Succinct Non-Interactive Arguments of Proximity

Liyan Chen
Tsinghua University → MIT

Zhengzhong Jin Northeastern

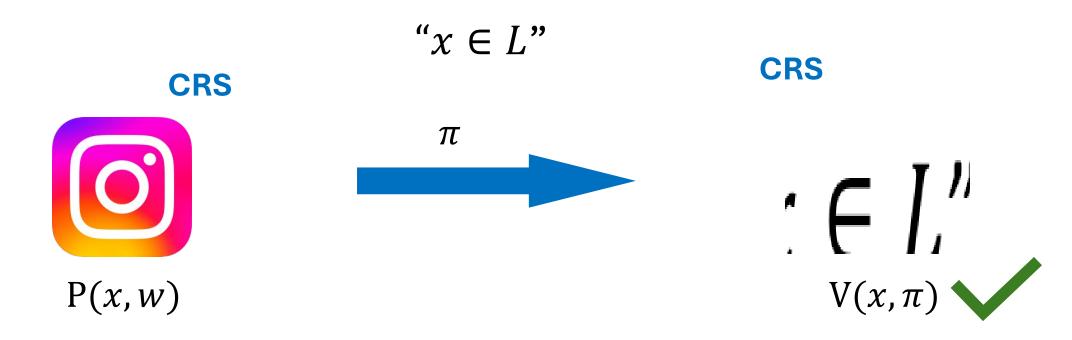
Daniel Wichs
Northeastern and
NTT Research

Proving Properties of HUGE Objects

Claim: <5% fake accounts

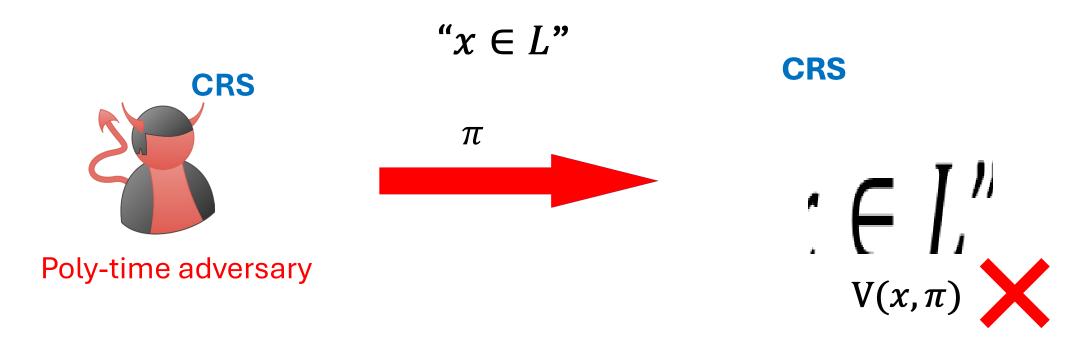
How to **prove** it?

Succinct Non-interactive ARG uments (SNARGs)



• Completeness: $\forall x \in L$, the honestly generated proof is accepted.

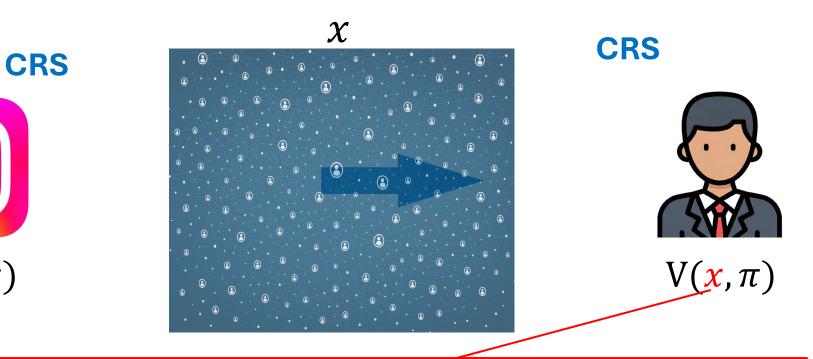
Succinct Non-interactive ARG uments (SNARGs)



- Completeness: $\forall x \in L$, the honestly generated proof is accepted.
- Soundness: efficient adversary cannot produce a valid proof π for $x \notin L$. Soundness can be selective or adaptive.
- Succinct: proof is short: ideally polylog(|x|), verifier efficient: ideally O(|x|)

Can we apply **SNARGs**?

