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Lattice Problems in Cryptography

Short integer solutions (SIS): Given A « Zg™™, find low-norm x # 0 such that Ax = 0 [Ajt96]

\ 4 x

m = 0(nlogq)

(throughout this talk)

Yields one-way functions, collision-resistant hash functions, digital signatures
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But... not everything However, many lattice-inspired approaches
Broadcast encryption [Bv22] Most schemes did not have a concrete hardness assumption

Witness encryption [GGH15, CVW18] or were based on a hardness assumption that was
Indistinguishability obfuscation subsequently broken (in the most general setting)
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Lattice Problems in Cryptography

This talk: explore lattice assumptions with minimum additional structure that
allow us to reason about security of simple (and natural) constructions of new
cryptographic primitives

Hope: over time, will be able to reduce to the standard lattice problems

Very successful in the area of bilinear maps: many new assumptions (e.g.,
composite-order, g-type, etc.), but can now do most things from k-Lin

Recent developments:
* Broadcast encryption from public-coin evasive LWE [Wee22]
* Witness encryption based on private-coin evasive LWE [Tsa22, VWW22]

 New indistinguishability obfuscation candidates: [BDJIMMPV25, HIL25, AMYY25, CLW25, SBP25]
later this afternoon!




The Succinct LWE Family of Assumptions

General template: SIS/LWE assumptions hold with respect to A even given some “hint”

Hint is a matrix D, related to A and a (gadget) trapdoor T for D,

Alternatively: low-norm vectors in correlated cosets of L1 (A)

_ J—T,—1 -~ _
. A I/IE/ T{ — ., G TUI = Zznxfm
! t — T —| i i
E h G=1,R®[152,..,2M0ead-1]

Typically: T is random gadget trapdoor (a discrete Gaussian conditioned on D, T =1, &Q G)



The Succinct LWE Family of Assumptions

: J— T, —1 . :
4 Will[— . | |6 A,W; € T
' ] — 12{) _|= ' T;, T € Zp><ém
Alwy||_ = _ G
D, T

SIS/LWE holds with respect to A given D,, T

Concrete instances: BASIS = f-succinct SIS (similarly for LWE variant)

Basis-augmented SIS (BASIS) [wWWwW23]
A< I ™ W; = W;G where W; « Z7™" )
£-succinct LWE [Wee24]

A7 W, « L™
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The Succinct LWE Family of Assumptions

J— T, —1 . :
4 Will[— . | |6 A,W; € T
Pl — 12{) | = ' T, T € ZI>*m
Alwy||_ = _ G
D, T

SIS/LWE holds with respect to A given D,, T
Can also consider structured A: sample W, ..., W, < Zg*™ and Ry, ..., Ry < D7 ;™

Define 4 = [ | W.R; +0;;G = ] € Z’C’I‘X{)Zm where §;; = 1ifi = jand J;; = 0 otherwise

The matrix D, has a public trapdoor T = lvec(lg)R(X) Ifm] where R = [R{ | --- | Ry]

LWE assumption with respect to A given D,, T asks that decomposed LWE [AMR25]

ST(Wl-Rj + 5l-jG) + el-Tj is pseudorandom for all i, j € [#] given W, R;



The Succinct LWE Family of Assumptions

The decomposed LWE assumption does not refer to any trapdoors!

Assumption similar in spirit to a “circular security” assumption (note: without the 6;;G
term, assumption is implied by plain LWE)

Open problem: show hardness of decomposed LWE from plain LWE (or some worst-case
lattice problem)

ST(WiRj + 5l-jG) + el-Tj is pseudorandom for all i, j € [£] given W, R;



The Succinct LWE Family of Assumptions

: J— T, —1 . :
4 Will[— . | |6 A,W; € T
' ] — 12{) _|= ' T;, T € Zp><ém
Alwy||_ = _ G
D, T

SIS/LWE holds with respect to A given D,, T

BASIS = £-succinct SIS (similarly for LWE variant)

