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Lattice Problems in Cryptography

𝑨 𝟎

Short integer solutions (SIS): Given 𝑨 ← ℤ𝑞
𝑛×𝑚, find low-norm 𝒙 ≠ 𝟎 such that 𝑨𝒙 = 𝟎

𝒙

𝑛

𝑚 = Θ(𝑛 log 𝑞)

Yields one-way functions, collision-resistant hash functions, digital signatures

[Ajt96]

(throughout this talk)



Lattice Problems in Cryptography

Learning with errors (LWE): Distinguish 𝑨, 𝒔T𝑨 + 𝒆T  from 𝑨, 𝒖T [Reg05]

𝑨
𝒔T 𝒆T

≈
𝒖T

Short integer solutions (SIS): Given 𝑨 ← ℤ𝑞
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But… not everything
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Indistinguishability obfuscation
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Most schemes did not have a concrete hardness assumption 
or were based on a hardness assumption that was 
subsequently broken (in the most general setting)
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Recent developments:
• Broadcast encryption from public-coin evasive LWE [Wee22]

• Witness encryption based on private-coin evasive LWE [Tsa22, VWW22]

• New indistinguishability obfuscation candidates: [BDJMMPV25, HJL25, AMYY25, CLW25, SBP25] 
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But… not everything

Broadcast encryption

However, many lattice-inspired approaches

Witness encryption

Indistinguishability obfuscation

[BV22]

[GGH15, CVW18]

[GGH15, Agr19, CHVW19, AP20, BDGM20a, WW21, GP21, BDGM20b, DQVWW21]

Most schemes did not have a concrete hardness assumption 
or were based on a hardness assumption that was 
subsequently broken (in the most general setting)

This talk: explore lattice assumptions with minimum additional structure that 
allow us to reason about security of simple (and natural) constructions of new 
cryptographic primitives

Hope: over time, will be able to reduce to the standard lattice problems

Very successful in the area of bilinear maps: many new assumptions (e.g., 
composite-order, 𝑞-type, etc.), but can now do most things from 𝑘-Lin

Recent developments:
• Broadcast encryption from public-coin evasive LWE [Wee22]

• Witness encryption based on private-coin evasive LWE [Tsa22, VWW22]
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The Succinct LWE Family of Assumptions

General template: SIS/LWE assumptions hold with respect to 𝑨 even given some “hint”

Hint is a matrix 𝑫ℓ related to 𝑨 and a (gadget) trapdoor 𝑻 for 𝑫ℓ

Alternatively: low-norm vectors in correlated cosets of ℒ⊥ 𝑨

𝑨 𝑾1

⋱ ⋮
𝑨 𝑾ℓ

𝑻1

⋮
𝑻ℓ

𝑻

=
𝑮

⋱
𝑮

𝑫ℓ
𝑮 = 𝑰𝑛 ⊗ 1,2, … , 2 log 𝑞 −1

𝑻

𝑨, 𝑾𝑖 ∈ ℤ𝑞
𝑛×𝑚

𝑻𝑖 , 𝑻 ∈ ℤ𝑞
𝑚×ℓ𝑚

Typically: 𝑻 is random gadget trapdoor (a discrete Gaussian conditioned on 𝑫ℓ𝑻 = 𝑰ℓ ⊗ 𝑮)



The Succinct LWE Family of Assumptions

𝑨 𝑾1

⋱ ⋮
𝑨 𝑾ℓ

𝑻𝟏

⋮
𝑻ℓ

𝑻

=
𝑮

⋱
𝑮

𝑫ℓ 𝑻

𝑨, 𝑾𝑖 ∈ ℤ𝑞
𝑛×𝑚

𝑻𝑖 , 𝑻 ∈ ℤ𝑞
𝑚×ℓ𝑚

SIS/LWE holds with respect to 𝑨 given 𝑫ℓ, 𝑻

Basis-augmented SIS (BASIS) [WW23]

Concrete instances:

𝑨 ← ℤ𝑞
𝑛×𝑚, 𝑾𝑖 = 𝑾𝑖

′𝑮 where 𝑾𝑖
′ ← ℤ𝑞

𝑛×𝑛

ℓ-succinct LWE [Wee24]

𝑨 ← ℤ𝑞
𝑛×𝑚, 𝑾𝑖 ← ℤ𝑞

𝑛×𝑚

BASIS ⇒ ℓ-succinct SIS (similarly for LWE variant)



The Succinct LWE Family of Assumptions

𝑨 𝑾1

⋱ ⋮
𝑨 𝑾ℓ

𝑻𝟏

⋮
𝑻ℓ

𝑻

=
𝑮

⋱
𝑮

𝑫ℓ 𝑻

𝑨, 𝑾𝑖 ∈ ℤ𝑞
𝑛×𝑚

𝑻𝑖 , 𝑻 ∈ ℤ𝑞
𝑚×ℓ𝑚

SIS/LWE holds with respect to 𝑨 given 𝑫ℓ, 𝑻

Can also consider structured 𝑨



The Succinct LWE Family of Assumptions

𝑨 𝑾1

⋱ ⋮
𝑨 𝑾ℓ

𝑻𝟏

⋮
𝑻ℓ

𝑻

=
𝑮

⋱
𝑮

𝑫ℓ 𝑻

𝑨, 𝑾𝑖 ∈ ℤ𝑞
𝑛×𝑚

𝑻𝑖 , 𝑻 ∈ ℤ𝑞
𝑚×ℓ𝑚

SIS/LWE holds with respect to 𝑨 given 𝑫ℓ, 𝑻

Can also consider structured 𝑨: sample 𝑾1, … , 𝑾ℓ ← ℤ𝑞
𝑛×𝑚 and 𝑹1, … , 𝑹ℓ ← 𝐷ℤ,𝜎

𝑚×𝑚

Define 𝑨 = ⋯ 𝑾𝑖𝑹𝑗 + 𝛿𝑖𝑗𝑮 ⋯ ∈ ℤ𝑞
𝑛×ℓ2𝑚 where 𝛿𝑖𝑗 = 1 if 𝑖 = 𝑗 and 𝛿𝑖𝑗 = 0 otherwise

The matrix 𝑫ℓ has a public trapdoor 𝑻 =
vec 𝑰ℓ ⊗ 𝑰ℓ𝑚

−𝑹
 where 𝑹 = [𝑹1 ∣ ⋯ ∣ 𝑹ℓ]

LWE assumption with respect to 𝑨 given 𝑫ℓ, 𝑻 asks that

𝒔T 𝑾𝑖𝑹𝑗 + 𝛿𝑖𝑗𝑮 + 𝒆𝑖𝑗
𝑇  is pseudorandom for all 𝑖, 𝑗 ∈ ℓ  given 𝑾𝑖 , 𝑹𝑖

decomposed LWE [AMR25]
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𝑨 𝑾1

⋱ ⋮
𝑨 𝑾ℓ

𝑻𝟏

⋮
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𝑻

=
𝑮

⋱
𝑮

𝑫ℓ 𝑻

𝑨, 𝑾𝑖 ∈ ℤ𝑞
𝑛×𝑚

𝑻𝑖 , 𝑻 ∈ ℤ𝑞
𝑚×ℓ𝑚

SIS/LWE holds with respect to 𝑨 given 𝑫ℓ, 𝑻

Sample 𝑾1, … , 𝑾ℓ ← ℤ𝑞
𝑛×𝑚 and 𝑹1 … , 𝑹ℓ ← 𝐷ℤ,𝜎

𝑚×𝑚

Define 𝑨 = ⋯ 𝑾𝑖𝑹𝑗 + 𝛿𝑖𝑗𝑮 ⋯ ∈ ℤ𝑞
𝑛×ℓ2𝑚 where 𝛿𝑖𝑗 = 1 if 𝑖 = 𝑗 and 𝛿𝑖𝑗 = 0 otherwise

Given 𝑹 = [𝑹1 ∣ ⋯ ∣ 𝑹ℓ], the matrix 𝑫ℓ has a public trapdoor 𝑻 =
vec 𝑰ℓ ⊗ 𝑰ℓ𝑚

−𝑹
LWE assumption with respect to 𝑨 asks that

𝒔T 𝑾𝑖𝑹𝑗 + 𝛿𝑖𝑗𝑮 + 𝒆𝑖𝑗
𝑇  is pseudorandom for all 𝑖, 𝑗 ∈ ℓ  given 𝑾𝑖 , 𝑹𝑖

decomposed LWE [AMR25]

The decomposed LWE assumption does not refer to any trapdoors!