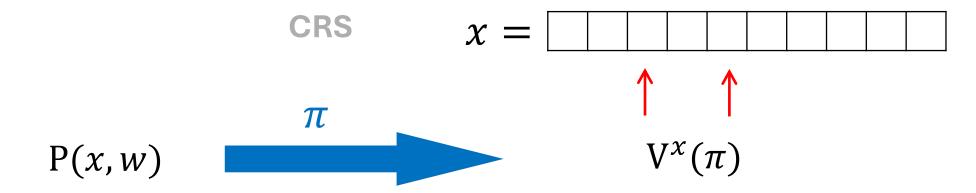
P(x, w)



Challenge: The statement *x* is too large (e.g., a social network graph). Verifier needs to read the entire statement!

Can we define succinct, non-interactive arguments with verification time sublinear in the instance length?

Succinct Non-interactive Arguments of Proximity (SNAP)



Approximate Soundness:

An efficient adversary cannot produce a valid proof for

x that is ϵ -fraction far in Hamming distance from any instances in L.

- Verifier efficiency sublinear in |x|. Bounds proof size, queries.
- Applications: Verify social network properties / big data in healthcare / encoded data...
- Fundamental on its own: analog of property testing

Prior Work [Kalai-Rothblum'15]

- Constructed designated-verifier SNAPs for P with selective soundness and verifier efficiency $O(n^{1-\gamma})$ for some $\gamma > 0$.
 - From sub-exp FHE
- Black-Box barrier for proving adaptive soundness of SNAPs for P with verifier efficiency = $o(\sqrt{n})$.
 - Similar to GW11 black-box provability barrier for SNARGs for NP.

SNAPs 10 years later....

For what parameters and under what assumptions can we build SNAPs for P or NP with selective or adaptive soundness?

Result 1: Lower Bound on Adaptive SNAP for P

Adaptive SNAPs for P must have verifier time $\Omega(\sqrt{n})$

Result 2: Constructing Adaptive SNAPs for P

Adaptive SNAP for P with $\tilde{O}(\sqrt{n})$ verifier time from LWE / DLIN/ QR+DDH /...

How about NP?

Result 3: Constructing Adaptive SNAPs for NP

Adaptive **SNAP** for P + Adaptive **SNARG** for NP \Rightarrow Adaptive **SNAP** for NP

Get adaptive SNAP for NP with $\tilde{O}(\sqrt{n})$ verification time from

iO + (LWE/ QR+DDH / DLIN/...)

Can we build <u>non-adaptive</u> SNAPs for P or NP with better than $\tilde{O}(\sqrt{n})$ verification time?

Result 4: Constructing Non-adaptive SNAPs for NP

Non-adaptive SNAP for NP with polylog verification time

from sub-exp iO + sub-exp OWF + LWE.

Can we do it under better assumptions for P?

Result 5: Lower bound on Non-adaptive SNAPs for P

Any non-adaptive SNAP for P with verification time = $o(\sqrt{n})$

implies a (non-trivial) non-adaptive SNARG for NP.

Summary of Our Results

	Adaptive	Non-adaptive
P	SNAPs with $O(\sqrt{n})$ -efficiency without iO Unconditional $\Omega(\sqrt{n})$ lower bound	Breaking $O(\sqrt{n})$ -bound implies SNARGs for NP
NP	SNAPs with $O(\sqrt{n})$ -efficiency from iO	Fully succinct SNAPs from iO.