Concrete instances:
Basis-augmented SIS (BASIS) [wWw23]
A< 7™ W; = WG where W; « Zg™"
£-succinct LWE [Wee24]
A « Z‘lc”ltxm’ Wi — Z‘lc‘ltxm
decomposed LWE [AMR25]
W; < Zg™, R; « Dj ;™ A= || W.R; + ;G| - ] trapdoor is public

succinct LWE = decomposed LWE
(with super-polynomial modulus)



The Succinct LWE Family of Assumptions

: J— T, —1 . :
4 Will[— . | |6 A,W; € T
' ] — 12{) _|= ' T;, T € Zp><ém
Alwy||_ = _ G
D, T

SIS/LWE holds with respect to A given D,, T

Concrete instances:
Basis-augmented SIS (BASIS) [wwW23]
A< 7™ W; = WG where W; « Zg™"
£-succinct LWE [Wee24]
A « Z‘lc”ltxm’ Wi — ngm
decomposed LWE [AMR25]
W, <« 2™ R, « DJY™, A= |- | WR; + 5G| - | 2026: LWE?



£-Succinct LWE

LWE is hard with respect to A given a trapdoor T for a related matrix D,

Two axis for hardness: Applications need the width

to be o(¥) - poly(n,logq)

broken Open!

0 0(1) O({nlogq) width of W



£-Succinct LWE

LWE is hard with respect to A given a trapdoor T for a related matrix D,

Two axis for hardness:

essentially reduces to

LWE
W 2m?-succinct LWE

£ =1 P = 2m? number of blocks ¢



Applications of Succinct and Decomposed LWE

Functional commitments for all circuits (and SNARGs for P/poly)  [ww23, ww23b, Wee24, Wee25]
Optimal broadcast encryption [Wee25]

Distributed broadcast encryption [CW24, CHW25, WW25]
Nearly-optimal key-policy (and ciphertext-policy) ABE for circuits [wee24, Wee25]

Registered ABE for circuits [CHW?25, W\W25]

Fully succinct randomized encodings [AMR25]

Laconic function evaluation (and ABE) for RAM programs [AMR25]



Applications of Succinct and Decomposed LWE

Functional commitments for all circuits (and SNARGs for P/poly)  [ww23, ww23b, Wee24, Wee25]

Optimal broadcast encryption [Wee25b]: Functional commitments from circuits

and SNARGs for P/poly from standard SIS!

Distributed broadcast encryption

Nearly-optimal key-policy (and ciphertext-policy) ABE for circuits [wee24, Wee25]
Registered ABE for circuits [CHW?25, W\W25]
Fully succinct randomized encodings [AMR25]

Laconic function evaluation (and ABE) for RAM programs [AMR25]



Roadmap

Functional
commitments

Succinct LWE Family of Assumptions Matrix Commitments Distributed
p w,]| T} | g Commit(pp, M) — C € Z}*™ broadcast encryption
: ] — 7, —|7 Open(pp, M) - Z € Z7** :
A [Wel]| __ ¢ G KP/CP-ABE with
) D, i T C- VL =M-A-Z succinct ciphertexts

SIS/LWE holds with respect to A given D,, T

Registered ABE for
circuits




Roadmap

Succinct LWE Family of Assumptions

_T R
A w1] o
: _Tf L
A Wf o Z I
D, T

SIS/LWE holds with respect to A given D,, T

Matrix Commitments

Commit(pp, M) - C € Zy™™

‘ Open(pp, M) — Z € Zg*"
C-V,=M—A-Z

Distributed
broadcast encryption

KP/CP-ABE with
succinct ciphertexts




A Useful Abstraction: Matrix Commitments

[Wee25]

Succinct commitment to a matrix M & Z’C}XL

Commit(pp, M) — C € Zy*™ Open(pp, M) — Z € Z7™>"

deterministic algorithms

m L L m L
- g = - I
L

low-norm low-norm

t

determined by the public parameters pp




A Useful Abstraction: Matrix Commitments

[Wee25]