Assumption similar in spirit to a “circular security” assumption (note: without the 𝛿𝑖𝑗𝑮 

term, assumption is implied by plain LWE)

Open problem: show hardness of decomposed LWE from plain LWE (or some worst-case 
lattice problem)



The Succinct LWE Family of Assumptions

𝑨 𝑾1
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𝑻𝟏

⋮
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Basis-augmented SIS (BASIS) [WW23]

Concrete instances:

𝑨 ← ℤ𝑞
𝑛×𝑚, 𝑾𝑖 = 𝑾𝑖

′𝑮 where 𝑾𝑖
′ ← ℤ𝑞

𝑛×𝑛

ℓ-succinct LWE [Wee24]

𝑨 ← ℤ𝑞
𝑛×𝑚, 𝑾𝑖 ← ℤ𝑞

𝑛×𝑚

BASIS ⇒ ℓ-succinct SIS (similarly for LWE variant)

decomposed LWE [AMR25]

𝑾𝑖 ← ℤ𝑞
𝑛×𝑚, 𝑹𝑖 ← 𝐷ℤ,𝜎

𝑚×𝑚, 𝑨 = ⋯ 𝑾𝑖𝑹𝑗 + 𝛿𝑖𝑗𝑮 ⋯

succinct LWE ⇒ decomposed LWE
(with super-polynomial modulus)

trapdoor is public



The Succinct LWE Family of Assumptions

𝑨 𝑾1
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𝑨 𝑾ℓ
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𝑚×ℓ𝑚

SIS/LWE holds with respect to 𝑨 given 𝑫ℓ, 𝑻

Basis-augmented SIS (BASIS) [WW23]

Concrete instances:

𝑨 ← ℤ𝑞
𝑛×𝑚, 𝑾𝑖 = 𝑾𝑖

′𝑮 where 𝑾𝑖
′ ← ℤ𝑞

𝑛×𝑛

ℓ-succinct LWE [Wee24]

𝑨 ← ℤ𝑞
𝑛×𝑚, 𝑾𝑖 ← ℤ𝑞

𝑛×𝑚

decomposed LWE [AMR25]

𝑾𝑖 ← ℤ𝑞
𝑛×𝑚, 𝑹𝑖 ← 𝐷ℤ,𝜎

𝑚×𝑚, 𝑨 = ⋯ 𝑾𝑖𝑹𝑗 + 𝛿𝑖𝑗𝑮 ⋯ 2026: LWE?



ℓ-Succinct LWE

Two axis for hardness:

0

broken

width of 𝑾

Open!

𝑂 1 𝑂 ℓ𝑛 log 𝑞

LWE

[Wee24]

LWE is hard with respect to 𝑨 given a trapdoor 𝑻 for a related matrix 𝑫ℓ

𝑨

⋱

𝑨

𝑾1

⋮

𝑾ℓ

𝑫ℓ =

Applications need the width 
to be 𝑜 ℓ ⋅ poly 𝑛, log 𝑞



ℓ-Succinct LWE

LWE is hard with respect to 𝑨 given a trapdoor 𝑻 for a related matrix 𝑫ℓ

𝑨

⋱

𝑨

𝑾1

⋮

𝑾ℓ

𝑫ℓ =

Two axis for hardness:

ℓ = 1

LWE

number of blocks ℓ

[Wee24]

ℓ = 2𝑚2

essentially reduces to
2𝑚2-succinct LWE



Applications of Succinct and Decomposed LWE

Functional commitments for all circuits (and SNARGs for P/poly)

Optimal broadcast encryption

Nearly-optimal key-policy (and ciphertext-policy) ABE for circuits

Registered ABE for circuits

Fully succinct randomized encodings

Laconic function evaluation (and ABE) for RAM programs

Distributed broadcast encryption

[WW23, WW23b, Wee24, Wee25]

[Wee25]

[CW24, CHW25, WW25]

[Wee24, Wee25]

[CHW25, WW25]

[AMR25]

[AMR25]



Applications of Succinct and Decomposed LWE

Functional commitments for all circuits (and SNARGs for P/poly)

Optimal broadcast encryption

Nearly-optimal key-policy (and ciphertext-policy) ABE for circuits

Registered ABE for circuits

Fully succinct randomized encodings

Laconic function evaluation (and ABE) for RAM programs

Distributed broadcast encryption

[WW23, WW23b, Wee24, Wee25]

[Wee25a]

[CW24, CHW25, WW25]

[Wee24, Wee25]

[CHW25, WW25]

[AMR25]

[AMR25]

[Wee25b]: Functional commitments from circuits 
and SNARGs for P/poly from standard SIS!



Roadmap

𝑨 𝑾1

⋱ ⋮
𝑨 𝑾ℓ

𝑻𝟏

⋮
𝑻ℓ

𝑻

=
𝑮

⋱
𝑮

𝑫ℓ 𝑻

SIS/LWE holds with respect to 𝑨 given 𝑫ℓ, 𝑻

Succinct LWE Family of Assumptions

Commit pp, 𝑴 → 𝑪 ∈ ℤ𝑞
𝑛×𝑚

Open pp, 𝑴 → 𝒁 ∈ ℤ𝑞
𝑚×𝐿

𝑪 ⋅ 𝑽𝐿 = 𝑴 − 𝑨 ⋅ 𝒁

Matrix Commitments Distributed 
broadcast encryption

Registered ABE for 
circuits

KP/CP-ABE with 
succinct ciphertexts

Functional 
commitments
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A Useful Abstraction: Matrix Commitments
[Wee25]

Succinct commitment to a matrix 𝑴 ∈ ℤ𝑞
𝑛×𝐿 

Commit pp, 𝑴 → 𝑪 ∈ ℤ𝑞
𝑛×𝑚 Open pp, 𝑴 → 𝒁 ∈ ℤ𝑞

𝑚×𝐿

𝑪 𝑽𝐿
𝑴𝑛

𝑚 𝐿

𝑨 𝒁

𝑚𝐿 𝐿

low-norm low-norm

determined by the public parameters pp

deterministic algorithms



A Useful Abstraction: Matrix Commitments
[Wee25]

Succinct commitment to a matrix 𝑴 ∈ ℤ𝑞
𝑛×𝐿 

Commit pp, 𝑴 → 𝑪 ∈ ℤ𝑞
𝑛×𝑚 Open pp, 𝑴 → 𝒁 ∈ ℤ𝑞

𝑚×𝐿

𝑪 𝑽𝐿
𝑴𝑛

𝑚 𝐿

𝑨 𝒁

𝑚𝐿 𝐿

low-norm low-norm

Instantiation: pp is uniform random string of length poly 𝑚, log 𝐿

deterministic algorithms



A Useful Abstraction: Matrix Commitments
[Wee25]

Succinct commitment to a matrix 𝑴 ∈ ℤ𝑞
𝑛×𝐿 

Commit pp, 𝑴 → 𝑪 ∈ ℤ𝑞
𝑛×𝑚 Open pp, 𝑴 → 𝒁 ∈ ℤ𝑞

𝑚×𝐿

𝑪 𝑽𝐿
𝑴𝑛

𝑚 𝐿

𝑨 𝒁

𝑚𝐿 𝐿

low-norm low-norm

deterministic algorithms

Security property: pp, 𝒔T𝑨 + 𝒆T ≈ pp, 𝒖T

LWE holds with respect to 𝑨 given pp



Distributed Broadcast Encryption

skAlice

pkAlice
Users generate public/private keys 

independently

[WQZD14, BZ14]

skBob

pkBob

skCarol

pkCarol

public-key directory

(Alice, pkAlice)

