Expedition to Obfustopia: From Well-Studied Assumptions to New Frontier

Huijia (Rachel) Lin UW

Thanks to Yao-Ching Hiesh, Aayush Jain, Stefano Tessaro for their generous help

Conception: One-Way Compilers [Diffie-Hellman 1976]

Can we efficiently transform a program into one that is functionally equivalent and hides secrets?

Conception: One-Way Compilers [Diffie-Hellman 1976]

Ideal Obfuscation for General Programs [Hadaoo, BGIRSVY01]

Hide secrets not efficiently learnable from the input-output behavior of $\boldsymbol{\Pi}$

*up to polynomial time computation advantage

"Usable" Secrets

Impossibility: Ideal Obfuscation [Hadaoo, BGIRSVY01]

Have a program that computes Π

Cannot learn a program that computes Π For all black-box unlearnable programs

Virtual Black-Box (VBB) [Hadaoo, BGIRSVY01]

Hide implementation difference

What does iO hide?

e.g., Does $iO(AES_k)$ hide k?

Weak << VBB

iO, the Best Possible Obfuscation [BGIRSVY'01,GR'08] Then $iO(padded \Pi)$ is as secure as $iO(\Lambda)$, hence as secure as Λ

partially justified by best-possible obfuscation [GR08]

Best-Possible Heuristic: $iO(\Pi)$ hides the best-possible to be hidden, partially justified by best-possible obfuscation [GR08]

VBB Heuristic: VBB possible for <u>natural</u> Π and *P* (e.g., key recovery of AES_k) partially justified in the Pseudo Random Oracle (PRO) Model [JLLW24]

RO Heuristic: White-box access to $SHA3(k,\cdot) = Black-box$ access to RO *Effectively,* the code of $SHA3(k,\cdot)$ acts as a VBB obfuscation of PRF_k

One-Way Functions Public Key Encryption Hardness of Finding Nash **Short Signature Trapdoor Permutation Identity-Based Encryption Attribute-Based Encryption** Fully Homomorphic Encryption * **Multiparty Computation** (Non-Interactive) Zero-Knowledge **Two-Round MPC** Hardness of finding Nash

Obfustopia Still, Simple to design!

Functional Encryption Witness Encryption (Doubly) Deniable Encryption Secret Sharing for NP minimal hardness **Correlation Intractable Hash** $NP \subsetneq ioBPP$ SNARG for NP in the standard model Multi-Party Non-Interactive Key Exchange OWF with poly hard core bits Most Succinct Garbled RAM Crypto **Multilinear Map Constant Round Concurrent ZK** Publicly verifiable quantum money

Can We Construct iO?

$$iO(\Pi) \longrightarrow \overset{\text{Inefficient}}{TT = \dots \Pi(x) \dots}$$

Truth Table, 2ⁿ-size, $|x| = n$

Perfect Security: If Π_0 , Π_1 compute the same function then $TT_0 = TT_1$

Another view of iO security: Reveal TT, and nothing else of Π

First iO [Garg-Gentry-Halevi-Raykova-Sahai-Waters'13]

[BR14, BGKPS14, PST14, GLSW14, AGIS14, Zim15, AB15, GMMSSZ16, DGGMM16, GJ18, BIJMSZ20 ...]

2015-2020, which minimal objects imply iO?

[Lin16, LV16, Lin17, AS17, LT17, GJK18, BIJMSZ20, Agr19, AJS18, LM18, AJS18, JLMS19, JLS19, AP20,GJLS21]

Simpler Tools Suffice for iO e.g.,

Functional Encryption (FE) [AJ15,BV15] Exponential Efficiency iO (xiO) [LPST16]

Simpler Programs Suffice e.g., NC⁰ assuming PRG in NC⁰ [Lin16] LWE Sampler [WW22]

2021-2022, foundations

Theorem [Jain-L-Sahai21, Jain-L-Sahai22]: iO from three well-studied assumptions

1. Learning parity with noise, LPN, over large field \mathbb{F}_{p} [IPS09]

- 2. Local pseudo-random generator, PRG in NC⁰ [Gol00]
- 3. Decision linear, DLIN, on symmetric bilinear map [BB594]

All with subexponential security level

or sparse LPN [RVV24]

- History of study and application in crypto
- Connection with coding theory, information theory, complexity theory, number theory & algebra

Exponential Efficiency iO (xiO) [L-Pass-Seth-Telang16b]

 2^n

xiO, still challenging

"secret computation"

To hide Π , it necessary to hide every intermediate computation value (except for the final outputs)

→ complex, high degree, secret computation

Reduce Secret Computation to NC^o

xiO for NC°, Still Challenging

Learning Parity with Noises (LPN) [BFKL94, IPS09]

Prime modulus $p \quad A \leftarrow \mathbb{F}_p^{l \times k}$, $l > k \quad s' \leftarrow \mathbb{F}_p^k$ Hard to decode random linear codes with errors A , $c = A + e_{\times}$ SPARSE errors: For $0 < \delta < 1$, e.g., $\delta = 0.01$ ($u \in \mathbb{F}$ inverse poly rate $\frac{1}{15}$ $e_i = \begin{cases} u_i \leftarrow \mathbb{F}_p & \text{Inverse poly rate } \frac{1}{k^{\delta}} \\ 0 & \text{otherwise} \end{cases}$ \thickapprox Hard to distinguish A , r $r \leftarrow \mathbb{F}_p^l$ Long history of study in coding theory • Best Known Attacks $O\left(2^{k^{1-\delta}}\right)$ [EKM17] When δ <0.5, unknown if LPN implies PKE