Key Difficulty of Adaptive SNAPs

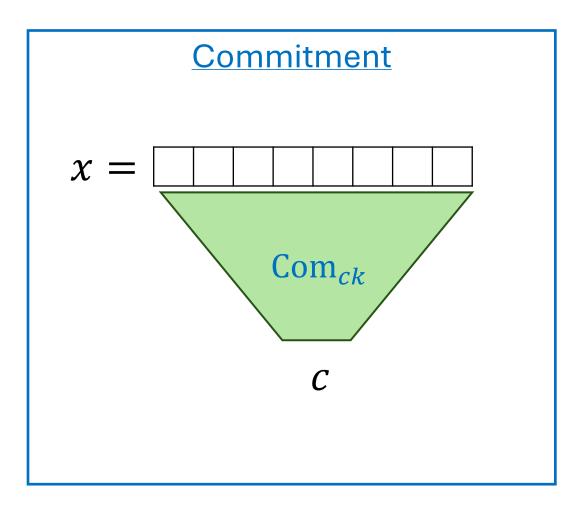
Generic Attack:

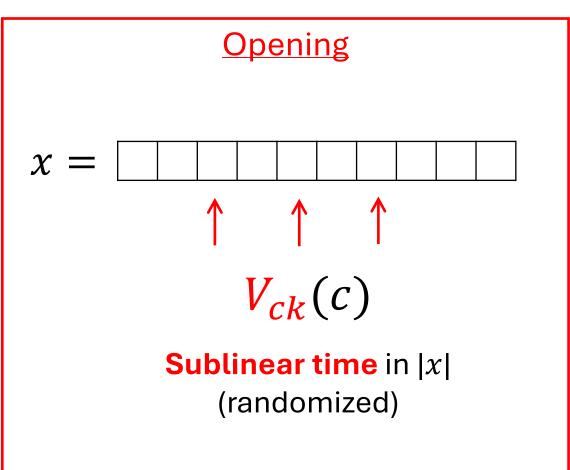
- Generate honest proof π for true statement x^* .
- See which positions of x^* are queried by $Ver^{x^*}(\pi)$.
- Change x^* to a false x by modifying any other position.
- Ensures that $Ver^{x}(\pi) = Ver^{x^{*}}(\pi) = accept$.

Preventing the Attack:

- Allow randomized verification!
- Queried locations are independent of the proof. Useful?

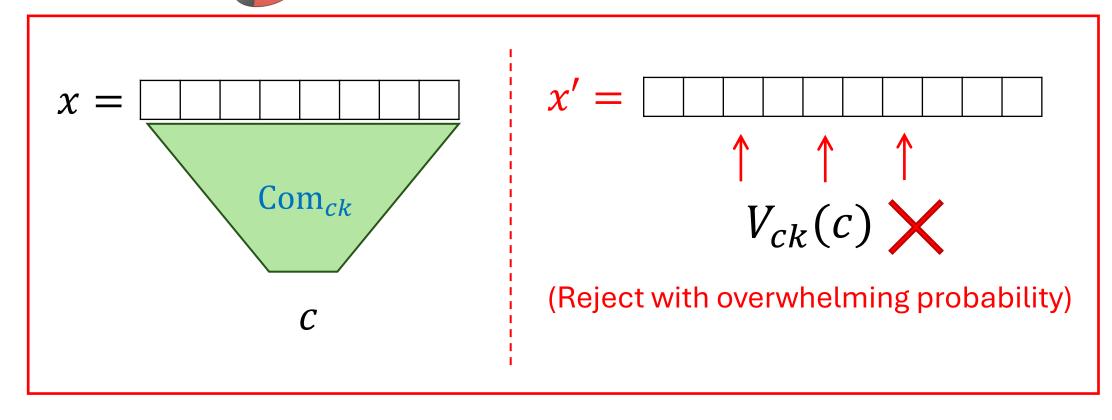
Binding? Impossible due to Sublinear Verification