Succinct commitment to a matrix M & Z’C}XL

Commit(pp, M) — C € Zy*™ Open(pp, M) — Z € Z7™>"

deterministic algorithms

m L L m L
- g = - I
L

low-norm low-norm

t

Instantiation: pp is uniform random string of length poly(m, log L)




A Useful Abstraction: Matrix Commitments

[Wee25]

Succinct commitment to a matrix M & Z’C}XL

Commit(pp, M) — C € Zy*™ Open(pp, M) — Z € Z7™>"

deterministic algorithms

m L L m L
- g = - I
L

low-norm low-norm

Security property: (pp,s’4 + e') ~ (pp, u’)
LWE holds with respect to A given pp



Distributed Broadcast Encryption

public-key directory
pkAlice 9 )
SkAlice ﬂ (Alice» pkAlice)

ﬂ (Carol, kaarol)

kaarol

SkCarol @ )

[WQZD14, BZ14]

Users generate public/private keys
independently

Suppose we want to send a
message to an arbitrary set of N
users

Trivial solution: encrypt individual
to each user; ciphertext size scales
linearly with N

Distributed broadcast encryption: encrypt to
an arbitrary set of public keys with a short ciphertext



Distributed Broadcast Encryption

[WQZD14, BZ14]

e public-key directory) SetuP(ll) — Pp

ﬂ (Al' " ) Generates a set of public parameters
1CC, PRAlice .
KeyGen(pp, id) = (pkiq, skiq)

Samples a key-pair for a user

ﬁ (Carol, kaarol) EI’ICI'ypt(pp, {pkid}idES' m) — Ct

Can encrypt a message m to any set of user public keys

Efficiency: |ct| = |m| + poly(4,log|S|)

Decrypt(pp, {pKid}ides Skia, ct) = m
G y Correctness: Any secret key sk;q associated with id € S can decrypt

Security: ct computationally hides m if adversary does not have a
key for an identity id € S



Distributed Broadcast Encryption

Trustless version of
broadcast encryption [FN93]
without a central authority
(or master secret key)
Implies broadcast encryption

with a long master public key

Can also consider
“registered” variant where
encryption and decryption
only needs to know
identities and not public keys

[WQZD14, BZ14]

Setup(ll) — pp
Generates a set of public parameters
KeyGen(pp, id) = (pkiq, skiq)
Samples a key-pair for a user
Encrypt(pp, {pkiatides, m) — ct
Can encrypt a message m to any set of user public keys

Efficiency: |ct| = |m| + poly(4,log|S|)
Decrypt(pp, {pkiq}ides, skig, ct) = m

Correctness: Any secret key sk;q associated with id € S can decrypt

Security: ct computationally hides m if adversary does not have a
key for an identity id € S



Distributed Broadcast Encryption via Matrix Commitments
[WW25]

- nxm
Commit(pp, M) — C € Zj CVL = M—A- -7
Open(pp, M) - Z € ZZlXL low-norm low-norm

Public parameters: pp, 4y < Z7™™, p < Z7 V=|v | |v,]

. : o ] _ m
Key generation (foridentity i < L): 7; « {0’1} Set L = 2% and assume identities are A-bits

pki=ti=Ari+p—A0viEZZ‘ Ski=1"i

Encryption (of message u to public keys {pKk;};es):
Construct sparse public-key matrix M € Zj C = Commit(pp, M) S ZZ

sTA+e]
sT(A, +C) + el

ith column of M is pk; = t; if i € S and 0 otherwise s'p+ es +u-1q/2] Ciphertext




Distributed Broadcast Encryption via Matrix Commitments
[WW25]

