Obfuscation of Unitary Quantum Programs

Er-Cheng Tang
University of Washington

joint work with Miryam Huang

Quantum Programs

Quantum circuit

classically described

Main focus

Obfuscation of Quantum Program

Ideally, we would like to obfuscate all kinds of quantum programs.

Past Explorations

Obfuscating quantum programs is highly non-trivial:

Quantum circuits with log-many T gates (iO)
 in the plain model

[BK21]

Dream: obfuscate all kinds of quantum programs.

Classical Oracle Model

- Everyone can turn efficient classical circuits into classical oracles for free
- These classical oracles can be queried in superposition

- We can obfuscate more programs in the classical oracle model
- The classical oracle can be heuristically instantiated with post-quantum iO

Past Explorations

Obfuscating quantum programs is highly non-trivial:

- Quantum circuits with log-many T gates (iO) [BK21]
- Quantum circuits for deterministic classical functions (VBB) [BKNY23]
- Quantum programs for deterministic classical functions (ideal) [BBV24]

Dream: obfuscate all kind of quantum programs.

Past Explorations

Obfuscating quantum programs is highly non-trivial:

- Quantum circuits with log-many T gates (iO) [BK21]
- Quantum circuits for deterministic classical functions (VBB) [BKNY23]
- Quantum programs for deterministic classical functions (ideal) [BBV24]

This work: Quantum programs for unitary transformations (ideal)

Dream: obfuscate all kind of quantum programs.

Φ maps quantum state to quantum states

Quantum Functionality

Program that implements a classical function *F*

Quantum Functionality

 Φ maps quantum state to quantum states $\mathscr{U}(\varrho) = U\varrho U^{\dagger}$ for some unitary operator U

Program that implements a unitary transformation \mathscr{U}

Examples

- Quantum Fourier transform
- Pseudorandom unitary

- State preparation
- Quantum error correction

Our Results

 $\mathcal{U}(\varrho) = U\varrho U^{\dagger}$ for some unitary operator U

For unitary functionalities *W*

- We define the notion of ideal obfuscation for programs with unitary functionalities
- We construct an ideal obfuscation scheme for all quantum programs with unitary functionalities in the classical oracle model
- Our obfuscated programs are reusable (for multiple evaluations)

Outline

- I. Defining Ideal Obfuscation for Unitary Functionalities
- II. Construction

Part I: Defining Ideal Obfuscation

for Unitary Functionalities

Philosophy Behind Ideal Obfuscation

- The only way to use an obfuscated program is to run it on some input
- Is this true in the quantum setting?
 - One can run the program
 - One can rewind the program
 - One can perform a quantum-controlled execution of the program
- If we have a program that computes a classical function F,
 these operations are all (black-box) equivalent to computing F
- If we have a program that computes a unitary transformation W,
 these operations enable more power than computing W

What Are These Additional Powers?

Given a program that computes a unitary transformation W

- Rewinding of the program computes W¹
- Quantum-controlled execution can compute $\operatorname{ctrl-}(U^{-1}AU)$ for every efficient A. (but not $\operatorname{ctrl-}U$)

One can use the program to compute \mathcal{U} , \mathcal{U}^1 , and ctrl- $(U^{-1}AU)$ for every efficient A.

In fact, all of them can be computed with black-box access to $\operatorname{ctrl-}(U^{-1}A_0U)$, for a fixed unitary A_0 (eg. $A_0 = \operatorname{SWAP}$ on 2n qubits)

Obfuscator

Defining Ideal Obfuscation

Evaluator

When \mathscr{U} corresponds to computing a classical function, i.e. $U|x,y\rangle = |x,y\oplus F(x)\rangle$

Our definition recovers the standard definition of ideal obfuscation

Part II: Construction

A Template for Constructing Obfuscation Schemes

- 1. Start with a convenient model of quantum computation
- Apply the quantum computation homomorphically + Final decryption
 (Encryption and authentication are both needed to ensure privacy and integrity)