Binding of Proximity

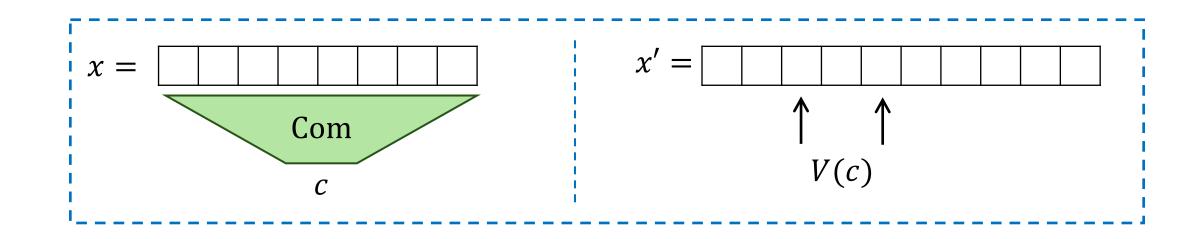
For any $\rightarrow (x, x')$ with $\Delta(x, x') \ge k$ (k: a parameter)



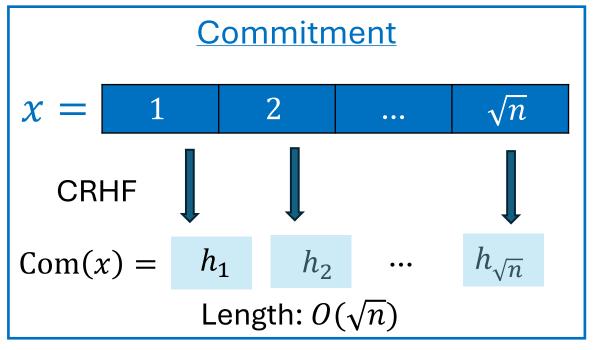
Near-Optimal Commitment of Proximity

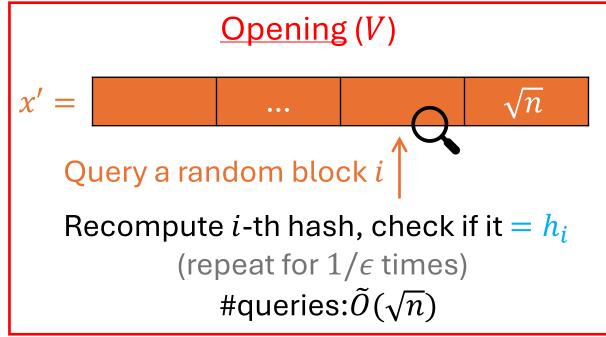
Assuming collision-resistant hash functions (CRHF), get commitment of proximity:

- Commitment size $\tilde{O}(\sqrt{n})$
- Verifier's query complexity $\tilde{O}(\sqrt{n})$
- Binding of Proximity: $\Delta(x, x') \leq \sqrt{n}$