(Bob, pkBob)

(Carol, pkCarol)

Suppose we want to send a 
message to an arbitrary set of 𝑁 

users

Trivial solution: encrypt individual 
to each user; ciphertext size scales 

linearly with 𝑁

Distributed broadcast encryption: encrypt to
an arbitrary set of public keys with a short ciphertext



Distributed Broadcast Encryption

Encrypt pp, pkid id∈𝑆, 𝑚 → ct

Decrypt pp, pkid id∈𝑆, skid, ct → 𝑚

Can encrypt a message 𝑚 to any set of user public keys

Efficiency: ct = 𝑚 + poly 𝜆, log 𝑆

Correctness: Any secret key skid associated with id ∈ 𝑆 can decrypt

public-key directory

(Alice, pkAlice)

(Bob, pkBob)

(Carol, pkCarol)

[WQZD14, BZ14]

Setup 1𝜆 → pp

Generates a set of public parameters

KeyGen pp, id → pkid, skid

Samples a key-pair for a user

Security: ct computationally hides 𝑚 if adversary does not have a 
key for an identity id ∈ 𝑆



Distributed Broadcast Encryption

Encrypt pp, pkid id∈𝑆, 𝑚 → ct

Decrypt pp, pkid id∈𝑆, skid, ct → 𝑚

Can encrypt a message 𝑚 to any set of user public keys

Efficiency: ct = 𝑚 + poly 𝜆, log 𝑆

Correctness: Any secret key skid associated with id ∈ 𝑆 can decrypt

public-key directory

(Alice, pkAlice)

(Bob, pkBob)

(Carol, pkCarol)

[WQZD14, BZ14]

Setup 1𝜆 → pp

Generates a set of public parameters

KeyGen pp, id → pkid, skid

Samples a key-pair for a user

Security: ct computationally hides 𝑚 if adversary does not have a 
key for an identity id ∈ 𝑆

• Trustless version of 

broadcast encryption [FN93] 

without a central authority 

(or master secret key)

• Implies broadcast encryption 

with a long master public key

• Can also consider 

“registered” variant where 

encryption and decryption 

only needs to know 

identities and not public keys



Distributed Broadcast Encryption via Matrix Commitments
[WW25]

Public parameters:  pp , 𝑨0 ← ℤ𝑞
𝑛×𝑚 , 𝒑 ← ℤ𝑞

𝑛

Commit pp, 𝑴 → 𝑪 ∈ ℤ𝑞
𝑛×𝑚

Open pp, 𝑴 → 𝒁 ∈ ℤ𝑞
𝑚×𝐿

𝑪 ⋅ 𝑽𝐿 = 𝑴 − 𝑨 ⋅ 𝒁
low-norm low-norm

Key generation (for identity 𝑖 ≤ 𝐿):      𝒓𝑖 ← 0,1 𝑚

pk𝑖 = 𝒕𝑖 = 𝑨𝒓𝑖 + 𝒑 − 𝑨0𝒗𝑖 ∈ ℤ𝑞
𝑛 sk𝑖 = 𝒓𝑖

𝑽 = 𝒗1 ⋯ 𝒗𝐿

Set 𝐿 = 2𝜆 and assume identities are 𝜆-bits

Encryption (of message 𝜇 to public keys pk𝑖 𝑖∈𝑆):

Construct sparse public-key matrix 𝑴 ∈ ℤ𝑞
𝐿 𝑪 = Commit pp, 𝑴 𝒔 ← ℤ𝑞

𝑛

𝒔T𝑨 + 𝒆1
T

𝒔T 𝑨0 + 𝑪 + 𝒆2
T

𝒔T𝒑 + 𝑒3 + 𝜇 ⋅ ⌊ Τ𝑞 2⌋ Ciphertext𝑖th column of 𝑴 is pk𝑖 = 𝒕𝑖 if 𝑖 ∈ 𝑆 and 𝟎 otherwise



Distributed Broadcast Encryption via Matrix Commitments
[WW25]

Commit pp, 𝑴 → 𝑪 ∈ ℤ𝑞
𝑛×𝑚

Open pp, 𝑴 → 𝒁 ∈ ℤ𝑞
𝑚×𝐿

𝑪 ⋅ 𝑽𝐿 = 𝑴 − 𝑨 ⋅ 𝒁
low-norm low-norm

𝑪 = Commit pp, 𝑴 𝒔 ← ℤ𝑞
𝑛

𝒔T𝑨 + 𝒆1
T

𝒔T 𝑨0 + 𝑪 + 𝒆2
T

𝒔T𝒑 + 𝑒3 + 𝜇 ⋅ ⌊ Τ𝑞 2⌋ Ciphertext

(dual-Regev style)

pk𝑖 = 𝒕𝑖 = 𝑨𝒓𝑖 + 𝒑 − 𝑨0𝒗𝑖 ∈ ℤ𝑞
𝑛

sk𝑖 = 𝒓𝑖 Public key

Suppose 𝑖 ∈ 𝑆:

𝑪 ⋅ 𝒗𝑖

𝑖th column of 𝑴 is pk𝑖 = 𝒕𝑖 if 𝑖 ∈ 𝑆 and 𝟎 otherwise

= 𝒕𝑖 − 𝑨 ⋅ 𝒛𝑖

= 𝑨𝒓𝑖 + 𝒑 − 𝑨0𝒗𝑖 − 𝑨𝒛𝑖
Decryption:

𝒔T 𝑨0 + 𝑪 + 𝒆2
T ⋅ 𝒗𝑖

≈ 𝒔T𝑨0𝒗𝑖 + 𝒔T 𝑨𝒓𝑖 + 𝒑 − 𝑨0𝒗𝑖 − 𝑨𝒛𝑖



Distributed Broadcast Encryption via Matrix Commitments
[WW25]

Commit pp, 𝑴 → 𝑪 ∈ ℤ𝑞
𝑛×𝑚

Open pp, 𝑴 → 𝒁 ∈ ℤ𝑞
𝑚×𝐿

𝑪 ⋅ 𝑽𝐿 = 𝑴 − 𝑨 ⋅ 𝒁
low-norm low-norm

𝑪 = Commit pp, 𝑴 𝒔 ← ℤ𝑞
𝑛

𝒔T𝑨 + 𝒆1
T

𝒔T 𝑨0 + 𝑪 + 𝒆2
T

𝒔T𝒑 + 𝑒3 + 𝜇 ⋅ ⌊ Τ𝑞 2⌋ Ciphertext

(dual-Regev style)

pk𝑖 = 𝒕𝑖 = 𝑨𝒓𝑖 + 𝒑 − 𝑨0𝒗𝑖 ∈ ℤ𝑞
𝑛

sk𝑖 = 𝒓𝑖 Public key

Suppose 𝑖 ∈ 𝑆:

𝑪 ⋅ 𝒗𝑖

𝑖th column of 𝑴 is pk𝑖 = 𝒕𝑖 if 𝑖 ∈ 𝑆 and 𝟎 otherwise

= 𝒕𝑖 − 𝑨 ⋅ 𝒛𝑖

= 𝑨𝒓𝑖 + 𝒑 − 𝑨0𝒗𝑖 − 𝑨𝒛𝑖
Decryption:

𝒔T 𝑨0 + 𝑪 + 𝒆2
T ⋅ 𝒗𝑖

≈ 𝒔T𝑨0𝒗𝑖 + 𝒔T 𝑨𝒓𝑖 + 𝒑 − 𝑨0𝒗𝑖 − 𝑨𝒛𝑖

= 𝒔T𝑨 𝒓𝑖 − 𝒛𝑖 + 𝒔T𝒑

𝒔T𝑨 + 𝒆1
T ⋅ 𝒓𝑖 − 𝒛𝑖 ≈ 𝒔T𝑨 𝒓𝑖 − 𝒛𝑖

Recover 
𝒔T𝒑



Distributed Broadcast Encryption via Matrix Commitments
[WW25]

