-time attack when 𝜇 = 1 − 1/𝑘𝜀

• Our LSN conjecture: security when rate is constant and 𝜇 = 1 − 𝑜(1)

– Similar conjecture in [DKL09] for 𝜇 = 1 − 1/𝑘𝜀



Algebraic Attack on LSN

• Simple rank attack

– Fix code rate 𝜌 = 𝑘/𝑛 = 1/2 and noise rate 𝜇 = 1/3

– In random experiment, expect first linear dependence after ≈ 𝑛 samples

– In pseudorandom experiment, after at most ≈ 3/4 𝑛 samples

– Avoided by using noise rate 𝜇 > 1/2

• Reducing code rate via tensoring

– The code 𝐶𝑑 ⊆ 𝔽𝑛𝑑
 spanned by the 𝑑-tensors of 𝑐 ∈ 𝐶 has rate 𝜌𝑑

– For any constant 𝜇 < 1 choose constant 𝑑 for which 𝜌𝑑 < 1 − 𝜇

– Apply rank distinguisher to tensored samples

• Equivalently: find degree-𝑑 polynomial 𝑝 ≠ 0 vanishing on all samples

[Raz 09]



LPN ⟹ high-rate LSN with mixture noise

𝑛 = 𝑘 + 𝑘0.1

𝐼𝑘

𝐂’𝒂1

𝒂2

𝒂3

𝒔1𝒔2
𝒂2

𝒂3

𝑏11

=

𝑏12 𝑏13 𝑏14

𝑏21 𝑏22 𝑏23 𝑏24

𝑏31 𝑏32 𝑏33 𝑏34

𝒔3 𝒔4

𝒂1

Bernoulli(𝑘−0.1) over 𝔽

• Each row is noiseless w/prob 1/𝑒
• Secure under LPN with noise rate 𝑘−0.1



Plant in 𝑑-dimensional (affine) space

Regular LSN

𝐂 𝒄2

𝒄3

=

𝒄1

Algebraic attacks require time ≈ 𝑘𝑑  

𝒓1

𝒓2

𝒓3

𝑛 = 3𝑘



Multiply each size-𝑏 block by random 𝛼𝑖 ∈ 𝔽∗ 

Split LSN

𝑛 = 3𝑘

𝐼𝑘
𝐂 =

Algebraic attacks require time ≈ 𝑏𝑘/𝑏  

𝒓1

𝒓2

𝒓3

𝒄2

𝒄3

𝒄1

𝑏 x 𝑑

• Planting in a 𝑑-dimensional product space

• More structured assumption



Split LSN

𝑛 = 3𝑘

𝐼𝑘
𝐂 =

• Avoids factor-𝑑 overhead in upload and server computation

• Still factor-𝑑 overhead in download

... but can be mitigated by composing with LHE

𝒓1

𝒓2

𝒓3

𝒄2

𝒄3

𝒄1

෡𝐗

𝑏 x 𝑑



Concrete Analysis and Benchmarks

32-bit prime field, (w, k, b) = (10000, 2600, 140)



LSN-Based Secret-Key PIR

• EMVP implies PIR with ≈ 𝑁0.5 communication

– Improve to ≈ 𝑁𝜀 via folding

• New features

– Feasibility: Based on LPN with parameters not known to imply PKE/CRH

– Efficiency: Server Boolean circuit size ≈ 4𝑁, under binary variant of split-LSN

• Client’s computation is sublinear, but far from optimal

– Can be improved by composing with any standard (single-server) PIR



Conclusion

• New technique for computing on encrypted data

– Use a secret code to encrypt the data and its dual to encrypt queries

– Combines advantages of HE and 3PC

– Lightweight clients that are easy to distribute

• First-of-their-kind feasibility results from standard LPN 

– Field-agnostic sublinear secure computation

– Secret-key PIR without public-key cryptography

• Security (essentially) for free!

– Based on new LSN-style assumptions 



Further Directions

• Minimal assumption for sk-PIR / EMVP

– Are one-way functions sufficient?

• LSN assumptions

– Search-to-decision reductions?

– More relations between LSN variants and LPN

– Relation with permuted RM codes assumption

– More concrete analysis, also over non-field rings

• Optimize for applications

– Post-processing, distributed clients, distributed setup, …
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