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Main focus

Quantum Programs

Quantum circuit
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Quantum program
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Obfuscation of Quantum Program

● Ideally, we would like to obfuscate all kinds of quantum programs.

 Obfuscated
program

Original
program ≈ Gibberish



Past Explorations

Obfuscating quantum programs is highly non-trivial:

● Dream:  obfuscate all kinds of quantum programs.

in the plain model
● Quantum circuits with log-many T gates   (iO)              [BK21]



Classical Oracle Model

● Everyone can turn efficient classical circuits into classical oracles for free

𝐶

● We can obfuscate more programs in the classical oracle model
● The classical oracle can be heuristically instantiated with post-quantum iO

● These classical oracles can be queried in superposition



Obfuscating quantum programs is highly non-trivial:

● Quantum circuits with log-many T gates   (iO)              [BK21]

Past Explorations

● Quantum circuits for deterministic classical functions   (VBB)     [BKNY23]
● Quantum programs for deterministic classical functions   (ideal)   [BBV24]

● Dream:  obfuscate all kind of quantum programs.

𝑄*
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Obfuscating quantum programs is highly non-trivial:

● Quantum circuits with log-many T gates   (iO)              [BK21]

Past Explorations

● Quantum circuits for deterministic classical functions   (VBB)     [BKNY23]
● Quantum programs for deterministic classical functions   (ideal)   [BBV24]

This work: Quantum programs for unitary transformations  (ideal)

● Dream:  obfuscate all kind of quantum programs.



Quantum Functionality

Program that implements
a quantum mapping 𝛷

𝑄
𝜓aux

𝜌 𝛷(𝜌)

𝛷 maps quantum state to quantum states

(Embedding + Unitary + Partial Trace)

Program that implements
a classical function 𝐹

𝑄
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𝑥 𝐹(𝑥)



Quantum Functionality

Examples

Program that implements
a quantum mapping 𝛷

𝑄
𝜓aux

𝜌 𝛷(𝜌)

𝒰(𝜌) = 𝑈𝜌𝑈†  for some unitary operator 𝑈

- Quantum Fourier transform
- Pseudorandom unitary

- State preparation
- Quantum error correction

𝛷 maps quantum state to quantum states

(Embedding + Unitary + Partial Trace)

Program that implements
a unitary transformation 𝒰 

𝑄
𝜓aux

𝜌 𝒰(𝜌)



Our Results

For unitary functionalities 𝒰

● We define the notion of ideal obfuscation for programs with unitary functionalities
● We construct an ideal obfuscation scheme for all quantum programs with unitary 

functionalities in the classical oracle model
● Our obfuscated programs are reusable (for multiple evaluations)

𝒰(𝜌) = 𝑈𝜌𝑈†  for some unitary operator 𝑈



Outline

I. Defining Ideal Obfuscation for Unitary Functionalities

II. Construction



Part I: Defining Ideal Obfuscation
for Unitary Functionalities



● The only way to use an obfuscated program is to run it on some input
● Is this true in the quantum setting?

- One can run the program
- One can rewind the program
- One can perform a quantum-controlled execution of the program

● If we have a program that computes a classical function 𝐹,
these operations are all (black-box) equivalent to computing 𝐹

● If we have a program that computes a unitary transformation 𝒰,
these operations enable more power than computing 𝒰

Philosophy Behind Ideal Obfuscation



Given a program that computes a unitary transformation 𝒰

● Rewinding of the program computes 𝒰-1

● Quantum-controlled execution can compute ctrl-(𝑈 
-1𝐴𝑈) for every efficient 𝐴.

(but not ctrl-U)

One can use the program to compute 𝒰, 𝒰-1, and ctrl-(𝑈 
-1𝐴𝑈) for every efficient 𝐴.

In fact, all of them can be computed with black-box access to ctrl-(𝑈 
-1𝐴0𝑈), 

for a fixed unitary 𝐴0  (eg. 𝐴0 = SWAP on 2𝑛 qubits)

What Are These Additional Powers?



● When 𝒰 corresponds to computing a classical function, i.e. 𝑈 |𝑥,𝑦〉=  |𝑥,𝑦⊕𝐹(𝑥)〉

If (𝑄, 𝜓aux ) computes 𝒰(𝜌) = 𝑈𝜌𝑈 
-1

Defining Ideal Obfuscation

𝑄*
𝜓*aux

𝑄
𝜓aux

ctrl-(𝑈 
-1𝐴0𝑈)

𝑆𝑖𝑚 (1𝜆, program-size)≈

𝒰ctrl-(𝑈 
-1𝐴0𝑈) ⇔ 𝐹⇔

Our definition recovers the standard definition of ideal obfuscation 

Obfuscator

Evaluator



Part II: Construction



A Template for Constructing Obfuscation Schemes

 Program  +  Empty Workspace

 Program  +  Step-i Workspace Quantum Output Program  +  Step-T Workspace

Functional Key / 
Homomorphic Key

Quantum Input

1. Start with a convenient model of quantum computation
2. Apply the quantum computation homomorphically + Final decryption

(Encryption and authentication are both needed to ensure privacy and integrity)



1. A Model of Quantum Computation [BBV24]

𝑟1

. . . . . .