Commit pp, 𝑴 → 𝑪 ∈ ℤ𝑞
𝑛×𝑚

Open pp, 𝑴 → 𝒁 ∈ ℤ𝑞
𝑚×𝐿

𝑪 ⋅ 𝑽𝐿 = 𝑴 − 𝑨 ⋅ 𝒁
low-norm low-norm

𝑪 = Commit pp, 𝑴 𝒔 ← ℤ𝑞
𝑛

𝒔T𝑨 + 𝒆1
T

𝒔T 𝑨0 + 𝑪 + 𝒆2
T

𝒔T𝒑 + 𝑒3 + 𝜇 ⋅ ⌊ Τ𝑞 2⌋ Ciphertext

(dual-Regev style)

pk𝑖 = 𝒕𝑖 = 𝑨𝒓𝑖 + 𝒑 − 𝑨0𝒗𝑖 ∈ ℤ𝑞
𝑛

sk𝑖 = 𝒓𝑖 Public key

𝑖th column of 𝑴 is pk𝑖 = 𝒕𝑖 if 𝑖 ∈ 𝑆 and 𝟎 otherwise

Gives a selectively-secure distributed broadcast 
encryption scheme (for arbitrary number of 
users) and a transparent setup

Previously: only known from witness encryption 
or indistinguishability obfuscation

Generalizations:
• Adaptive security in the random oracle model
• Registered attribute-based encryption for unbounded 

number of users and succinct ciphertexts (in random 
oracle model)

Not known from witness encryption!



Succinct Attribute-Based Encryption
[Wee25]

Encrypt mpk, 𝑥, 𝑚 → ct𝑥,𝑚

Decrypt 𝑥, 𝑓, sk𝑓 , ct𝑥,𝑚 → ቊ
𝑚 𝑓 𝑥 = 0

⊥ 𝑓 𝑥 = 1

KeyGen msk, 𝑓 → sk𝑓

Setup 1𝜆 → mpk, msk
Key-policy ABE: Secret keys associated with 

functions 𝑓: 0,1 ℓ → 0,1

Ciphertexts associated with attributes 𝑥 ∈ 0,1 ℓ

Correctness: Can decryption when 𝑓 𝑥 = 0

Security: Message hidden when 𝑓 𝑥 = 1

Succinctness: ct𝑥,𝑚 = 𝑚 + poly 𝜆, log 𝑥

In the following, we will allow for a depth dependence as well:

ct𝑥,𝑚 = 𝑚 + poly 𝜆, 𝑑, log 𝑥 , where 𝑑 is the depth of the Boolean circuit computing 𝑓



Homomorphic Computation using Lattices

Encodes a vector 𝒙 ∈ 0,1 ℓ with respect to matrix 𝑩 = 𝑩1 ∣ ⋯ ∣ 𝑩ℓ ∈ ℤ𝑞
𝑛×ℓ𝑚

𝑩 − 𝒙T ⊗ 𝑮𝑩1 − 𝑥1𝑮 𝑩2 − 𝑥2𝑮 ⋯ 𝑩ℓ − 𝑥ℓ𝑮

Given any function 𝑓: 0,1 ℓ → 0,1 , there exists a low-norm matrix 𝑯𝑩,𝑓,𝒙 where

𝑩 − 𝒙T ⊗ 𝑮 ⋅ 𝑯𝑩,𝑓,𝒙 = 𝑩𝑓 − 𝑓 𝑥 ⋅ 𝑮

encoding of 𝒙 with respect to 𝑩 encoding of 𝑓(𝒙) with respect to 𝑩𝑓

Given 𝑩 and 𝑓, can efficiently compute the matrix 𝑩𝑓

[GSW13, BGGHNSVV14]



Attribute-Based Encryption
[BGGHNSVV14]

“dual Regev public key” attribute-encoding matrix

Public key:    𝑨 ∈ ℤ𝑞
𝑛×𝑚,    𝒑 ∈ ℤ𝑞

𝑛,     𝑩 ∈ ℤ𝑞
𝑛×ℓ𝑚

𝑩 − 𝒙T ⊗ 𝑮 ⋅ 𝑯𝑩,𝑓,𝒙 = 𝑩𝑓 − 𝑓 𝒙 ⋅ 𝑮

Secret key for 𝒇: low-norm vector 𝒗𝑓 ∈ ℤ2𝑚 where 𝑨 𝑩𝑓 𝒗𝑓 = 𝒑

Ciphertext with attribute 𝒙: 𝒔 ← ℤ𝑞
𝑛

𝒔T𝑨 + 𝒆1
T

𝒔T 𝑩 − 𝒙T ⊗ 𝑮 + 𝒆2
T

𝒔T𝒑 + 𝑒3 + 𝜇 ⋅ ⌊ Τ𝑞 2⌋

≈ 𝒔T𝑩𝑓

multiply by 𝑯𝑩,𝑓,𝒙

≈ 𝒔T𝑨 𝒔T𝑩𝑓 𝒗𝑓

≈ 𝒔T 𝑨 𝑩𝑓 𝒗𝑓

≈ 𝒔T𝒑



Attribute-Based Encryption
[BGGHNSVV14]

“dual Regev public key” attribute-encoding matrix

Public key:    𝑨 ∈ ℤ𝑞
𝑛×𝑚,    𝒑 ∈ ℤ𝑞

𝑛,     𝑩 ∈ ℤ𝑞
𝑛×ℓ𝑚

𝑩 − 𝒙T ⊗ 𝑮 ⋅ 𝑯𝑩,𝑓,𝒙 = 𝑩𝑓 − 𝑓 𝒙 ⋅ 𝑮

Secret key for 𝒇: low-norm vector 𝒗𝑓 ∈ ℤ2𝑚 where 𝑨 𝑩𝑓 𝒗𝑓 = 𝒑

Ciphertext with attribute 𝒙:

𝒔T𝑨 + 𝒆1
T

𝒔T 𝑩 − 𝒙T ⊗ 𝑮 + 𝒆2
T

𝒔T𝒑 + 𝑒3 + 𝜇 ⋅ ⌊ Τ𝑞 2⌋

Not succinct because 𝑩 − 𝒙T ⊗ 𝑮 = ℓ ⋅ 𝑛𝑚 log 𝑞

Need to encode attribute to compute on it



Succinct Attribute-Based Encryption
[Wee24, Wee25]

“dual Regev public key” attribute-encoding matrix

Public key:    𝑨 ∈ ℤ𝑞
𝑛×𝑚,    𝒑 ∈ ℤ𝑞

𝑛,     𝑩 ∈ ℤ𝑞
𝑛×ℓ𝑚

𝑩 − 𝒙T ⊗ 𝑮 ⋅ 𝑯𝑩,𝑓,𝒙 = 𝑩𝑓 − 𝑓 𝒙 ⋅ 𝑮

Secret key for 𝒇: low-norm vector 𝒗𝑓 ∈ ℤ2𝑚 where 𝑨 𝑩𝑓 𝒗𝑓 = 𝒑

Ciphertext with attribute 𝒙:

𝒔T𝑨 + 𝒆1
T

𝒔T 𝑩 − 𝒙T ⊗ 𝑮 + 𝒆2
T

𝒔T𝒑 + 𝑒3 + 𝜇 ⋅ ⌊ Τ𝑞 2⌋

[Wee24, Wee25] approach: compress 𝒙T ⊗ 𝑮
• Let 𝑪𝒙 ∈ ℤ𝑞

𝑛×𝑚 be a commitment to 𝒙T ⊗ 𝑮

• Then 𝑪𝒙𝑽 = 𝒙T ⊗ 𝑮 − 𝑨𝒁

• Sample ෩𝑩 ← ℤ𝑞
𝑛×𝑚 and take 𝑩 = ෩𝑩𝑽 ∈ ℤ𝑞

𝑛×ℓ𝑚

• Then 𝑩 − 𝒙T ⊗ 𝑮 = ෩𝑩𝑽 − 𝑪𝒙𝑽 − 𝑨𝒁



Succinct Attribute-Based Encryption
[Wee24, Wee25]