Commit(pp, M) — C € Zy*™ C - VL —M—-A-7

Open(pp, M) - Z € Zg™* ow-norm -
pk; =t; = Ar; +p — Ayv; € L7 Suppose i € S:
sk: = 7 . C'vi:ti_A'Zi
ot Public key
— Ari TP — oni — AZi
C = Commit(pp, M) s « Ly Decryption:
T T T T .,
s Ate (dual-Regev style) (S (4o +C) + eZ) Ui
ST(AO + C) + e%‘ ~ STAOvi + ST(ATi + p _ oni _ AZi)
s'p+es+pu-lq/2) Ciphertext

ith column of M is pk; = t; if i € S and 0 otherwise



Distributed Broadcast Encryption via Matrix Commitments
[WW25]

Commit(pp, M) — C € Zy*™ C - VL —M—-A-7

Open(pp, M) - Z € ZZlXL low-norm low-norm
pk; = t, = Ar; +p — Agv, € 1 Suppose i €
C v; :ti_A'Zi
sk; = r; . L
L L Public key
. =Arl-+p—A0vi—Azi
C = Commit(pp, M) s « Ly Decryption:
T T T Y. .
s'A+e (dual-Regev style) (S (4o + O + eZ) Vi
s'(Ag+0) + e ~ sTAGv; + sT(Ar; + p — AqV; — Az;)
s'p+e;+pu-|q/2] Ciphertext =SsTA(r;—z;) +s'p Recover
ith column of M is pk; = t; if i € S and 0 otherwise (STA + e’{) _ (ri _ Zi) ~ STA(Ti . Zi) STp



Distributed Broadcast Encryption via Matrix Commitments
[WW25]

- nxm
Commit(pp, M) — C € Zj CVL = M—A- -7
Open(pp, M) - Z € ZZlXL low-norm low-norm

Gives a selectively-secure distributed broadcast
encryption scheme (for arbitrary number of
sk; =1y Public key users) and a transparent setup

pki :ti =Ari+p—A0vl- EZZ

Previously: only known from witness encryption

¢ = Commit(pp, M) S < Zq or indistinguishability obfuscation

T T
s'A+e -

1 (dual-Regev style) Generalizations:
ST(AO + C) + eg » Adaptive security in the random oracle model
) * Registered attribute-based encryption for unbounded

T :

Sptest i lq/ZJ Ciphertext number of users and succinct ciphertexts (in random
ith column of M is pk; = t; if i € S and 0 otherwise oracle model)

Not known from witness encryption!



Succinct Attribute-Based Encryption

[Wee25]

Setup(l’l) — (mpk, msk)
Key-policy ABE: Secret keys associated with

KeyGen(msk, f) — sk¢ functions f:{0,1}¢ - {0,1}

. . . . Y
Encrypt(mpk, X, m) - Ctx,m Ciphertexts associated with attributes x € {0,1}

m f(X) =0 Correctness: Can decryption when f(x) =0
Decrypt(x, f Skf’ Ctxlm) - {J_ f(x) — 1  Security: Message hidden when f(x) = 1

Succinctness: |ctx,m| = |m| + poly(4, log|x|)

In the following, we will allow for a depth dependence as well:
|ctx’m| = |m| + poly(4, d,log|x|), where d is the depth of the Boolean circuit computing f



Homomorphic Computation using Lattices

[GSW13, BGGHNSVV14]

Encodes a vector x € {0,1}* with respect to matrix B = [B, | --- | B,] € Z"C”;X*’m

B—x"®a¢G

Given any function f:{0,1}* — {0,1}, there exists a low-norm matrix Hpg ( , where
(B—x"®G) Hprr=B;f—f(x) G

encoding of x with respect to B encoding of f(x) with respect to By

Given B and f, can efficiently compute the matrix By




Attribute-Based Encryption

[BGGHNSVV14]