A Naïve Construction: Divide-and-Hash

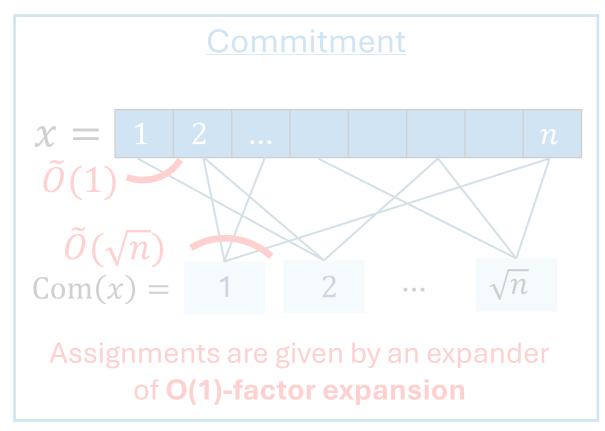


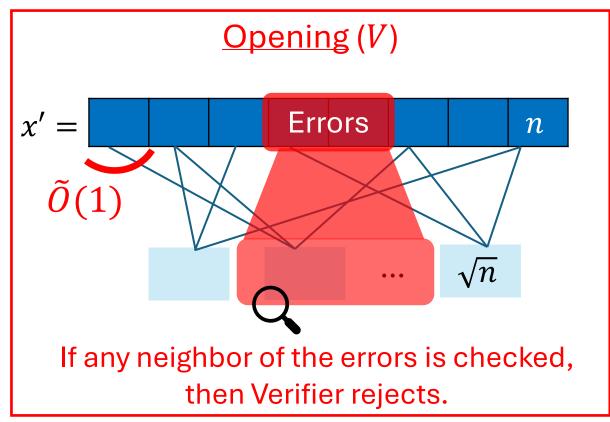


Binding of Proximity:

V accepts ⇒ # of different blocks $\leq \epsilon$ -fraction ⇒ $\Delta(x, x') \leq \epsilon \cdot n$

Near-Optimality via Expander Graphs





Expansion property $\Rightarrow \sqrt{n}$ Hamming errors have $\tilde{O}(\sqrt{n})$ neighbors $\Rightarrow \Delta(x, x') \leq \sqrt{n}$

Commitment of Proximity \Rightarrow SNAP (1st attempt)

Proof: c, π_{SNARK}

Prover

- Compute c = Com(x)
- Compute π_{SNARK} for:

$$\exists x \in L: Com(x) = c$$

Verifier

Verify $V^{x\prime}(c) = 1$ and π_{SNARK}

Can we replace **SNRAKs for NP** with standard assumptions (**SNARGs for P**)?

Extractable Commitment of Proximity

Basic:

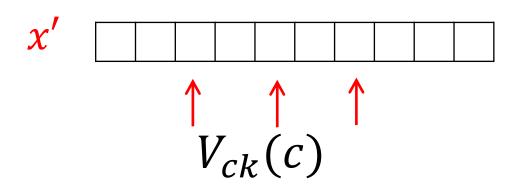
$$\rightarrow$$
 x,x

For any
$$\rightarrow$$
 x,x' if $V_{ck}^{x\prime}(Com(x))=1$ then $\Delta(x,x')\leq \sqrt{n}$

Extractable:

$$\rightarrow$$
 c,x

For any $\rightarrow c,x'$ if $V_{ck}^{x\prime}(c)=1$ then can extract x s.t. $\Delta(x,x')\leq \sqrt{n}$ and c = Com(x).



Extractable Commitment of Proximity ⇒ SNAP

Proof: c, π_{SNARG}

Prover

- Compute c = Com(x)
- Compute π_{SNARG} for:

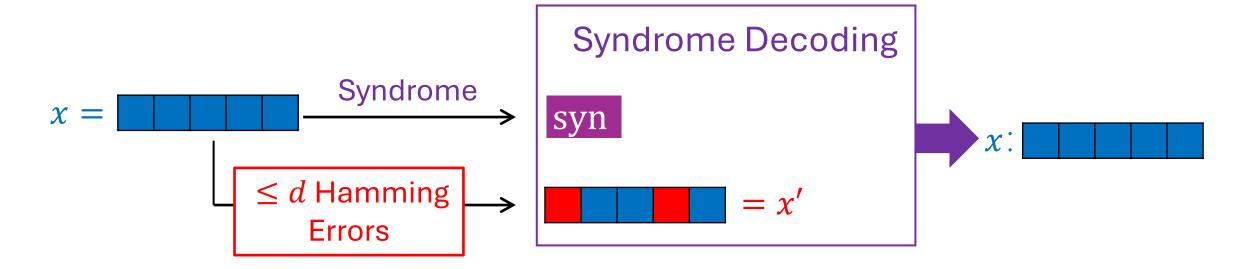
$$\exists x \in L: Com(x) = c$$

Verifier

Verify $V^{x\prime}(c) = 1$ and π_{SNARG}

How to construct extractable commitment of proximity?

