
Succinct Non-Interactive
Arguments of Proximity

Liyan Chen
Tsinghua University →MIT

Zhengzhong Jin
Northeastern

Daniel Wichs
Northeastern and

NTT Research

Proving Properties of HUGE Objects

Claim: <5% fake accounts

How to prove it?

Succinct Non-interactive ARGuments (SNARGs)

CRS CRS
“𝑥𝑥 ∈ 𝐿𝐿”

P(𝑥𝑥,𝑤𝑤)

• Completeness: ∀𝑥𝑥 ∈ 𝐿𝐿, the honestly generated proof is accepted.

V(𝑥𝑥,𝜋𝜋)

𝜋𝜋

Succinct Non-interactive ARGuments (SNARGs)

CRS CRS
“𝑥𝑥 ∈ 𝐿𝐿”

• Completeness: ∀𝑥𝑥 ∈ 𝐿𝐿, the honestly generated proof is accepted.

V(𝑥𝑥,𝜋𝜋)

CRS
“𝑥𝑥 ∈ 𝐿𝐿”

V(𝑥𝑥,𝜋𝜋)
Poly-time adversary

• Soundness: efficient adversary cannot produce a valid proof 𝜋𝜋 for 𝑥𝑥 ∉ 𝐿𝐿.
 Soundness can be selective or adaptive.
• Succinct: proof is short: ideally polylog(|x|), verifier efficient: ideally O(|x|)

𝜋𝜋

Can we apply SNARGs?

CRS CRS𝑥𝑥

P(𝑥𝑥,𝑤𝑤) V(𝑥𝑥,𝜋𝜋)

Challenge: The statement 𝑥𝑥 is too large (e.g., a social network graph).
Verifier needs to read the entire statement!

Can we define succinct, non-interactive arguments with
verification time sublinear in the instance length?

P(𝑥𝑥,𝑤𝑤) V𝑥𝑥(𝜋𝜋)

Recall: Soundness of SNARGs
An efficient adversary cannot produce a valid proof for any 𝑥𝑥 ∉ 𝐿𝐿.

CRS 𝑥𝑥 =

Approximate Soundness:
An efficient adversary cannot produce a valid proof for

𝑥𝑥 that is 𝝐𝝐-fraction far in Hamming distance from any instances in 𝐿𝐿.

𝜋𝜋

• Verifier efficiency sublinear in |x|. Bounds proof size, queries.

• Applications: Verify social network properties / big data in healthcare / encoded data…
• Fundamental on its own: analog of property testing

Succinct Non-interactive Arguments of Proximity (SNAP)

• Constructed designated-verifier SNAPs for P with selective soundness
and verifier efficiency 𝑂𝑂 𝑛𝑛1−𝛾𝛾 for some 𝛾𝛾 > 0.

• From sub-exp FHE

• Black-Box barrier for proving adaptive soundness of SNAPs for P with
verifier efficiency = 𝑜𝑜(𝑛𝑛).

• Similar to GW11 black-box provability barrier for SNARGs for NP.

• Constructed designated-verifier SNAPs for P with selective soundness
and verifier efficiency 𝑂𝑂 𝑛𝑛1−𝛾𝛾 for some 𝛾𝛾 > 0.

Prior Work [Kalai-Rothblum’15]

For what parameters and under what assumptions
can we build SNAPs for P or NP

 with selective or adaptive soundness?

SNAPs 10 years later….

Result 1: Lower Bound on Adaptive SNAP for P

Adaptive SNAPs for P must have verifier time Ω(𝑛𝑛)

Result 2: Constructing Adaptive SNAPs for P

Adaptive SNAP for P with �𝑂𝑂 𝑛𝑛 verifier time from LWE / DLIN/ QR+DDH /…

How about NP?

Result 3: Constructing Adaptive SNAPs for NP

 Adaptive SNAP for P + Adaptive SNARG for NP ⇒ Adaptive SNAP for NP

Get adaptive SNAP for NP with �𝑂𝑂(𝑛𝑛) verification time from

iO + (LWE/ QR+DDH / DLIN/…)

Can we build non-adaptive SNAPs for P or NP with better than �𝑂𝑂(𝑛𝑛) verification time?

Result 5: Lower bound on Non-adaptive SNAPs for P

Any non-adaptive SNAP for P with verification time = 𝑜𝑜(𝑛𝑛)

implies a (non-trivial) non-adaptive SNARG for NP.

Result 4: Constructing Non-adaptive SNAPs for NP

Non-adaptive SNAP for NP with polylog verification time

from sub-exp iO + sub-exp OWF + LWE.

Can we do it under better assumptions for P?