“dual Regev public key” attribute-encoding matrix

Publickey: A€Z; ™, p€Zy, BE ng{’m

Secret key for f: low-norm vector vr € Z°™ where [A ‘ By ]vf =P

Ciphertext with attribute x: s < Zj

multiply by Hp ¢ , f _
sT(B—xT ® G) + e} | =y ~ sTB; ~ sT|A| By |vy
s'p+es+u-lq/2] ~s'p

(B—x"®G) Hgsr=B;s—f(x) -G




Attribute-Based Encryption

[BGGHNSVV14]

“dual Regev public key” attribute-encoding matrix
: . nxm n nxfm
Public key: A€y, pELy, BEIL
Secret key for f: low-norm vector vr € Z°™ where [A ‘ By ]vf =P

Ciphertext with attribute x:

sTA + e

ST(B —xT® G) + eg Not succinct because |B — xT ® G| = £ -nmlogq
Need to encode attribute to compute on it
s'p+es+u-lq/2) ’

(B—x"®G) Hgsr=B;s—f(x) -G




Succinct Attribute-Based Encryption

[Wee24, Wee25]

“dual Regev public key” attribute-encoding matrix

Publickey: A€Z; ™, p€Zy, BE ng{’m

Secret key for f: low-norm vector vr € Z°™ where [A ‘ By ]vf =P

Ciphertext with attribute x:

STA + BI [Wee24, Wee25] approach: compress x! Q G
* LetC, € Z*™ be a commitmenttox’ @ G
sT(B—xT®G) +e; ¢ ThenC,V = (T ® G) — AZ
e Sample B « Z™™ and take B = BV € ZXt™m
T q 2 q
s'ptes+u-|q/2] + ThenB—xT® G = BV — C,V — AZ

(B—x"®G) Hgsr=B;s—f(x) -G




Succinct Attribute-Based Encryption

[Wee24, Wee25]

“dual Regev public key” attribute-encoding matrix

-
-
-

public parameters independent of attribute length!

Secret key for f: low-norm vector vr € Z°™ where [A ‘ By ]vf =P

Ciphertext with attribute x:

STA + BI [Wee24, Wee25] approach: compress x! Q G
* LetC, € Z*™ be a commitmenttox’ @ G
sT(B—xT®G) +e; ¢ ThenC,V = (T ® G) — AZ
* Sample B « Z™ and take B = BV € Z*™
T —
s'ptes+u-|q/2] + ThenB—xT® G = BV — C,V — AZ

(B—x"®G) Hgsr=B;s—f(x) -G




Succinct Attribute-Based Encryption

[Wee24, Wee25]

“dual Regev public key” attribute-encoding matrix
Publickey: A €ZM™, p€Z], BEILX™ =—p BcL "
public parameters independent of attribute length!

Secret key for f: low-norm vector vr € Z°™ where [A ‘ By ]vf =P

Ciphertext with attribute x: Everything else unchanged!

STA + BI [Wee24, Wee25] approach: compress x! Q G
N Let C,, € Z7*™ be a commitmenttox’ @ G
sk B—-—-xT-®'G)'+ e‘; » ThenC,V=(xT®G) — Az
T T * Sample B « Z*™ and take B = BV € 7™
S (B—CJ,C)+e2 ThenB —x' ® G =BV - C,V — AZ
STp +e;+Uu- lq/ZJ Correctness:

(sTA)(-2) +sT(B—C,)V =sT(BV - C,V—AZ) =s"(B—xT® G)



Roadmap

Functional
commitments

Succinct LWE Family of Assumptions Matrix Commitments Distributed
p w,]| T} | g Commit(pp, M) — C € Z}*™ broadcast encryption
: ] — 7, —|7 Open(pp, M) - Z € Z7** :
A [Wel]| __ ¢ G KP/CP-ABE with
) D, i T C- VL =M-A-Z succinct ciphertexts