“dual Regev public key” attribute-encoding matrix

Public key:    𝑨 ∈ ℤ𝑞
𝑛×𝑚,    𝒑 ∈ ℤ𝑞

𝑛,     𝑩 ∈ ℤ𝑞
𝑛×ℓ𝑚

𝑩 − 𝒙T ⊗ 𝑮 ⋅ 𝑯𝑩,𝑓,𝒙 = 𝑩𝑓 − 𝑓 𝒙 ⋅ 𝑮

Secret key for 𝒇: low-norm vector 𝒗𝑓 ∈ ℤ2𝑚 where 𝑨 𝑩𝑓 𝒗𝑓 = 𝒑

Ciphertext with attribute 𝒙:

𝒔T𝑨 + 𝒆1
T

𝒔T 𝑩 − 𝒙T ⊗ 𝑮 + 𝒆2
T

𝒔T𝒑 + 𝑒3 + 𝜇 ⋅ ⌊ Τ𝑞 2⌋

[Wee24, Wee25] approach: compress 𝒙T ⊗ 𝑮
• Let 𝑪𝒙 ∈ ℤ𝑞

𝑛×𝑚 be a commitment to 𝒙T ⊗ 𝑮

• Then 𝑪𝒙𝑽 = 𝒙T ⊗ 𝑮 − 𝑨𝒁

• Sample ෩𝑩 ← ℤ𝑞
𝑛×𝑚 and take 𝑩 = ෩𝑩𝑽 ∈ ℤ𝑞

𝑛×ℓ𝑚

• Then 𝑩 − 𝒙T ⊗ 𝑮 = ෩𝑩𝑽 − 𝑪𝒙𝑽 − 𝑨𝒁

෩𝑩 ∈ ℤ𝑞
𝑛×𝑚

public parameters independent of attribute length!



Succinct Attribute-Based Encryption
[Wee24, Wee25]

“dual Regev public key” attribute-encoding matrix

Public key:    𝑨 ∈ ℤ𝑞
𝑛×𝑚,    𝒑 ∈ ℤ𝑞

𝑛,     𝑩 ∈ ℤ𝑞
𝑛×ℓ𝑚

Secret key for 𝒇: low-norm vector 𝒗𝑓 ∈ ℤ2𝑚 where 𝑨 𝑩𝑓 𝒗𝑓 = 𝒑

Ciphertext with attribute 𝒙:

𝒔T𝑨 + 𝒆1
T

𝒔T 𝑩 − 𝒙T ⊗ 𝑮 + 𝒆2
T

𝒔T𝒑 + 𝑒3 + 𝜇 ⋅ ⌊ Τ𝑞 2⌋

𝒔T ෩𝑩 − 𝑪𝒙 + 𝒆2
T

[Wee24, Wee25] approach: compress 𝒙T ⊗ 𝑮
• Let 𝑪𝒙 ∈ ℤ𝑞

𝑛×𝑚 be a commitment to 𝒙T ⊗ 𝑮

• Then 𝑪𝒙𝑽 = 𝒙T ⊗ 𝑮 − 𝑨𝒁

• Sample ෩𝑩 ← ℤ𝑞
𝑛×𝑚 and take 𝑩 = ෩𝑩𝑽 ∈ ℤ𝑞

𝑛×ℓ𝑚

• Then 𝑩 − 𝒙T ⊗ 𝑮 = ෩𝑩𝑽 − 𝑪𝒙𝑽 − 𝑨𝒁

෩𝑩 ∈ ℤ𝑞
𝑛×𝑚

𝒔T𝑨 −𝒁 + 𝒔T ෩𝑩 − 𝑪𝒙 𝑽

Correctness:

= 𝒔T ෩𝑩𝑽 − 𝑪𝒙𝑽 − 𝑨𝒁 = 𝒔T 𝑩 − 𝒙T ⊗ 𝑮

Everything else unchanged!

public parameters independent of attribute length!



Roadmap

𝑨 𝑾1

⋱ ⋮
𝑨 𝑾ℓ

𝑻𝟏

⋮
𝑻ℓ

𝑻

=
𝑮

⋱
𝑮

𝑫ℓ 𝑻

SIS/LWE holds with respect to 𝑨 given 𝑫ℓ, 𝑻

Succinct LWE Family of Assumptions

Commit pp, 𝑴 → 𝑪 ∈ ℤ𝑞
𝑛×𝑚

Open pp, 𝑴 → 𝒁 ∈ ℤ𝑞
𝑚×𝐿

𝑪 ⋅ 𝑽𝐿 = 𝑴 − 𝑨 ⋅ 𝒁

Matrix Commitments Distributed 
broadcast encryption

Registered ABE for 
circuits

KP/CP-ABE with 
succinct ciphertexts

Functional 
commitments



Constructing Matrix Commitments
[Wee25]

Succinct commitment to a matrix 𝑴 ∈ ℤ𝑞
𝑛×𝐿 

Commit pp, 𝑴 → 𝑪 ∈ ℤ𝑞
𝑛×𝑚

Open pp, 𝑴 → 𝒁 ∈ ℤ𝑞
𝑚×𝐿

𝑪 ⋅ 𝑽𝐿 = 𝑴 − 𝑨 ⋅ 𝒁
low-norm low-norm

Basic building block: the trapdoor from a succinct LWE instance

𝑨 𝑾𝟏

⋱ ⋮
𝑨 𝑾ℓ

𝑻𝟏

⋮
𝑻ℓ

𝑻

=
𝑮

⋱
𝑮

𝑫ℓ 𝑻

𝑨, 𝑾𝑖 ∈ ℤ𝑞
𝑛×𝑚

𝑻𝑖 , 𝑻 ∈ ℤ𝑞
𝑚×ℓ𝑚



Constructing Matrix Commitments
[Wee25]

Succinct commitment to a matrix 𝑴 ∈ ℤ𝑞
𝑛×𝐿 

Commit pp, 𝑴 → 𝑪 ∈ ℤ𝑞
𝑛×𝑚

Open pp, 𝑴 → 𝒁 ∈ ℤ𝑞
𝑚×𝐿

𝑪 ⋅ 𝑽𝐿 = 𝑴 − 𝑨 ⋅ 𝒁
low-norm low-norm

Starting point: commitment to 𝒙T ⊗ 𝑮 = 𝑥1𝑮 ∣ 𝑥2𝑮 ∣ ⋯ ∣ 𝑥ℓ𝑮  where 𝒙 ∈ 0,1 ℓ

𝑮
⋱

𝑮

𝑻𝟏

⋮
𝑻ℓ

𝑻

=𝑥1𝑰 ∣ ⋯ ∣ 𝑥ℓ𝑰 𝑥1𝑰 ∣ ⋯ ∣ 𝑥ℓ𝑰
𝑨 𝑾1

⋱ ⋮
𝑨 𝑾ℓ

𝑥1𝑮 ∣ ⋯ ∣ 𝑥ℓ𝑮 = 𝒙T ⊗ 𝑮𝑥1𝑨 ∣ ⋯ ∣ 𝑥ℓ𝑨 ∣ Σ𝑖∈ ℓ 𝑥𝑖𝑾𝑖



Constructing Matrix Commitments
[Wee25]

Succinct commitment to a matrix 𝑴 ∈ ℤ𝑞
𝑛×𝐿 

Commit pp, 𝑴 → 𝑪 ∈ ℤ𝑞
𝑛×𝑚

Open pp, 𝑴 → 𝒁 ∈ ℤ𝑞
𝑚×𝐿

𝑪 ⋅ 𝑽𝐿 = 𝑴 − 𝑨 ⋅ 𝒁
low-norm low-norm

Starting point: commitment to 𝒙T ⊗ 𝑮 = 𝑥1𝑮 ∣ 𝑥2𝑮 ∣ ⋯ ∣ 𝑥ℓ𝑮  where 𝒙 ∈ 0,1 ℓ

𝑻𝟏

⋮
𝑻ℓ

𝑻

= 𝑥1𝑮 ∣ ⋯ ∣ 𝑥ℓ𝑮 = 𝒙T ⊗ 𝑮𝑥1𝑨 ∣ ⋯ ∣ 𝑥ℓ𝑨 ∣ Σ𝑖∈ ℓ 𝑥𝑖𝑾𝑖



Constructing Matrix Commitments
[Wee25]

