Obfuscation of Unitary
Quantum Programs

Er-Cheng Tang
University of Washington

joint work with Miryam Huang

Quantum Programs

Q

Quantum circuit

classically described

Main focus

Q

Vaux

Quantum program

quantumly described

Obfuscation of Quantum Program

Original - Obfuscated ~ Gibberish
program program

e Ideally, we would like to obfuscate all kinds of quantum programs.

Past Explorations

Obfuscating quantum programs is highly non-trivial:

e Quantum circuits with log-many T gates (iO) [BK21]
in the plain model

v

e Dream: obfuscate all kinds of quantum programs.

Classical Oracle Model

e Everyone can turn efficient classical circuits into classical oracles for free
e These classical oracles can be queried in superposition

C -

e \We can obfuscate more programs in the classical oracle model
e The classical oracle can be heuristically instantiated with post-quantum iO

Past Explorations

Obfuscating quantum programs is highly non-trivial:

Quantum circuits with log-many T gates (iO)

Quantum circuits for deterministic classical functions (VBB)
Quantum programs for deterministic classical functions (ideal)

waux

0

Dream: obfuscate all kind of quantum programs.

(

= o

*
w aux

[BK21]
[BKNY23]
[BBV24]

Past Explorations

Obfuscating quantum programs is highly non-trivial:

e Quantum circuits with log-many T gates (iO) [BK21]
e Quantum circuits for deterministic classical functions (VBB) [BKNY23]
e (Quantum programs for deterministic classical functions (ideal) [BBV24]

This work: Quantum programs for unitary transformations (ideal)

v

e Dream: obfuscate all kind of quantum programs.

@ maps quantum state to quantum states

Quantum Functionality

0 — Q — Do)
Yaux

Program that implements
a quantum mapping @
(Embedding + Unitary + Partial Trace)

@ maps quantum state to quantum states

Quantum Functlonallty 40) = UoU' for some unitary operator U
c— Q [o ¢ — Q [P
waux waux
Program that implements Program that implements
a unitary transformation %/ a quantum mapping @
(Embedding + Unitary + Partial Trace)
Examples
- Quantum Fourier transform - State preparation
- Pseudorandom unitary - Quantum error correction

Our Results o) = UpU" for some unitary operator U

For unitary functionalities %

e We define the notion of ideal obfuscation for programs with unitary functionalities

e We construct an ideal obfuscation scheme for all quantum programs with unitary
functionalities in the classical oracle model

e Our obfuscated programs are reusable (for multiple evaluations)

Outline

|. Defining Ideal Obfuscation for Unitary Functionalities

[I. Construction

Part | Defining Ideal Obfuscation

for Unitary Functionalities

Philosophy Behind Ideal Obfuscation

e The only way to use an obfuscated program is to run it on some input
e Is this true in the quantum setting?

- One can run the program

- One can rewind the program

- One can perform a quantum-controlled execution of the program

e |f we have a program that computes a classical function F,
these operations are all (black-box) equivalent to computing F

e |f we have a program that computes a unitary transformation %,
these operations enable more power than computing %/

What Are These Additional Powers?

Given a program that computes a unitary transformation %/

e Rewinding of the program computes %/’
e Quantum-controlled execution can compute ctrl-(U 'AU) for every efficient A.
(but not ctrl-U)

One can use the program to compute %, %/, and ctrl-(U 'AU) for every efficient A.

In fact, all of them can be computed with black-box access to ctrl-(U "AOU),
for a fixed unitary A, (eg. A, = SWAP on 2n qubits)

[{j] Obfuscator
Defining Ideal Obfuscation § Evalator
If (Q, v,) computes %/o) = UoU"T ! Ctrl—(U'1AOU) \
t
C
Q - Q* =~ | Sim (1%, program-size)
waux w*aux

i)

e When %/ corresponds to computing a classical function, i.e. U |x,y)= |x,yoF(x))