𝑟2

𝐺2 𝐺2
-1𝑓2

𝑦

● Classical input 𝑥 ∈ {0,1}𝑛 and classical output 𝑦 ∈ {0,1}𝑛′

𝐺1 𝐺1
-1𝑓1 𝐺𝑡 𝐺𝑡

-1𝑓𝑡

𝐺𝑖 𝑓𝑖“CNOT+H” gate A classical function: {0,1}𝑚 → {0,1} parametrized by 𝑥, 𝑟1, …, 𝑟𝑖-1

𝑥 𝑥, 𝑟1 𝑥, 𝑟1, …, 𝑟𝑡-1

𝑚-qubit

initial 

state



1. A Model of Quantum Computation [BBV24]

● The computation is
- Quantum: because the measurements are across different “CNOT+H” bases
- Universal: because adaptively-chosen functions are sufficiently expressive

𝑟1

. . . . . .

𝑟2

𝐺2 𝐺2
-1𝑓2

𝑦

𝐺1 𝐺1
-1𝑓1 𝐺𝑡 𝐺𝑡

-1𝑓𝑡

𝑥 𝑥, 𝑟1 𝑥, 𝑟1, …, 𝑟𝑡-1

𝑚-qubit

initial 

state



1. A Model of Quantum Computation [BBV24]

● Every efficient program can be efficiently compiled into this form with efficient 𝑓𝑖
program

resource

memory

● The compiler outputs a state                                    and descriptions of 𝐺𝑖 , 𝑓𝑖

𝑟1

. . . . . .

𝑟2

𝐺2 𝐺2
-1𝑓2

𝑦

𝐺1 𝐺1
-1𝑓1 𝐺𝑡 𝐺𝑡

-1𝑓𝑡

𝑥 𝑥, 𝑟1 𝑥, 𝑟1, …, 𝑟𝑡-1

𝑚-qubit

initial 

state



Ver𝑘,𝐺 / Dec𝑘,𝐺
丄  or  𝑣

2. Quantum Authentication with Classical Decodability [BBV24]

● Quantum authentication with homomorphic measurement in “CNOT+H” bases

● Classical oracle         (eg.  𝑓。Dec𝑘,𝐺 )  would help with homomorphic computation

● Quantum authentication

Hom𝐺

 𝐺 ( State )

State
Enc𝑘

 State   Modified
Dec𝑘

丄  or State



2. Quantum Authentication with Classical Decodability [BBV24]

● Classical oracle         (eg.  𝑓。Dec𝑘,𝐺 )  would help with homomorphic computation

● Make superposition query to  

Hom𝐺

 𝐺 ( State )

State
Enc𝑘

 State

Hom𝐺
-1

 𝐺-1。𝑓。𝐺 ( State )

𝑓。𝐺 ( State )

𝑟
𝑟

𝐺 𝐺 
-1𝑓



2. Quantum Authentication with Classical Decodability [BBV24]

● Classical oracle         (eg.  𝑓。Dec𝑘,𝐺 )  would help with homomorphic computation

● Make superposition query to  

Hom𝐺

 𝐺 ( State )

State
Enc𝑘

 State

Hom𝐺
-1

𝑓。𝐺 ( State )

 𝐺-1。𝑓。𝐺 ( State )

𝑟
𝑟

𝐺 𝐺 
-1𝑓



2. Quantum Auth with Classical Decodability: Security

● [BBV24] proves some property-based security (privacy, integrity, public verifiability)
● [BBV24] does not fully handle security with partial decoding power

● To remedy this, we propose and achieve simulation security of their scheme, where 
the adversary can have partial decoding power

● We can reinterpret the scheme as a functional quantum authentication scheme



2. Functional Quantum Authentication Scheme

● We can view each oracle         =  𝑓。Dec𝑘,𝐺  as a functional key
● Functional quantum authentication scheme consists of a setup and the following 

algorithms:

State
Enc𝑘  State

(      ,      )(      ,      ) aniclla
Eval𝐺    aniclla  

  ⊕ out

generates master secret key k

KeyGen𝑘𝐺 𝐺-1𝑓         =  𝑓。Dec𝑘,𝐺       𝐺(                 ,    )



2. Functional Quantum Authentication Scheme

● We can view each oracle         =  𝑓。Dec𝑘,𝐺  as a functional key
● Functional quantum authentication scheme satisfies simulation security:

≈

𝐼𝑑𝑒𝑎𝑙 (             )

𝑆𝑖𝑚

𝐺 𝐺-1𝑓

State

 Dummy (            , 𝐺 ) State(            , 𝐺 )



● The obfuscator creates an encrypted state along with classical oracles
𝐹1, ..., 𝐹𝑡 as the obfuscated program

Obfuscation Scheme with Classical Inputs & Outputs

 
program

resource

memory

𝑥, 𝓁𝑟1 , … , 𝓁𝑟𝑡-1

⊥ / 𝑦

𝑥 𝑥, 𝓁𝑟1

Hom Hom-1𝐹1𝐺1 𝐺1

Hom Hom-1𝐹2𝐺2 𝐺2

Hom Hom-1𝐹𝑡𝐺𝑡 𝐺𝑡

⊥ / 𝓁𝑟2⊥ / 𝓁𝑟1

. . . . . .