Summary of Our Results

Adaptive Non-adaptive

P
SNAPs with 𝑂𝑂 𝑛𝑛 -efficiency

without iO

Unconditional Ω 𝑛𝑛 lower bound

Breaking 𝑂𝑂 𝑛𝑛 -bound
implies SNARGs for NP

NP SNAPs with 𝑂𝑂 𝑛𝑛 -efficiency
from iO

Fully succinct SNAPs
from iO.

Key Difficulty of Adaptive SNAPs

Generic Attack:
• Generate honest proof 𝜋𝜋 for true statement 𝑥𝑥∗.
• See which positions of 𝑥𝑥∗ are queried by 𝑉𝑉𝑉𝑉𝑟𝑟𝑥𝑥∗(𝜋𝜋).
• Change 𝑥𝑥∗ to a false 𝑥𝑥 by modifying any other position.
• Ensures that 𝑉𝑉𝑉𝑉𝑟𝑟𝑥𝑥(𝜋𝜋)= 𝑉𝑉𝑉𝑉𝑟𝑟𝑥𝑥∗(𝜋𝜋)= accept.

Preventing the Attack:
• Allow randomized verification!
• Queried locations are independent of the proof. Useful?

Key Tool: Commitment of Proximity

𝑉𝑉𝑐𝑐𝑐𝑐(𝑐𝑐)

𝑥𝑥 = 𝑥𝑥 =

𝑐𝑐

Com𝑐𝑐𝑐𝑐

Commitment Opening

Sublinear time in |𝑥𝑥|
(randomized)

Binding? Impossible due to Sublinear Verification

Binding of Proximity

𝑉𝑉𝑐𝑐𝑐𝑐(𝑐𝑐)

𝑥𝑥𝑥 =

(Reject with overwhelming probability)

𝑥𝑥 =

𝑐𝑐

Com𝑐𝑐𝑐𝑐

→ 𝑥𝑥, 𝑥𝑥′ with Δ 𝑥𝑥, 𝑥𝑥′ ≥ 𝑘𝑘 (𝑘𝑘: a parameter)For any

Near-Optimal Commitment of Proximity
Assuming collision-resistant hash functions (CRHF), get commitment of proximity:
• Commitment size �𝑂𝑂 𝑛𝑛
• Verifier’s query complexity �𝑂𝑂 𝑛𝑛
• Binding of Proximity: Δ 𝑥𝑥, 𝑥𝑥′ ≤ 𝑛𝑛

𝑥𝑥 =

𝑐𝑐

Com
𝑉𝑉(𝑐𝑐)

𝑥𝑥𝑥 =

A Naïve Construction: Divide-and-Hash

Com 𝑥𝑥 =
Recompute 𝑖𝑖-th hash, check if it = ℎ𝑖𝑖

(repeat for 1/𝜖𝜖 times)

CRHF

Length: 𝑂𝑂(𝑛𝑛) #queries: �𝑂𝑂(𝑛𝑛)

Query a random block 𝑖𝑖

1 2 … 𝑛𝑛

Commitment

… 𝑛𝑛𝑥𝑥 =

Opening (𝑉𝑉)

𝑥𝑥𝑥 =

ℎ1 ℎ2 ℎ 𝑛𝑛…

𝑉𝑉 accepts ⇒ # of different blocks ≤ 𝜖𝜖-fraction
 ⇒ Δ 𝑥𝑥, 𝑥𝑥′ ≤ 𝜖𝜖 ⋅ 𝑛𝑛Binding of Proximity:

Improve?

Near-Optimality via Expander Graphs

1 2 𝑛𝑛Com 𝑥𝑥 =

1 2 … 𝑛𝑛

Commitment

𝑥𝑥 =

…
�𝑂𝑂(𝑛𝑛)

Assignments are given by an expander
of O(1)-factor expansion

�𝑂𝑂(1)
𝑛𝑛

Opening (𝑉𝑉)

𝑥𝑥𝑥 =

𝑛𝑛…

Errors

Expansion property ⇒ 𝑛𝑛 Hamming errors have �𝑂𝑂(𝑛𝑛) neighbors
⇒ Δ 𝑥𝑥, 𝑥𝑥′ ≤ 𝑛𝑛

If any neighbor of the errors is checked,
then Verifier rejects.

�𝑂𝑂(1)

Commitment of Proximity ⇒ SNAP (1st attempt)
Prover

• Compute 𝑐𝑐 = Com(𝑥𝑥)
• Compute 𝜋𝜋𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 for:

∃𝑥𝑥 ∈ 𝐿𝐿: Com 𝑥𝑥 = 𝑐𝑐 Proof: 𝑐𝑐,𝜋𝜋𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

Verifier

Verify 𝑉𝑉𝑥𝑥′ 𝑐𝑐 = 1
 and 𝜋𝜋𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

Soundness Analysis

• Knowledge extraction from 𝜋𝜋𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆: get some 𝑥𝑥 ∈ ℒ
• Binding of Proximity ⇒ Δ 𝑥𝑥, 𝑥𝑥′ ≤ 𝜖𝜖𝑛𝑛
• Conclusion: Δ 𝑥𝑥𝑥,ℒ ≤ 𝜖𝜖𝑛𝑛

Can we replace SNRAKs for NP
with standard assumptions (SNARGs for P)?