LPN -> Secret Key Encryption

Approximate linear decryption:

$$\langle (\underbrace{a_i, c_i}_{ct_i}), (\underbrace{-s', 1}_{S}) \rangle = x_i + e_i$$

LPN \rightarrow Homomorphic Encryption for NC^o

Homomorphic mult:

$$\langle ct_i, s \rangle \cdot \langle ct_j, s \rangle = (x_i + e_i) \cdot (x_j + e_j)$$
$$\langle ct_i \otimes ct_j, s \otimes s \rangle = x_i x_j + e_{ij}$$

Homomorphic evaluation:

If *f* is local, *err* sparse

Homomorphic Evaluation for NC⁰

 $C_f \cdot s^{\otimes d} = f(x) + err$ Spar

Degree 2 Decoding High degree $Dec(C_f, s)$: $ErrCorrect(C_f \cdot s^{\otimes d}) = f(x) + err$ insecure to leak *err* Relaxation: Allow decoding secret X to depend on s, f, x, e **Decode** (C_f, X) : X is short, sublinear in |f(x)|size $m^{1} \geq^{\epsilon} |f(x)|^{1-\epsilon'}$ $X = (s^{\otimes d}, \forall r, \forall)$ $C_f \cdot s^{\otimes d} - \text{Exparted} f(x, \forall) = f(x)$ Compress(err) = U, V size = $|U, V| < m^{1-\epsilon}$ Expand(U, V) = err degree 2

The Compression Task – A taste of idea

Toy Case: *err* contains 1 non-zero errors (generalize to few errors)

Wide Open

from LPN over \mathbb{F}_p PRG in NC⁰ & Pairing quantum easy

Quantum Mone.

Fully Homomorphic Enc

Enc Deniable

Challenge: Lattice based iO

Grand Goal: iO from Standard Lattice Assumptions!

Poll:

- A. Optimistic > 70%
- B. Half-half 30% ~ 70%
- C. Pessimistic < 30%

So far,

candidates based on multilinear maps [GGHRSW13...]

or, candidates inspired by FHE [BDGM20,GP21,BDGM22,WW21,DQVWW21,HJL25]

Security based on new, simple-to-state, lattice assumptions

Circular Shield-Randomness Security [GP21,BDGM22] Homomosphil/Feudorandom LWE Samples [WW21] Subspace Flooding Assocratic [DQVWW21] Circular Security with Random Openals [HJL25]

LWE

(Circular) LWE:

$$\bar{A} = {\binom{A}{sA+e}} + f^{\operatorname{circ}}(s) \approx \$$$

➔ Fully homomorphic encryption [Gentry09, BV11,GSW13...]

xiO

What Hints?

(Circular) LWE:Function of the secret leak (s) $\bar{A} = \begin{pmatrix} A \\ sA + e \end{pmatrix} + f^{circ}(s)$ $\rightarrow leak(e)$ [WW21,DQVWW21]Inhomogenous trapdoor $T = B^{-1}(P)$ $\rightarrow leak(e)$ [BDJMMPV2,AKY24]Hint: leak(A, s, e)(+ noise leakage)

Structural vulnerabilities in hints (+ noise leakage), alone [HJL21,JLLS23,DJMMV25,AMYY25,HJL25]

Provably Secure Hints?

```
(Circular) LWE:

\bar{A} = \begin{pmatrix} A \\ sA + e \end{pmatrix} + f^{\text{circ}}(s)
```

Circular security with random opening (CRO) assumption [Hsieh-Jain-L25]

Features:

<u>Marginally random</u> hints <u>No</u> natural noise leakage

Hint: leak(A, s, e)

No vulnerabilities in hints alone

Opening *R* of a Regev Encryption ct of zero w.r.t. a pk

Regev Encryption [Reg05]: $\operatorname{RegE}_{pk}(0^{\ell}; R) = \operatorname{ct}$

The ideal world can be efficiently realized by sampling random public key \overline{B} with a trapdoor. [GPV08,MP12]

CRO

 $\operatorname{Hint} = R \leftarrow \mathcal{D}_{\sigma}^{m \times \ell} | \overline{B}R = \operatorname{ct}$

Feature:
$$R \approx_s \mathcal{D}_{\sigma}^{m \times \ell}$$
 in real $R \approx_c \mathcal{D}_{\sigma}^{m \times \ell}$ in ideal

New Target

Hard to find attack on LWE components, by circular security

No attack on hint, since it is random

No attack by trivial combination , since $\overline{B}R$ is known as F(Samp)

Non-trivial ways of combining LWE & opening?

Theoretical

Practical

ABE FHE MPC PIR SNARK signature

"Minimal" assumptions for iO? Less number of assumptions? Remove PRG in NC⁰? Polynomial hardness suffice?

More efficient constructions? Efficient FE/xiO-to-iO transformation?

> Post-quantum Security? *iO from LWE or not?*

Practical iO

-ambitious or naïve?

- 1. A worthy subject to study!
- 2. Great things always come out of ambitious pursuits.
- 3. Efficiency is a work of progress

Opportunity of our time

Thank you!