● Need to ensure that the input 𝑥 is consistently used across oracle calls



● This is essentially the construction of [BBV24]

● The obfuscator creates an encrypted state along with classical oracles
𝐹1, ..., 𝐹𝑡 as the obfuscated program

Obfuscation Scheme with Classical Inputs & Outputs

● Use one-time tokenized signature [BS16] to ensure input consistency

 
program

resource

memory

𝑥, 𝑠, 𝓁𝑟1 , … , 𝓁𝑟𝑡-1

⊥ / 𝑦

𝑥, 𝑠 𝑥, 𝑠, 𝓁𝑟1

Hom Hom-1𝐹1𝐺1 𝐺1

Hom Hom-1𝐹2𝐺2 𝐺2

Hom Hom-1𝐹𝑡𝐺𝑡 𝐺𝑡

⊥ / 𝓁𝑟2⊥ / 𝓁𝑟1

. . . . . .



● Obstacles of the previous method
○ The model of quantum computation only deals with classical inputs & outputs
○ Several tasks were accomplished through classical oracles

- Interpret the classical input
- Check for input consistency across oracle calls
- Deliver the classical output

● How could the model of quantum computation support quantum inputs & outputs?
● How could classical oracles handle the same tasks for quantum inputs & outputs?

Supporting Quantum Inputs & Outputs



● We incorporate quantum teleportation into the framework

teleport
(result 𝑦)

Solution for Supporting Quantum Inputs & Outputs

½ eprin

½ eprin

½ eprout

½ eprout program,  resource,  ½ eprin ,  ½ eprout

Q input
teleport
(result 𝑥)

𝑦

Q output
recover

𝑥



Our Obfuscation Scheme
is created by the obfuscator

is applied by the evaluator

½ eprin

½ epr out

 
program

½ eprout

½ eprin . . . . . .

● The obfuscator produces the following obfuscated program

resource

𝐹1 𝐹2 𝐹𝑡



Our Obfuscation Scheme
is created by the obfuscator

is applied by the evaluator

½ eprin

½ epr out

 
program

½ eprout

½ eprin

⊥ / 𝑦

𝑥, 𝑠 𝑥, 𝑠, 𝓁𝑟1 𝑥, 𝑠, 𝓁𝑟1 , … , 𝓁𝑟𝑡-1

⊥ / 𝓁𝑟2⊥ / 𝓁𝑟1

. . . . . .. . . . . .

● Execution of the obfuscated program

resource

Hom
𝐺2

Hom-1
𝐺2

Hom
𝐺𝑡

Hom-1
𝐺𝑡

Q input

Hom
𝐺1

Hom-1
𝐺1

𝐹1 𝐹2 𝐹𝑡

Q output
𝑦

 ½ eprout

𝑥

½ eprin Q input
● Caution! EPR pairs may not be reusable
● Our work shows that this issue can be resolved if we are 

obfuscating programs with unitary functionalities! 



● Crucially, the state 𝜓′aux  is independent of 𝜌

Addressing Reusability

𝑄
𝜌 𝒰(𝜌)

  ⊗
𝜓′aux

● (𝑄, 𝜓aux ) implements a unitary functionality 𝒰

  ⊗
𝜓aux

𝑄 
-1

𝜌
  ⊗
  𝜓aux

● (𝑄 
-1, 𝜓′aux ) implements the unitary functionality 𝒰 

-1



● The state 𝜓aux can be recovered after program execution

● One can evaluate 𝒰 and 𝒰 
-1 multiple times

Addressing Reusability

𝑄
⊗
𝜌

𝒰(𝜌)

 
𝜓′aux

● (𝑄, 𝜓aux ) implements a unitary functionality 𝒰

  ⊗
𝜓aux

⊗

𝒰-1(0𝑛)
  ⊗
  𝜓aux

𝑄 
-1

0𝑛



To Sum Up

For unitary functionalities

● We properly defined the notion of ideal obfuscation ✓

● We constructed ideal obfuscation for all quantum programs ✓

● Our obfuscated programs are reusable (for multiple evaluations) ✓

● A functional quantum authentication scheme with simulation security ✓

We also obtained



Open Problems & Future Directions

● Construct obfuscation schemes for
- Isometry
- Isometry + partial trace  (which includes randomized classical functions)

● Obfuscate quantum circuits into quantum circuits (without auxiliary quantum states)
● Weaken the assumption to indistinguishability obfuscation

● Applications to quantum complexity theory
- Instantiate quantum oracles from classical oracles plus quantum states



Thank you

Slides are prepared jointly by Miryam Huang and Er-Cheng Tang