SIS/LWE holds with respect to A4 given D,, T

Registered ABE for
circuits




Constructing Matrix Commitments

Succinct commitment to a matrix M € Z’;XL

' nxm
Commit(pp, M) - C € Z C-V,=M-A-Z
Open(pp, M) - Z € Zg*** low-norm ow-norm

Basic building block: the trapdoor from a succinct LWE instance

S [— T1 —_—] ) )
. G A, Wi € ngm
) TirI € nghn

T,
— T —
T




Constructing Matrix Commitments

Succinct commitment to a matrix M & Z’U}XL

Commit(pp, M) — C € 7™M
(bp, M) q C-V,=M-A-Z
Open(pp’ M) > 7€ ZZ’lXL low-norm low-norm
Starting point: commitmentto x’ ® G = [x,G | x,G | --- | x,G]| where x € {0,1}*
A w,] | G
[x I |- | xpI] : 1:{) = [x I || x,I]
AWl _ G|

1A |+ | %A | Ziepox Wi [x,G |- 1 %Gl =xT® G



Constructing Matrix Commitments

Succinct commitment to a matrix M & Z’U}XL

Commit(pp, M) - C € Zg*™ C - VL —M—-A-7
Open(pp’ M) > 7€ ZZ’lXL low-norm low-norm
Starting point: commitmentto x’ ® G = [x,G | x,G | --- | x,G]| where x € {0,1}*
T,
(2141 - | XA | i x: W] T’{) = 6 1 %,6] = 2T R G
T




Constructing Matrix Commitments

Succinct commitment to a matrix M & Z’U}XL

C-V,=M—-A-Z

Commit(pp, M) - C € Zg*™

mxXxL low- low-
Open(pp’ M) -7 € Zq ow-norm ow-norm
Starting point: commitmentto x’ ® G = [x,G | x,G | --- | x,G]| where x € {0,1}*
T,
|1 A1 | %A | Ziepox Wi T’{) = [5Gl 1x6=x"QG
r
S e

Yl

A (ZierexiTi) + CigeiW)T



Constructing Matrix Commitments

Succinct commitment to a matrix M & Z’U}XL

Commit(pp, M) — C € 7™M
(bp, M) q C-V,=M-A-Z
Open(pp’ M) > 7€ ZZ’lXL low-norm low-norm
Starting point: commitmentto x’ ® G = [x,G | x,G | --- | x,G]| where x € {0,1}*
A- (ZieraxiTi) + CietgxiW)T = [0:6 1 1x6l=x"® G

Rearranging:
(ZierexiW) T=x"® G—A- (ZicpexT:)

commitment opening

Note: T, T; are blocks of the succinct LWE trapdoor, so they have low norm



Constructing Matrix Commitments

Succinct commitment to a matrix M € Z’O}XL

' nxm
Commit(pp, M) - C € Z C-V,=M-A-Z
Open(pp, M) - Z € Zg*** low-norm ow-norm

Committing to a matrix M € 7Z; "

Compactification [BTVW17]: (bits(M)T X G) : (IL X Vec(Im)) =M

vec(M): concatenation of
the columns of M

bits(M) = vec(G™1(M)):

vectorization of bit
decomposition of M




Constructing Matrix Commitments

Succinct commitment to a matrix M & Z’U}XL

Commit(pp, M) —» C € Z*™
(pp, M) q C-V,=M—-A-Z
mxXxL low- low-
Open(pp, M) — / E Zq ow-norm ow-horm
Committing to a matrix M € ngm: has small norm, only depends on dimension L, not M

A

Compactification [BTVW17]: (bits(M)T X G) : (IL X vec(Im)) =M
Commit to bits(M)T ® G :
C-T=bitst(M)'!' RG—-A-7'
Multiply by I, & vec(l,,):
C-T-(I, ®vec(y)) = (bits(M)' ® G)(I, ® vec(I,,)) —A-Z'- (I, ® vec(I,))



Constructing Matrix Commitments

Succinct commitment to a matrix M & Z’U}XL

Commit(pp, M) —» C € Z*™
(pp, M) q C-V,=M—-A-Z
mxXxL low- low-
Open(pp, M) — / E Zq ow-norm ow-horm
Committing to a matrix M € ngm: has small norm, only depends on dimension L, not M