Succinct commitment to a matrix 𝑴 ∈ ℤ𝑞
𝑛×𝐿 

Commit pp, 𝑴 → 𝑪 ∈ ℤ𝑞
𝑛×𝑚

Open pp, 𝑴 → 𝒁 ∈ ℤ𝑞
𝑚×𝐿

𝑪 ⋅ 𝑽𝐿 = 𝑴 − 𝑨 ⋅ 𝒁
low-norm low-norm

Starting point: commitment to 𝒙T ⊗ 𝑮 = 𝑥1𝑮 ∣ 𝑥2𝑮 ∣ ⋯ ∣ 𝑥ℓ𝑮  where 𝒙 ∈ 0,1 ℓ

𝑻𝟏

⋮
𝑻ℓ

𝑻

= 𝑥1𝑮 ∣ ⋯ ∣ 𝑥ℓ𝑮 = 𝒙T ⊗ 𝑮𝑥1𝑨 ∣ ⋯ ∣ 𝑥ℓ𝑨 ∣ Σ𝑖∈ ℓ 𝑥𝑖𝑾𝑖

𝑨 ⋅ Σ𝑖∈ ℓ 𝑥𝑖𝑻𝑖 + Σ𝑖∈ ℓ 𝑥𝑖𝑾𝑖 𝑻



Constructing Matrix Commitments
[Wee25]

Succinct commitment to a matrix 𝑴 ∈ ℤ𝑞
𝑛×𝐿 

Commit pp, 𝑴 → 𝑪 ∈ ℤ𝑞
𝑛×𝑚

Open pp, 𝑴 → 𝒁 ∈ ℤ𝑞
𝑚×𝐿

𝑪 ⋅ 𝑽𝐿 = 𝑴 − 𝑨 ⋅ 𝒁
low-norm low-norm

Starting point: commitment to 𝒙T ⊗ 𝑮 = 𝑥1𝑮 ∣ 𝑥2𝑮 ∣ ⋯ ∣ 𝑥ℓ𝑮  where 𝒙 ∈ 0,1 ℓ

= 𝑥1𝑮 ∣ ⋯ ∣ 𝑥ℓ𝑮 = 𝒙T ⊗ 𝑮𝑨 ⋅ Σ𝑖∈ ℓ 𝑥𝑖𝑻𝑖 + Σ𝑖∈ ℓ 𝑥𝑖𝑾𝑖 𝑻

Rearranging:

Σ𝑖∈ ℓ 𝑥𝑖𝑾𝑖 ⋅ 𝑻 = 𝒙T ⊗ 𝑮 − 𝑨 ⋅ Σ𝑖∈ ℓ 𝑥𝑖𝑻𝑖

commitment opening

Note: 𝑻, 𝑻𝑖 are blocks of the succinct LWE trapdoor, so they have low norm



Constructing Matrix Commitments
[Wee25]

Succinct commitment to a matrix 𝑴 ∈ ℤ𝑞
𝑛×𝐿 

Commit pp, 𝑴 → 𝑪 ∈ ℤ𝑞
𝑛×𝑚

Open pp, 𝑴 → 𝒁 ∈ ℤ𝑞
𝑚×𝐿

𝑪 ⋅ 𝑽𝐿 = 𝑴 − 𝑨 ⋅ 𝒁
low-norm low-norm

Committing to a matrix 𝑴 ∈ ℤ𝑞
𝑛×𝑚:

Compactification [BTVW17]: bits 𝑴 T ⊗ 𝑮 ⋅ 𝑰𝐿 ⊗ vec 𝑰𝑚 = 𝑴

vec 𝑴 : concatenation of 
the columns of 𝑴

bits 𝑴 = vec 𝑮−1 𝑴 : 

vectorization of bit 
decomposition of 𝑴



Constructing Matrix Commitments
[Wee25]

Succinct commitment to a matrix 𝑴 ∈ ℤ𝑞
𝑛×𝐿 

Commit pp, 𝑴 → 𝑪 ∈ ℤ𝑞
𝑛×𝑚

Open pp, 𝑴 → 𝒁 ∈ ℤ𝑞
𝑚×𝐿

𝑪 ⋅ 𝑽𝐿 = 𝑴 − 𝑨 ⋅ 𝒁
low-norm low-norm

Committing to a matrix 𝑴 ∈ ℤ𝑞
𝑛×𝑚:

Compactification [BTVW17]: bits 𝑴 T ⊗ 𝑮 ⋅ 𝑰𝐿 ⊗ vec 𝑰𝑚 = 𝑴

has small norm, only depends on dimension 𝐿, not 𝑴

Commit to bits 𝑴 T ⊗ 𝑮 :

𝑪 ⋅ 𝑻 = bits 𝑴 T ⊗ 𝑮 − 𝑨 ⋅ 𝒁′

Multiply by 𝑰𝐿 ⊗ vec 𝑰𝑚 :

𝑨bits 𝑴 T ⊗ 𝑮 𝑰𝐿 ⊗ vec 𝑰𝑚𝑪 ⋅ 𝑻 ⋅ 𝑰𝐿 ⊗ vec 𝑰𝑚 = − 𝒁′ ⋅ 𝑰𝐿 ⊗ vec 𝑰𝑚⋅



Constructing Matrix Commitments
[Wee25]

Succinct commitment to a matrix 𝑴 ∈ ℤ𝑞
𝑛×𝐿 

Commit pp, 𝑴 → 𝑪 ∈ ℤ𝑞
𝑛×𝑚

Open pp, 𝑴 → 𝒁 ∈ ℤ𝑞
𝑚×𝐿

𝑪 ⋅ 𝑽𝐿 = 𝑴 − 𝑨 ⋅ 𝒁
low-norm low-norm

Committing to a matrix 𝑴 ∈ ℤ𝑞
𝑛×𝑚:

Compactification [BTVW17]: bits 𝑴 T ⊗ 𝑮 ⋅ 𝑰𝐿 ⊗ vec 𝑰𝑚 = 𝑴

has small norm, only depends on dimension 𝐿, not 𝑴

Commit to bits 𝑴 T ⊗ 𝑮 :

𝑪 ⋅ 𝑻 = bits 𝑴 T ⊗ 𝑮 − 𝑨 ⋅ 𝒁′

Multiply by 𝑰𝐿 ⊗ vec 𝑰𝑚 :

𝑨bits 𝑴 T ⊗ 𝑮 𝑰𝐿 ⊗ vec 𝑰𝑚= − 𝒁′ ⋅ 𝑰𝐿 ⊗ vec 𝑰𝑚⋅

𝑽𝐿 = 𝑻 𝑰𝐿 ⊗ vec 𝑰𝑚

𝑪 ⋅ 𝑻 ⋅ 𝑰𝐿 ⊗ vec 𝑰𝑚



Constructing Matrix Commitments
[Wee25]

Succinct commitment to a matrix 𝑴 ∈ ℤ𝑞
𝑛×𝐿 

Commit pp, 𝑴 → 𝑪 ∈ ℤ𝑞
𝑛×𝑚

Open pp, 𝑴 → 𝒁 ∈ ℤ𝑞
𝑚×𝐿

𝑪 ⋅ 𝑽𝐿 = 𝑴 − 𝑨 ⋅ 𝒁
low-norm low-norm

Committing to a matrix 𝑴 ∈ ℤ𝑞
𝑛×𝑚:

Compactification [BTVW17]: bits 𝑴 T ⊗ 𝑮 ⋅ 𝑰𝐿 ⊗ vec 𝑰𝑚 = 𝑴

has small norm, only depends on dimension 𝐿, not 𝑴

Commit to bits 𝑴 T ⊗ 𝑮 :

𝑪 ⋅ 𝑻 = bits 𝑴 T ⊗ 𝑮 − 𝑨 ⋅ 𝒁′

Multiply by 𝑰𝐿 ⊗ vec 𝑰𝑚 :