[ctrl—(U‘1AOU)} A At

Our definition recovers the standard definition of ideal obfuscation

Part |l: Construction

A Template for Constructing Obfuscation Schemes

Functional Key /

[@ Program + Empty Workspace } . Homomorphic Key

l— --- Quantum Input

(v
[@ Program + Step-T Workspace } t » Quantum Output

1. Start with a convenient model of quantum computation
2. Apply the quantum computation homomorphically + Final decryption
(Encryption and authentication are both needed to ensure privacy and integrity)

1. A Model of Quantum Computation [BBV24]

e Classical input x € {0,1}* and classical output y € {0,1}"

G, | “CNOT+H” gate f, | Aclassical function: {0,1}" — {0,1} parametrized by x, r,, ..., r,

N\ N\ 4 4 4
m-qubit | — — m]]
. ey] || -1 o -1 || | -1
initial ; fi AG, o 1 MG [5 G
state | — — w B B
/L /. \§ \§ \§
=] |

1. A Model of Quantum Computation [BBV24]

e The computation is
- Quantum: because the measurements are across different “CNOT+H” bases
- Universal: because adaptively-chosen functions are sufficiently expressive

)I x,lr1 Xy Iy, l, rq

(N\ N\ 7 N\ (N\ 7 N\ N\ (N\ 7 N\ N\
m-qubit [—— . - - . - . -
initi] | || -1 || | -1 - || -1
initial G, = f, G, G, -\ fo MG | G, | f MG,
state | — - - - - - - -

. J /L J . /L NG J . /L NG J

= | |

1. A Model of Quantum Computation [BBV24]

e Every efficient program can be efficiently compiled into this form with efficient f,

e The compiler outputs a state —— program —— and descriptions of G, f,
—— memory ———
—— resource
X X, 1, X, Ty evny 1y
m-qubit [— - - - - - -
initi -1 -1 -1
initial | —| G, H f, HG, G, - f, AG, " | ..., G f 16,
state | — - - - - | |
= | |
r Yy y

2. Quantum Authentication with Classical Decodability [BBv24]

e Quantum authentication with homomorphic measurement in “CNOT+H” bases

e C(lassical oracle g_ (eg. f. Dec, .) would help with homomorphic computation

Enc R Dec
@ State H' Modified }—k> 1 or

HomG

Verk, G/ Deck’ .

» | orv

[@ G(State)]—&\>

2. Quantum Authentication with Classical Decodability [BBv24]

e C(lassical oracle (_ (eg. foDec,) would help with homomorphic computation

e Make superposition query to (_

Enc
B state 1 [@ G4 f. G (State)]
l Hom,, T HomG'1
G H f H(ﬂ
&l

[@ G(State)} {@ £, G (State)]

2. Quantum Authentication with Classical Decodability [BBv24]

e C(lassical oracle (_ (eg. foDec,) would help with homomorphic computation

e Make superposition query to f_

B [@ G, f, G (State)]
M M
a a

2. Quantum Auth with Classical Decodability: Security

e [BBV24] proves some property-based security (privacy, integrity, public verifiability)
e [BBV24] does not fully handle security with partial decoding power

e To remedy this, we propose and achieve simulation security of their scheme, where
the adversary can have partial decoding power
e We can reinterpret the scheme as a functional quantum authentication scheme

2. Functional Quantum Authentication Scheme

e We can view each oracle g_ = f. Dec, . as a functional key
e Functional quantum authentication scheme consists of a setup and the following

: . N
algorithms: generates master secret key k

Enc
State ¢ > [@ State }

KeyG
{G E{fHG1} eyGen, > ((_ =f°DeCk,G ,G)

((8),) — 52 . (@),)

2. Functional Quantum Authentication Scheme

e We can view each oracle g_ = f. Dec, . as a functional key
e Functional quantum authentication scheme satisfies simulation security:

 ideal

{HH

25 (8 ounmy), 6)

Q

&\(_ ([@ State}, G)

Obfuscation Scheme with Classical Inputs & Outputs

e The obfuscator creates an encrypted state along with classical oracles f_

F,, ..., F as the obfuscated program

X x, 4, Xy lryy oun s b,
| | |
@ 4 N\ N 2\ (" N\ [N [2\ (" N\ [N\ [
program | — @ H - L@ L | &

- - -
memory | — HomG1— F, —HomG1 — HomGz— iFe —HomG2 ,,,,,, — HomG,_ F —Hom
resource | — — - - - . - e .