A

' N\
Compactification [BTVW17]: (bits(M)T X G) : (IL X vec(Im)) =M

Commit to bits(M)T ® G :
C-T=bitst(M)'!' RG—-A-7'

Multiply by I, & vec(l,,):
C-T-(I, ®vec(y)) = (bits(M)T® G)(I, ® vec(I,,)) —A-Z'- (I, ® vec(I,))

v, = T, ®vecl,))




Constructing Matrix Commitments

Succinct commitment to a matrix M & Z’U}XL

Commit(pp, M) —» C € Z*™
(pp, M) q C-V,=M—-A-Z
mxXxL low- low-
Open(pp, M) — / E Zq ow-norm ow-horm
Committing to a matrix M € ngm: has small norm, only depends on dimension L, not M

A

' N\
Compactification [BTVW17]: (bits(M)T X G) : (IL X vec(Im)) =M

Commit to bits(M)T ® G :
C-T=bitst(M)'!' RG—-A-7'

Multiply by I, & vec(l,,):
c-V, = (bits(M)T X G)(IL 0% Vec(Im)) —A-7- (IL 0% VeC(Im))

v, = T, ®vecl,))




Constructing Matrix Commitments

Succinct commitment to a matrix M & Z’U}XL

Commit(pp, M) —» C € Z*™
(pp, M) q C-V,=M—-A-Z
mxXxL low- low-
Open(pp, M) — / E Zq ow-norm ow-horm
Committing to a matrix M € ngm: has small norm, only depends on dimension L, not M

A

' N\
Compactification [BTVW17]: (bits(M)T X G) : (IL X vec(Im)) =M

Commit to bits(M)T ® G :
C-T=bitst(M)'!' RG—-A-7'

Multiply by I, & vec(l,,):
c-v, - M —A-Z' (I, ® vec(l,,))

v, = T, ®vecl,))




Constructing Matrix Commitments

Succinct commitment to a matrix M & Z’U}XL

' nxm
Commit(pp, M) - C € Z C-V,=M-A-Z
Open(pp, M) - Z € Zg*** low-norm ow-norm

Committing to a matrix M € ngm: has small norm, only depends on dimension L, not M
A

' N\
Compactification [BTVW17]: (bits(M)T X G) : (IL X vec(Im)) =M
Commit to bits(M)T ® G :
P , v, = T(I, ® vecln))
C-T=bits(M)TRG—A-Z 7 = 7(1, ®veell)
Multiply by I, @ vec(l,,): _ L & Ve m

c-V, =M —A-Z'- (I, ® vec(I,p))



Constructing Matrix Commitments

Succinct commitment to a matrix M & Z’U}XL

' nxm
Commit(pp, M) - C € Z C-V,=M-A-Z
Open(pp, M) - Z € Zg*** low-norm ow-norm

Committing to a matrix M € ngm: has small norm, only depends on dimension L, not M
A

' N\
Compactification [BTVW17]: (bits(M)T X G) : (IL X vec(Im)) =M

Commit to bits(M)T ® G :
: T , v, = T(,Qvec(l,))
C-Z:bltS(M) RG—A-Z , Z’(I . (I ))

Multiply by I, & vec(l,,): = . @ vec(l,,

C'VL =M —A'Z




Constructing Matrix Commitments

Succinct commitment to a matrix M & Z’U}XL

Commit(pp, M) — C € 7™M
(pp, M) i C-V,=M—-A-Z
Open(pp’ M) - Z € ZZ’lXL low-norm low-norm
Recap: succinct LWE trapdoor (£ = Lm) More compactly:
A w.ll'2] e -
' E 1;{) = [13®A|W][T]=Ig®6
A Wg_ _I G_ o
pp = (AW, T,T) V, =TI, ® veclly))