𝑨bits 𝑴 T ⊗ 𝑮 𝑰𝐿 ⊗ vec 𝑰𝑚𝑪 ⋅ 𝑽𝐿 = − 𝒁′ ⋅ 𝑰𝐿 ⊗ vec 𝑰𝑚⋅

𝑽𝐿 = 𝑻 𝑰𝐿 ⊗ vec 𝑰𝑚



Constructing Matrix Commitments
[Wee25]

Succinct commitment to a matrix 𝑴 ∈ ℤ𝑞
𝑛×𝐿 

Commit pp, 𝑴 → 𝑪 ∈ ℤ𝑞
𝑛×𝑚

Open pp, 𝑴 → 𝒁 ∈ ℤ𝑞
𝑚×𝐿

𝑪 ⋅ 𝑽𝐿 = 𝑴 − 𝑨 ⋅ 𝒁
low-norm low-norm

Committing to a matrix 𝑴 ∈ ℤ𝑞
𝑛×𝑚:

Compactification [BTVW17]: bits 𝑴 T ⊗ 𝑮 ⋅ 𝑰𝐿 ⊗ vec 𝑰𝑚 = 𝑴

has small norm, only depends on dimension 𝐿, not 𝑴

Commit to bits 𝑴 T ⊗ 𝑮 :

𝑪 ⋅ 𝑻 = bits 𝑴 T ⊗ 𝑮 − 𝑨 ⋅ 𝒁′

Multiply by 𝑰𝐿 ⊗ vec 𝑰𝑚 :

𝑨𝑴𝑪 ⋅ 𝑽𝐿 = − 𝒁′ ⋅ 𝑰𝐿 ⊗ vec 𝑰𝑚⋅

𝑽𝐿 = 𝑻 𝑰𝐿 ⊗ vec 𝑰𝑚



Constructing Matrix Commitments
[Wee25]

Succinct commitment to a matrix 𝑴 ∈ ℤ𝑞
𝑛×𝐿 

Commit pp, 𝑴 → 𝑪 ∈ ℤ𝑞
𝑛×𝑚

Open pp, 𝑴 → 𝒁 ∈ ℤ𝑞
𝑚×𝐿

𝑪 ⋅ 𝑽𝐿 = 𝑴 − 𝑨 ⋅ 𝒁
low-norm low-norm

Committing to a matrix 𝑴 ∈ ℤ𝑞
𝑛×𝑚:

Compactification [BTVW17]: bits 𝑴 T ⊗ 𝑮 ⋅ 𝑰𝐿 ⊗ vec 𝑰𝑚 = 𝑴

has small norm, only depends on dimension 𝐿, not 𝑴

Commit to bits 𝑴 T ⊗ 𝑮 :

𝑪 ⋅ 𝑻 = bits 𝑴 T ⊗ 𝑮 − 𝑨 ⋅ 𝒁′

Multiply by 𝑰𝐿 ⊗ vec 𝑰𝑚 :

𝑨𝑴𝑪 ⋅ 𝑽𝐿 = − 𝒁′ ⋅ 𝑰𝐿 ⊗ vec 𝑰𝑚⋅

𝑽𝐿 = 𝑻 𝑰𝐿 ⊗ vec 𝑰𝑚

𝒁 = 𝒁′ 𝑰𝐿 ⊗ vec 𝑰𝑚



Constructing Matrix Commitments
[Wee25]

Succinct commitment to a matrix 𝑴 ∈ ℤ𝑞
𝑛×𝐿 

Commit pp, 𝑴 → 𝑪 ∈ ℤ𝑞
𝑛×𝑚

Open pp, 𝑴 → 𝒁 ∈ ℤ𝑞
𝑚×𝐿

𝑪 ⋅ 𝑽𝐿 = 𝑴 − 𝑨 ⋅ 𝒁
low-norm low-norm

Committing to a matrix 𝑴 ∈ ℤ𝑞
𝑛×𝑚:

Compactification [BTVW17]: bits 𝑴 T ⊗ 𝑮 ⋅ 𝑰𝐿 ⊗ vec 𝑰𝑚 = 𝑴

has small norm, only depends on dimension 𝐿, not 𝑴

Commit to bits 𝑴 T ⊗ 𝑮 :

𝑪 ⋅ 𝑻 = bits 𝑴 T ⊗ 𝑮 − 𝑨 ⋅ 𝒁′

Multiply by 𝑰𝐿 ⊗ vec 𝑰𝑚 :

𝑨𝑴𝑪 ⋅ 𝑽𝐿 = − 𝒁⋅

𝑽𝐿 = 𝑻 𝑰𝐿 ⊗ vec 𝑰𝑚

𝒁 = 𝒁′ 𝑰𝐿 ⊗ vec 𝑰𝑚



Constructing Matrix Commitments
[Wee25]

Succinct commitment to a matrix 𝑴 ∈ ℤ𝑞
𝑛×𝐿 

Commit pp, 𝑴 → 𝑪 ∈ ℤ𝑞
𝑛×𝑚

Open pp, 𝑴 → 𝒁 ∈ ℤ𝑞
𝑚×𝐿

𝑪 ⋅ 𝑽𝐿 = 𝑴 − 𝑨 ⋅ 𝒁
low-norm low-norm

Recap:

𝑨 𝑾1

⋱ ⋮
𝑨 𝑾ℓ

𝑻1

⋮
𝑻ℓ

𝑻

=
𝑮

⋱
𝑮

succinct LWE trapdoor (ℓ = 𝐿𝑚)

pp = 𝑨, 𝑾, ഥ𝑻, 𝑻 𝑽𝐿 = 𝑻 𝑰𝐿 ⊗ vec 𝑰𝑚

𝑪 = (bits 𝑴 T ⊗ 𝑰𝑛)𝑾

More compactly:

𝑰ℓ ⊗ 𝑨 𝑾
ഥ𝑻
𝑻

= 𝑰ℓ ⊗ 𝑮

𝒁 = bits 𝑴 T ⊗ 𝑰𝑛
ഥ𝑻 𝑰𝐿 ⊗ vec 𝑰𝑚



Constructing Matrix Commitments
[Wee25]

Succinct commitment to a matrix 𝑴 ∈ ℤ𝑞
𝑛×𝐿 

Commit pp, 𝑴 → 𝑪 ∈ ℤ𝑞
𝑛×𝑚

Open pp, 𝑴 → 𝒁 ∈ ℤ𝑞
𝑚×𝐿

𝑪 ⋅ 𝑽𝐿 = 𝑴 − 𝑨 ⋅ 𝒁
low-norm low-norm

Currently, to commit to 𝑴 ∈ ℤ𝑞
𝑛×𝐿, need trapdoor of dimension ℓ = 𝐿𝑚

Sufficient to use trapdoor where ℓ = 2𝑚2 (independent of 𝐿) by using Merkel-style recursion

𝑴0 𝑴1

Approach (𝐿 = 4𝑚): 2𝑚 2𝑚

𝑪0 𝑪1

𝑪

CommitCommit

Commit

𝑛 × 4𝑚

𝑛 × 2𝑚

𝑛 × 𝑚



Constructing Matrix Commitments
[Wee25]

Succinct commitment to a matrix 𝑴 ∈ ℤ𝑞
𝑛×𝐿 

Commit pp, 𝑴 → 𝑪 ∈ ℤ𝑞
𝑛×𝑚

Open pp, 𝑴 → 𝒁 ∈ ℤ𝑞
𝑚×𝐿

𝑪 ⋅ 𝑽𝐿 = 𝑴 − 𝑨 ⋅ 𝒁
low-norm low-norm

𝑴0 𝑴1

2𝑚 2𝑚

𝑪0 𝑪1

𝑪

CommitCommit

Commit

𝑪0𝑽2𝑚 = 𝑴0 − 𝑨𝒁0 𝑪1𝑽2𝑚 = 𝑴1 − 𝑨𝒁1

𝑪𝑽2𝑚 = 𝑪0 𝑪1 − 𝑨𝒁01

𝑪𝑽2𝑚
𝑽2𝑚

𝑽2𝑚
= 𝑪0 𝑪1

𝑽2𝑚

𝑽2𝑚
− 𝑨𝒁01

𝑽2𝑚

𝑽2𝑚

= 𝑴0 𝑴1 − 𝑨 𝒁0 𝒁1 − 𝑨𝒁01
𝑽2𝑚

𝑽2𝑚

𝑽4𝑚 𝑨𝒁Generalizes to arbitrary 𝐿 ≥ 2𝑚

multiply by 𝑰2 ⊗ 𝑽2𝑚



Constructing Matrix Commitments
[Wee25]