\ / & AN /. J . /0 RN J & AN RN
= = =l
1/4 1/4 1/y

e Need to ensure that the input x is consistently used across oracle calls

Obfuscation Scheme with Classical Inputs & Outputs

e The obfuscator creates an encrypted state along with classical oracles f_
F,, ..., F as the obfuscated program

X, S x, 8, &, Xy Sy lryy ooy b,
- | |
@ (N\ N\ N\ 4 N\ N\ N\ 4 N\ N\
program | — HE - — L@ L — @ L

N ! !
| L L -1 L | -1 | | |
memory HOFTIG1 F, HomG1 HomG2 iFe HomG2 ,,,,,, HomG, F
resource | — — — — — — — — —
\ / . J AN J . J L J . J J
1 1 1
1 /4, 1 /4, 1/y

e Use one-time tokenized signature [BS16] to ensure input consistency
e This is essentially the construction of [BBV24]

Supporting Quantum Inputs & Outputs

e Obstacles of the previous method
o The model of quantum computation only deals with classical inputs & outputs
o Several tasks were accomplished through classical oracles
- Interpret the classical input
- Check for input consistency across oracle calls
- Deliver the classical output

e How could the model of quantum computation support quantum inputs & outputs?
e How could classical oracles handle the same tasks for quantum inputs & outputs?

Solution for Supporting Quantum Inputs & Outputs

e We incorporate quantum teleportation into the framework

_ teleport () recover
Q input (result Y2 epr. }[/2 eprout Q output
[@ program, resource, Y2 epr,, Y2epr_,]7
y

teleport
(result y)

D is created by the obfuscator

Our Obfuscation Scheme "] is applied by the evaluator

e The obfuscator produces the following obfuscated program
A
B 0 N)
program g_ g_ g_
Y2 epr.
in F1 F2 Ft
Ve epr,,
resource
— —

Y2 epr

In

Y2 epr

out

|

D is created by the obfuscator

Our Obfuscation Scheme "] is applied by the evaluator
e Execution of the obfuscated program
X, s X, s, & X, S, by ey 4,
(8) 1 | |
program] 1 {_ N - 1 g_]] -] (_ 1 —
veepr, | — N g1 N Ty me?|] B Myt
Woepr.. | HomG1_ F, _HomG1 | HomGz_ I _HomG2 R B HomG’_ F _HomGt B
resource — - - — - - - - - || L
L J N J 0 J U J N J 0 J U J N J U AN J
| | |
1/ 1 /4, 1/y

X
Caution! EPR pairs may not be reusable

Our work shows that this issue can be resolved if we are
obfuscating programs with unitary functionalities!

Addressing Reusability

e (O, v,)implements a unitary functionality %/

0 — — U) — 0

. 0" | -

N I U - E—
waux l/j aux waux

e Crucially, the state y'_ _ is independent of ¢
e (07, y'..) iImplements the unitary functionality AU

Addressing Reusability

e (O, v,)implements a unitary functionality %/

0" o)

o — >< - OZ[‘I (On)

. o' | -

N I U - E—
waux l/j aux waux

e The state y_ can be recovered after program execution
e One can evaluate %/ and %/ multiple times

To Sum Up

For unitary functionalities

e We properly defined the notion of ideal obfuscation
e We constructed ideal obfuscation for all quantum programs
e Our obfuscated programs are reusable (for multiple evaluations)

NNENIEN

We also obtained

e A functional quantum authentication scheme with simulation security

Open Problems & Future Directions

e Construct obfuscation schemes for
- Isometry
- Isometry + partial trace (which includes randomized classical functions)

e Obfuscate quantum circuits into quantum circuits (without auxiliary quantum states)
e Weaken the assumption to indistinguishability obfuscation

e Applications to quantum complexity theory
- Instantiate quantum oracles from classical oracles plus quantum states

Thank you

Slides are prepared jointly by Miryam Huang and Er-Cheng Tang