C = (bits(M)T ® I,)W Z = (bits(M)T @ I,)T(I, ® vec,,))



Constructing Matrix Commitments

Succinct commitment to a matrix M & Z’C}XL

' nxm
Commit(pp, M) - C € Z C-V,=M-A-Z
Open(pp, M) - Z € Zg*** low-norm ow-norm

Currently, to committo M € Z’C}XL, need trapdoor of dimension £ = Lm

Sufficient to use trapdoor where £ = 2m? (independent of L) by using Merkel-style recursion
Approach (L = 4m): 2m 2m

nxX4m




Constructing Matrix Commitments

Succinct commitment to a matrix M & Z’(}XL

' nxm
Commit(pp, M) - C € Z C.V,=M—-A-Z
Open(pp, M) - Z € Zg*** low-norm ow-norm

C()V2m =MO_AZO C1V2m =M1_AZ]_
CVop =1Co | C11 —AZy;  multiplyby I, @V,

2m 2m

Commit Commit v v Y
2 [ VZm] [ 0 | 1] VZm] o1 VZm
Commit .
= [Mo | M1] _A[Zo |Z1] _A201[ o v ]
2m
“w _J G _J
~" ~"

Generalizes to arbitrary L = 2m



Constructing Matrix Commitments

Succinct commitment to a matrix M € Z’U}XL

' nxm
Commit(pp, M) - C € Z C-V,=M-A-Z
Open(pp, M) - Z € Zg*** low-norm ow-norm

Merkle-style commitment
Public parameter size is independent of L

Can commit to sparse matrices of exponential width (e.g., L = 24, but M contains K =
poly(4) non-zero columns; running time of Commit and Open is poly(K))

Can realize from any assumption in the succinct LWE family



Constructing Matrix Commitments

_ 1— T —1 . _
A4 Wil . | |6 A,W; € Tm
. : _ 1;{) | = : T, T € Zxem
alw,||_ 7 _ G
D, T

SIS/LWE holds with respect to A given D,, T

Public parameters pp is the matrix D, and the trapdoor T (for £ = 2m?)

With decomposed LWE, both D,, T can be described by a uniform random string; this means
the public parameters pp can be sampled transparently

(pp,sTA +eT) = (pp,ul)



Succinct LWE and Matrix Commitments

Succinct LWE assumption family:

: J— 11 —1 :
A W1 L : L G A,WiEZme
' Pl — 7:{) _|= ' T;,T € ZIV¥¢m
Alw,l_ = _ G
D, T

SIS/LWE holds with respect to A given D,, T

Concrete instantiations (strongest to weakest): BASIS, succinct LWE, decomposed LWE

Matrix commitments provide a useful intermediary tool for building primitives

' nxm
Commit(pp, M) — C € Zj C.V,=M—-A-7
Open(pp, M) = Z € Zy*" low-norm ownorm



Succinct LWE and Matrix Commitments

Succinct LWE assumption family:

: J— 11 —1 :
A W1 L : L G A,WL-EZZ,”""
' Pl — 7${) _|= ' T;,T € ZIV¥¢m
Alw,l_ = _ G
D, T

SIS/LWE holds with respect to A given D,, T

Concrete instantiations (strongest to weakest): BASIS, succinct LWE, decomposed LWE

Matrix commitments provide a useful intermediary tool for building primitives

Implications:
* Nearly-optimal KP/CP-ABE (including optimal _
broadcast encryption) C VL — M A Z

* Unbounded distributed broadcast encryption, low-norm low-norm
succinct registered ABE for circuits




Open Problems

Show hardness of decomposed LWE (or another instance of succinct LWE) from

* Worst-case lattice problem
* Plain LWE assumption

Cryptanalysis of succinct LWE instances

Other primitives from succinct LWE:
* Succinct computational secret sharing
* Witness encryption
* Indistinguishability obfuscation

Thank you!
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