Succinct commitment to a matrix 𝑴 ∈ ℤ𝑞
𝑛×𝐿 

Commit pp, 𝑴 → 𝑪 ∈ ℤ𝑞
𝑛×𝑚

Open pp, 𝑴 → 𝒁 ∈ ℤ𝑞
𝑚×𝐿

𝑪 ⋅ 𝑽𝐿 = 𝑴 − 𝑨 ⋅ 𝒁
low-norm low-norm

Merkle-style commitment
Public parameter size is independent of 𝐿

Can commit to sparse matrices of exponential width (e.g., 𝐿 = 2𝜆, but 𝑴 contains 𝐾 =
poly 𝜆  non-zero columns; running time of Commit and Open is poly 𝐾 )

Can realize from any assumption in the succinct LWE family



Constructing Matrix Commitments
[Wee25]

𝑨 𝑾𝟏

⋱ ⋮
𝑨 𝑾ℓ

𝑻𝟏

⋮
𝑻ℓ

𝑻

=
𝑮

⋱
𝑮

𝑫ℓ 𝑻

𝑨, 𝑾𝑖 ∈ ℤ𝑞
𝑛×𝑚

𝑻𝑖 , 𝑻 ∈ ℤ𝑞
𝑚×ℓ𝑚

SIS/LWE holds with respect to 𝑨 given 𝑫ℓ, 𝑻

Public parameters pp is the matrix 𝑫ℓ and the trapdoor 𝑻 (for ℓ = 2𝑚2)

With decomposed LWE, both 𝑫ℓ, 𝑻 can be described by a uniform random string; this means 
the public parameters pp can be sampled transparently

pp, 𝒔T𝑨 + 𝒆T ≈ pp, 𝒖T



Succinct LWE and Matrix Commitments

𝑨 𝑾𝟏

⋱ ⋮
𝑨 𝑾ℓ

𝑻𝟏

⋮
𝑻ℓ

𝑻

=
𝑮

⋱
𝑮

𝑫ℓ 𝑻

𝑨, 𝑾𝑖 ∈ ℤ𝑞
𝑛×𝑚

𝑻𝑖 , 𝑻 ∈ ℤ𝑞
𝑚×ℓ𝑚

SIS/LWE holds with respect to 𝑨 given 𝑫ℓ, 𝑻

Concrete instantiations (strongest to weakest): BASIS, succinct LWE, decomposed LWE

Matrix commitments provide a useful intermediary tool for building primitives

Commit pp, 𝑴 → 𝑪 ∈ ℤ𝑞
𝑛×𝑚

Open pp, 𝑴 → 𝒁 ∈ ℤ𝑞
𝑚×𝐿

𝑪 ⋅ 𝑽𝐿 = 𝑴 − 𝑨 ⋅ 𝒁
low-norm low-norm

Succinct LWE assumption family:



Succinct LWE and Matrix Commitments

𝑨 𝑾𝟏

⋱ ⋮
𝑨 𝑾ℓ

𝑻𝟏

⋮
𝑻ℓ

𝑻

=
𝑮

⋱
𝑮

𝑫ℓ 𝑻

𝑨, 𝑾𝑖 ∈ ℤ𝑞
𝑛×𝑚

𝑻𝑖 , 𝑻 ∈ ℤ𝑞
𝑚×ℓ𝑚

SIS/LWE holds with respect to 𝑨 given 𝑫ℓ, 𝑻

Concrete instantiations (strongest to weakest): BASIS, succinct LWE, decomposed LWE

Matrix commitments provide a useful intermediary tool for building primitives

Commit pp, 𝑴 → 𝑪 ∈ ℤ𝑞
𝑛×𝑚

Open pp, 𝑴 → 𝒁 ∈ ℤ𝑞
𝑚×𝐿

𝑪 ⋅ 𝑽𝐿 = 𝑴 − 𝑨 ⋅ 𝒁
low-norm low-norm

Succinct LWE assumption family:

Implications:
• Nearly-optimal KP/CP-ABE (including optimal 

broadcast encryption)
• Unbounded distributed broadcast encryption, 

succinct registered ABE for circuits



Open Problems

Show hardness of decomposed LWE (or another instance of succinct LWE) from
• Worst-case lattice problem
• Plain LWE assumption

Cryptanalysis of succinct LWE instances

Other primitives from succinct LWE:
• Succinct computational secret sharing
• Witness encryption
• Indistinguishability obfuscation

Thank you!


	Slide 1: Lattice Assumptions with Hints: Succinct LWE and its Applications
	Slide 2: Lattice Problems in Cryptography
	Slide 3: Lattice Problems in Cryptography
	Slide 4: Lattice Problems in Cryptography
	Slide 5: Lattice Problems in Cryptography
	Slide 6: Lattice Problems in Cryptography
	Slide 7: Lattice Problems in Cryptography
	Slide 8: Lattice Problems in Cryptography
	Slide 9: The Succinct LWE Family of Assumptions
	Slide 10: The Succinct LWE Family of Assumptions
	Slide 11: The Succinct LWE Family of Assumptions
	Slide 12: The Succinct LWE Family of Assumptions
	Slide 13: The Succinct LWE Family of Assumptions
	Slide 14: The Succinct LWE Family of Assumptions
	Slide 15: The Succinct LWE Family of Assumptions
	Slide 17: ℓ-Succinct LWE
	Slide 18: ℓ-Succinct LWE
	Slide 19: Applications of Succinct and Decomposed LWE
	Slide 20: Applications of Succinct and Decomposed LWE
	Slide 21: Roadmap
	Slide 22: Roadmap
	Slide 23: A Useful Abstraction: Matrix Commitments
	Slide 24: A Useful Abstraction: Matrix Commitments
	Slide 25: A Useful Abstraction: Matrix Commitments
	Slide 26: Distributed Broadcast Encryption
	Slide 27: Distributed Broadcast Encryption
	Slide 28: Distributed Broadcast Encryption
	Slide 29: Distributed Broadcast Encryption via Matrix Commitments
	Slide 30: Distributed Broadcast Encryption via Matrix Commitments
	Slide 31: Distributed Broadcast Encryption via Matrix Commitments
	Slide 33: Distributed Broadcast Encryption via Matrix Commitments
	Slide 34: Succinct Attribute-Based Encryption
	Slide 35: Homomorphic Computation using Lattices
	Slide 36: Attribute-Based Encryption
	Slide 37: Attribute-Based Encryption
	Slide 38: Succinct Attribute-Based Encryption
	Slide 39: Succinct Attribute-Based Encryption
	Slide 40: Succinct Attribute-Based Encryption
	Slide 41: Roadmap
	Slide 42: Constructing Matrix Commitments
	Slide 43: Constructing Matrix Commitments
	Slide 44: Constructing Matrix Commitments
	Slide 45: Constructing Matrix Commitments
	Slide 46: Constructing Matrix Commitments
	Slide 47: Constructing Matrix Commitments
	Slide 48: Constructing Matrix Commitments
	Slide 49: Constructing Matrix Commitments
	Slide 50: Constructing Matrix Commitments
	Slide 51: Constructing Matrix Commitments
	Slide 52: Constructing Matrix Commitments
	Slide 53: Constructing Matrix Commitments
	Slide 54: Constructing Matrix Commitments
	Slide 55: Constructing Matrix Commitments
	Slide 56: Constructing Matrix Commitments
	Slide 57: Constructing Matrix Commitments
	Slide 58: Constructing Matrix Commitments
	Slide 59: Succinct LWE and Matrix Commitments
	Slide 60: Succinct LWE and Matrix Commitments
	Slide 61: Open Problems