Extractable Commitment of Proximity

𝑉𝑉𝑐𝑐𝑐𝑐(𝑐𝑐)

𝑥𝑥𝑥

→ c,x’ For any if 𝑉𝑉𝑐𝑐𝑐𝑐𝑥𝑥′(𝑐𝑐)=1 then can extract 𝑥𝑥 s.t. Δ 𝑥𝑥, 𝑥𝑥′ ≤ 𝑛𝑛
 and 𝑐𝑐 = 𝐶𝐶𝑜𝑜𝐶𝐶(𝑥𝑥).

→ x,x’ For any if 𝑉𝑉𝑐𝑐𝑐𝑐𝑥𝑥′(𝐶𝐶𝑜𝑜𝐶𝐶(𝑥𝑥))=1 then Δ 𝑥𝑥, 𝑥𝑥′ ≤ 𝑛𝑛

Basic:

Extractable:

Extractable Commitment of Proximity ⇒ SNAP
Prover

• Compute 𝑐𝑐 = Com(𝑥𝑥)
• Compute 𝜋𝜋𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 for:

∃𝑥𝑥 ∈ 𝐿𝐿: Com 𝑥𝑥 = 𝑐𝑐 Proof: 𝑐𝑐,𝜋𝜋𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

Verifier

Verify 𝑉𝑉𝑥𝑥′ 𝑐𝑐 = 1
 and 𝜋𝜋𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

Soundness Analysis

• Extract 𝑥𝑥 from commitment.
• “RAM SNARG for P” suffices to ensure 𝑥𝑥 ∈ 𝐿𝐿.

How to construct extractable commitment of proximity?

Syndrome Decoding

Recall: Syndrome Decoding

Syndrome
syn

≤ 𝑑𝑑 Hamming
Errors

• Correctness: Decode syn, 𝑥𝑥𝑥 = 𝑥𝑥 as long as Δ 𝑥𝑥, 𝑥𝑥′ ≤ 𝑑𝑑
• Succinctness: syn ≤ �𝑂𝑂(𝑑𝑑).

𝑥𝑥 =

= 𝑥𝑥𝑥

𝑥𝑥：

Committer

𝑥𝑥𝑥 =

𝑐𝑐,

Basic ⇒ Extractable CoP (1st attempt)

𝑐𝑐 ≔ Com(𝑥𝑥), s := syn(x)

𝜋𝜋: RAM SNARG proof for

• Extraction: 𝑥𝑥 = Decode(s, 𝑥𝑥′)
• If commitment to x is honestly generated

then extractor will output x.
• How to extract from general commitment?

∃𝑥𝑥: Com 𝑥𝑥 = 𝑐𝑐 ∧ 𝑠𝑠𝑠𝑠𝑛𝑛 𝑥𝑥 = 𝑠𝑠

Verifier V𝑥𝑥′(c)
𝑠𝑠 ,𝜋𝜋

Circularity!

• Rely on syndromes + somewhere extractable hashing + RAM SNARGs.

• Extraction in parts:
• Make hash extractable on different parts 𝑥𝑥𝑖𝑖 of 𝑥𝑥 in different hybrids.
• Use RAM SNARGs to argue that basic CoP + syndrome computed correctly for 𝑥𝑥𝑖𝑖.
• Extract 𝑥𝑥𝑖𝑖 from verifier’s input 𝑥𝑥𝑥 and the syndrome. Extraction has to remain

correct in subsequent hybrids.

Basic ⇒ Extractable CoP (SNARG gymnastics)

Recall: Somewhere Extractable Hash
• Key Indistinguishability:
 𝑘𝑘 ‘𝐿𝐿’ ≈𝑐𝑐 𝑘𝑘(‘𝑅𝑅’)

• Extractable:
 Extract(td,) →

 Under key 𝑘𝑘 ‘𝐿𝐿’

• Rate-1:
 |Hash value| ≈ |one child|

Hash:

𝑘𝑘(‘𝑅𝑅’)

Non-trivial Extractable CoP via 2 Layer Merkle Tree

𝐿𝐿1 𝐿𝐿2 …

𝐿𝐿1 𝑅𝑅1

rt1

𝐿𝐿2 𝑅𝑅2

rt2 …

𝑥𝑥 =

SSB:

Com. of Proximity
& Syndrome

𝑐𝑐𝐿𝐿, synL

𝑅𝑅1 𝑅𝑅2 …
𝑐𝑐𝑆𝑆, synR

• Verify 𝑐𝑐𝐿𝐿, 𝑐𝑐𝑆𝑆
• Verify 𝜋𝜋𝐿𝐿 𝜋𝜋𝑆𝑆 using

rt1, rt2,…

V

RAM SNARGs 𝜋𝜋𝐿𝐿 ,𝜋𝜋𝑆𝑆 for:
(c𝐿𝐿 , synL), (c𝑆𝑆 , synR) are computed correctly

𝑥𝑥𝑥 =

Generalize to Full Merkle Tree

𝐿𝐿 𝑅𝑅

𝐿𝐿 𝑅𝑅 𝐿𝐿 𝑅𝑅

Apply Commitment of Proximity & Syndrome to each layer
(left children & right children separately)

For each layer:
• Verify Com
• Verify RAM SNARG

V

RAM SNARG proof at each layer:
“syndromes are computed correctly”

(Leaf layer: prove 𝑥𝑥 ∈ 𝐿𝐿)

Soundness Proof:
Recursively extract layer-by-layer

Summary of Our Results

Adaptive Selective

P
SNAPs with 𝑂𝑂 𝑛𝑛 verification

from LWE/DDH/…

Unconditional lower bound

Breaking 𝑂𝑂 𝑛𝑛 -bound
implies SNARGs for NP

NP SNAPs with 𝑂𝑂 𝑛𝑛 -proof size & query
complexity from iO + LWE/DDH/…

Fully succinct SNAPs
from iO + LWE.

Hard Language of Property Testing

“𝑥𝑥 is a secret sharing of 0”

V𝑥𝑥

CRS 𝑠𝑠1 𝑠𝑠2 𝑠𝑠3 𝑠𝑠4 𝑠𝑠5 ⋯ ⋯ ⋯ ⋯ 𝑠𝑠𝑛𝑛𝑥𝑥 =

𝜋𝜋
P

𝑠𝑠𝑖𝑖: share of the 𝑖𝑖-th party

Attack: sample 𝑥𝑥 as
a secret sharing of 1

SNAPs

Issue: How to handle 𝜋𝜋?

Attack Strategy

Property Testing: 𝑥𝑥 ← 𝑆𝑆𝑆𝑆0 ≈ 𝑥𝑥∗ ← 𝑆𝑆𝑆𝑆1
SNAPs: 𝑥𝑥,𝜋𝜋 : 𝑥𝑥 ← 𝑆𝑆𝑆𝑆0,𝜋𝜋 ← 𝑃𝑃 ≈ { 𝑥𝑥∗,𝜋𝜋∗ : 𝑥𝑥∗ ∈ 𝑆𝑆𝑆𝑆1}

…against query-bounded adversary

Strategy: Choose 𝑥𝑥,𝜋𝜋 . Set 𝜋𝜋∗ = 𝜋𝜋.
 Flip some bits of 𝑥𝑥 to get 𝑥𝑥∗.

Analyzed using Bit-Fixing techniques
in Auxiliary-Input Random Oracle Model

Future Directions

• Other metric: ℓ2 or ℓ1 distance? Edit distance?
• Circumvent 𝑛𝑛 -lower bound for interesting special cases?
• Other Applications of SNAPs or Commitment of Proximity?

Thank you!

Q & A

	Succinct Non-Interactive Arguments of Proximity
	Proving Properties of HUGE Objects
	Succinct Non-interactive ARGuments (SNARGs)
	Succinct Non-interactive ARGuments (SNARGs)
	Can we apply SNARGs?
	Can we define succinct, non-interactive arguments with verification time sublinear in the instance length?
	Succinct Non-interactive Arguments of Proximity (SNAP)
	Prior Work [Kalai-Rothblum’15]
	For what parameters and under what assumptions �can we build SNAPs for P or NP� with selective or adaptive soundness?
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Summary of Our Results
	Key Difficulty of Adaptive SNAPs	
	Key Tool: Commitment of Proximity
	Binding of Proximity
	Slide Number 17
	A Naïve Construction: Divide-and-Hash
	Near-Optimality via Expander Graphs
	Commitment of Proximity ⇒ SNAP (1st attempt)
	
	Extractable Commitment of Proximity ⇒ SNAP
	Recall: Syndrome Decoding
	 Basic ⇒ Extractable CoP (1st attempt)
	 Basic ⇒ Extractable CoP (SNARG gymnastics)
	Recall: Somewhere Extractable Hash
	Non-trivial Extractable CoP via 2 Layer Merkle Tree
	Generalize to Full Merkle Tree
	Summary of Our Results
	Hard Language of Property Testing
	Slide Number 31
	Future Directions
	Thank you!��Q & A