1. A Model of Quantum Computation [BBV24]

• Classical input $x \in \{0,1\}^n$ and classical output $y \in \{0,1\}^{n'}$

1. A Model of Quantum Computation [BBV24]

- The computation is
 - Quantum: because the measurements are across different "CNOT+H" bases
 - Universal: because adaptively-chosen functions are sufficiently expressive

1. A Model of Quantum Computation [BBV24]

ullet Every efficient program can be efficiently compiled into this form with efficient f_i

2. Quantum Authentication with Classical Decodability [BBV24]

- Quantum authentication with homomorphic measurement in "CNOT+H" bases
- Classical oracle $(eg. f_o Dec_{k,G})$ would help with homomorphic computation

2. Quantum Authentication with Classical Decodability [BBV24]

- Classical oracle $(eg. f. Dec_{k,G})$ would help with homomorphic computation
- Make superposition query to

2. Quantum Authentication with Classical Decodability [BBV24]

- Classical oracle $(eg. f. Dec_{k,G})$ would help with homomorphic computation
- Make superposition query to

2. Quantum Auth with Classical Decodability: Security

- [BBV24] proves some property-based security (privacy, integrity, public verifiability)
- [BBV24] does not fully handle security with partial decoding power
- To remedy this, we propose and achieve simulation security of their scheme, where the adversary can have partial decoding power
- We can reinterpret the scheme as a functional quantum authentication scheme

2. Functional Quantum Authentication Scheme

• We can view each oracle $extit{eq} = f_{\circ} \operatorname{Dec}_{k,G}$ as a functional key

Functional quantum authentication scheme consists of a setup and the following

algorithms:

2. Functional Quantum Authentication Scheme

- We can view each oracle $\mathbf{Q} = f_{\circ} \operatorname{Dec}_{k,G}$ as a functional key
- Functional quantum authentication scheme satisfies simulation security:

Obfuscation Scheme with Classical Inputs & Outputs

The obfuscator creates an encrypted state along with classical oracles $F_1, ..., F_t$ as the obfuscated program

Need to ensure that the input x is consistently used across oracle calls

Obfuscation Scheme with Classical Inputs & Outputs

The obfuscator creates an encrypted state along with classical oracles $F_1, ..., F_t$ as the obfuscated program

- Use one-time tokenized signature [BS16] to ensure input consistency
- This is essentially the construction of [BBV24]

Supporting Quantum Inputs & Outputs

- Obstacles of the previous method
 - The model of quantum computation only deals with classical inputs & outputs
 - Several tasks were accomplished through classical oracles
 - Interpret the classical input
 - Check for input consistency across oracle calls
 - Deliver the classical output
- How could the model of quantum computation support quantum inputs & outputs?
- How could classical oracles handle the same tasks for quantum inputs & outputs?

Solution for Supporting Quantum Inputs & Outputs

We incorporate quantum teleportation into the framework

Our Obfuscation Scheme

is created by the obfuscator

is applied by the evaluator

• The obfuscator produces the following obfuscated program

Our Obfuscation Scheme

is created by the obfuscator

is applied by the evaluator

Execution of the obfuscated program

Addressing Reusability

• (Q, ψ_{aux}) implements a unitary functionality $\mathscr U$

- Crucially, the state ψ'_{aux} is independent of ϱ
- (Q^{-1}, ψ'_{aux}) implements the unitary functionality \mathscr{U}^{-1}

Addressing Reusability

• (Q, ψ_{aux}) implements a unitary functionality $\mathscr U$

- \bullet The state $\psi_{\text{\tiny aux}}$ can be recovered after program execution
- One can evaluate W and W⁻¹ multiple times

To Sum Up

For unitary functionalities

- We properly defined the notion of ideal obfuscation
- We constructed ideal obfuscation for all quantum programs
- Our obfuscated programs are reusable (for multiple evaluations)

We also obtained

A functional quantum authentication scheme with simulation security

Open Problems & Future Directions

- Construct obfuscation schemes for
 - Isometry
 - Isometry + partial trace (which includes randomized classical functions)
- Obfuscate quantum circuits into quantum circuits (without auxiliary quantum states)
- Weaken the assumption to indistinguishability obfuscation
- Applications to quantum complexity theory
 - Instantiate quantum oracles from classical oracles plus quantum states

Thank you