Recall: Syndrome Decoding



- Correctness: Decode(syn, x') = x as long as $\Delta(x, x') \le d$
- Succinctness: $|\text{syn}| \leq \tilde{O}(d)$.

Basic ⇒ Extractable CoP (1st attempt)

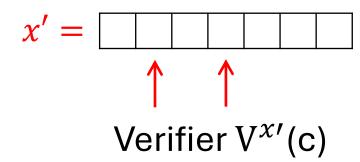
Committer

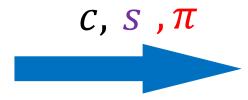
$$c := Com(x)$$
, s := syn(x)

 π : RAM SNARG proof for

$$\exists x$$
: $Com(x) = c \land syn(x) = s$

Circularity!





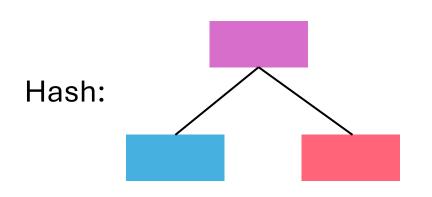
- Extraction: x = Decode(s, x')
- If commitment to x is honestly generated then extractor will output x.
- How to extract from general commitment?

Basic ⇒ Extractable CoP (SNARG gymnastics)

Rely on syndromes + somewhere extractable hashing + RAM SNARGs.

- Extraction in parts:
 - Make hash extractable on different parts x_i of x in different hybrids.
 - Use RAM SNARGs to argue that basic CoP + syndrome computed correctly for x_i .
 - Extract x_i from verifier's input x' and the syndrome. Extraction has to remain correct in subsequent hybrids.

Recall: Somewhere Extractable Hash



Key Indistinguishability:

$$k(L') \approx_c k(R')$$

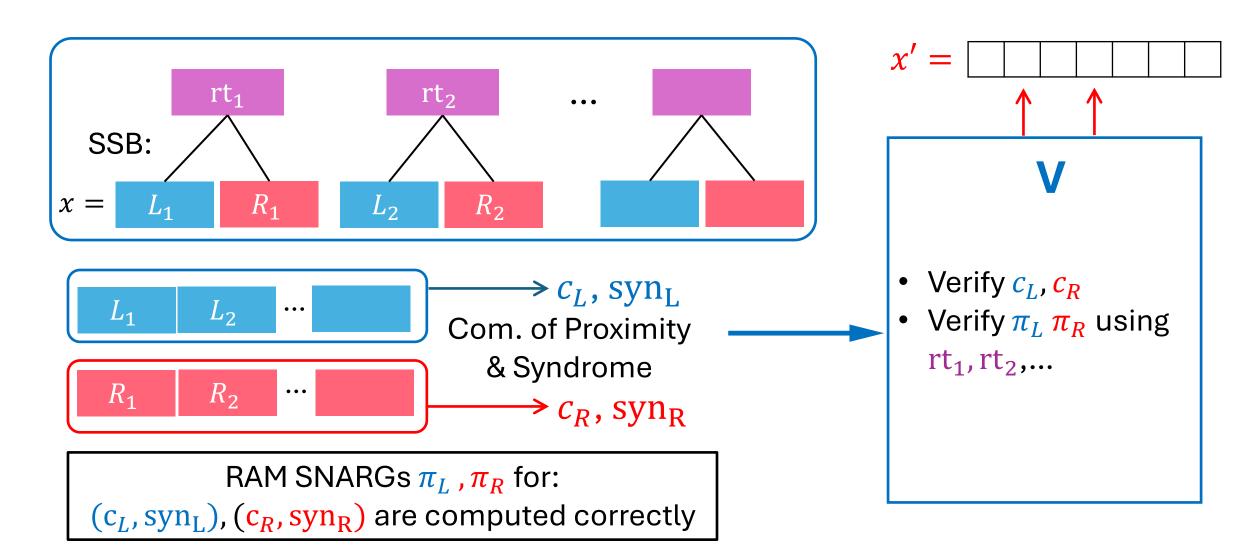
Extractable:

Extract(td,
$$) \rightarrow$$
 Under key $k('R')$

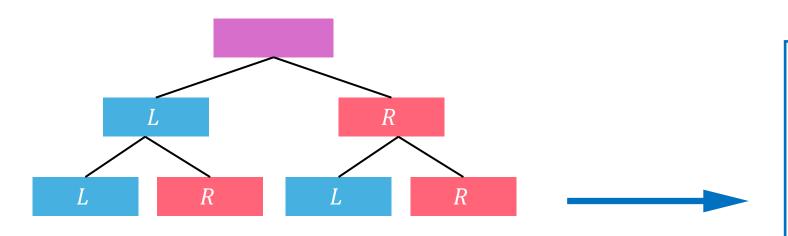
Rate-1:

 $|Hash value| \approx |one child|$

Non-trivial Extractable CoP via 2 Layer Merkle Tree



Generalize to Full Merkle Tree



V

For each layer:

- Verify Com
- Verify RAM SNARG

Apply Commitment of Proximity & Syndrome to each layer (left children & right children separately)

RAM SNARG proof at each layer: "syndromes are computed correctly" (Leaf layer: prove $x \in L$)

Soundness Proof:

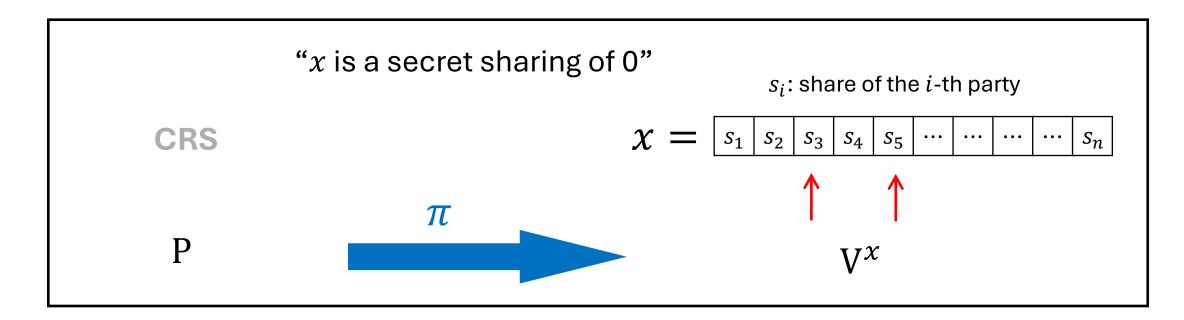
Recursively extract layer-by-layer

Summary of Our Results

	Adaptive	Selective
P	SNAPs with $O(\sqrt{n})$ verification from LWE/DDH/	Breaking $O(\sqrt{n})$ -bound implies SNARGs for NP
	Unconditional lower bound	
NP	SNAPs with $O(\sqrt{n})$ -proof size & query complexity from iO + LWE/DDH/	Fully succinct SNAPs from iO + LWE.

Hard Language of

SNAPs



Attack: sample x as a secret sharing of 1

Issue: How to handle π ?

Attack Strategy

Property Testing:	$\{x \leftarrow SS_0\} \approx \{x^* \leftarrow SS_1\}$
SNAPs:	$\{(x,\pi): x \leftarrow SS_0, \pi \leftarrow P\} \approx \{(x^*,\pi^*): x^* \in SS_1\}$

...against *query-bounded* adversary

Strategy: Choose (x, π) . Set $\pi^* = \pi$.

Flip some bits of x to get x^* .

Analyzed using *Bit-Fixing* techniques in **A**uxiliary-Input Random **O**racle **M**odel

Future Directions

- Other metric: ℓ_2 or ℓ_1 distance? Edit distance?
- Circumvent \sqrt{n} -lower bound for interesting special cases?
- Other Applications of SNAPs or Commitment of Proximity?

Thank you!

Q & A