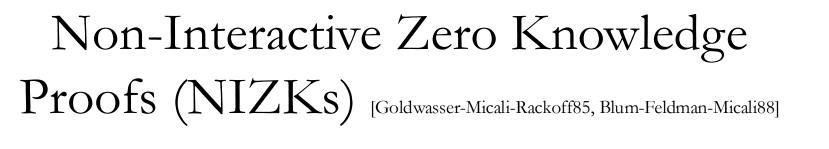
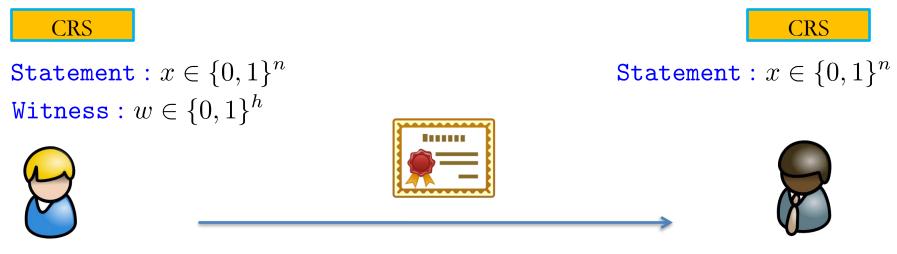
A New Approach for Non-Interactive Zero Knowledge from Learning with Errors

Brent Waters





 $\operatorname{Prove}(\operatorname{CRS}, x, w) \to \pi$

Verify(CRS, x, π)

Sound: Only accepts if exists w where R(x,w) = 1

Zero Knowledge: Verifier learns no information about witness w

Hidden Bits Approach to NIZKs [Feige-Lapidot-Shamir90]

Part 1: Build NIZKs from "hidden bits model"

- Random string chosen
- Prover can reveal, but not change

1 0 1 1 0 0 0 1 0 1 0

Part 2: Build Hidden Bits Generators

- <u>Small</u> commitment com to arbitrary k number of bits
- Com is statistically binding for all outputs
- Unopened bits computationally hidden

NIZKs from Number Theory

1990

QR [BFM88]; RSA via hidden bits [FLS90]

2000

Bilinear maps via hidden bits [CHK03] Learning with Errors (LWE) introduced by Regev05 Bilinear maps directly gate by gate[GOS06]

2010

LWE: Fully Homomorphic encryption, IBE, ABE...

LWE via correlation intractability [CCHLRRW19, PS19]

2020

But why didn't hidden bits model work?

Why ask why?

Understanding: Fundamental barrier? Or not approaching the right way?

Techniques: Hope to solve other problems

Efficiency: Black box use of underlying cryptography

Result: New hidden bits realization of NIZK from LWE

Hidden Bits Generator

Setup $(1^{\lambda}, 1^k) \rightarrow \text{crs}$

GenBits(crs) \rightarrow com, (r_1, \dots, r_k) , (π_1, \dots, π_k)

Verify(crs, com, i, β, π) $\rightarrow b \in \{0, 1\}$

Succinctness: $|com| = poly(\lambda)$ (independent of k)

Binding: \forall *i* \nexists (com, π^0 , π^1) s.t. Verify(crs,com, *i*, 0, π^0) = 1 AND Verify(crs,com, *i*, 1, π^1)

Hiding: $\forall i$ Att cannot distinguish r_i from random given $(crs, com, \{\pi_j, r_j\}_{j \neq i})$

Dual Mode Setup

LWE: $A, sA + noise \approx_c A, U$

Binding Mode

Hiding Mode

Design Principles

Seed

Bits + Proofs Commitment

Succinctness: Small commitment

Binding: Structured CRS component

Hiding: Big seed + random CRS component

Binding Mode

Construction Binding Mode

Setup
$$(1^{\lambda}, 1^{k}) \rightarrow \operatorname{crs}$$

(1) Choose prime $q \approx 2^{\lambda}$,
Params: $n < m = 2 \lg(q) n < L = \lambda m k$
Com length
(2) $U \stackrel{R}{\leftarrow} Z_{q}^{n \times L}$
Using TrapGen/SamplePre GPV09
(3) Sample $A_{i} \in Z_{q}^{n \times m}$ $W_{i} \in Z_{q}^{m \times L}$: $U = A_{i}W_{i}$; W_{i} short $i \in [k]$
(4) For $i \in [k]$ $\mathbf{s}_{i} \stackrel{R}{\leftarrow} Z_{q}^{n}$, $\mathbf{e}_{i} \stackrel{R}{\leftarrow} D_{\sigma}^{m}$ $\mathbf{v}_{i} = \mathbf{s}_{i}^{T} A_{i} + \mathbf{e}_{i}^{T}$

Construction (continued)

GenBits(crs)
(1)
$$\boldsymbol{t} \stackrel{R}{\leftarrow} \left[-2^{.5\,\lambda}, 2^{.5\,\lambda}\right]^{L}$$

$$\bigcirc$$
 (2) com = $U t \in Z_q^n$

(3)
$$\boldsymbol{\pi}_i = W_i \boldsymbol{t}, \qquad r_i = [\boldsymbol{\nu}_i^T \boldsymbol{\pi}_i]$$

Verify(crs, com,
$$i, \beta, \pi$$
)
(1) Check com = $A_i \pi$ AND $[\boldsymbol{v}_i^T \boldsymbol{\pi}_i] = \beta$
(2) Check $||\boldsymbol{\pi}_i||_{\infty} \leq 2^{\lambda^{.6}}$

Correctness:
$$A_i \pi_i = A_i W_i t = U t = \text{com}$$

 \uparrow
 $\pi_i = W_i t, \quad U = A_i W_i$

Over Simplified Binding Analysis

Imagine: $v_i = \mathbf{s}_i^T A_i + \mathbf{e}_i^T$

Proof verification $\implies A_i \ \pi_i = \text{com}$

 $r_{i} = [v_{i}\pi_{i}]$ $= [(s_{i}^{T}A_{i})\pi_{i}] \qquad (\text{imagined binding mode setup})$ $= [s_{i}^{T}\text{ com }] \qquad (\text{proof verifies})$

Takeaway: Bit completely determined by com and parameters!

Actual Binding Analysis

Reality:
$$\mathbf{v}_i = \mathbf{s}_i^T \mathbf{A}_i + \mathbf{e}_i^T$$

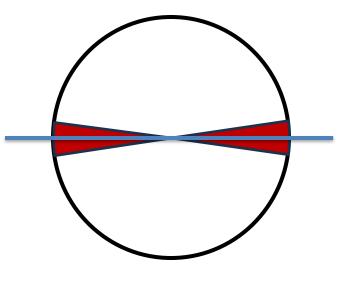
$$r_i = [\boldsymbol{s}_i^T \operatorname{com} + \boldsymbol{e}_i^T \boldsymbol{\pi}_i]^{--} < 2^{\lambda^7}$$

Issue: Different π_i could lead to different bits!

Solution: Reject dangerous cases

Verify(crs, com,
$$i, \beta, \pi$$
)
(1) Check com = $A_i \pi$ AND $[\boldsymbol{v}_i^T \boldsymbol{\pi}_i] = \beta$
(2) Check $||\boldsymbol{\pi}_i||_{\infty} \leq 2^{\lambda^{.6}}$
(3) Reject if $\boldsymbol{v}_i^T \boldsymbol{\pi}_i$ within $2^{\lambda^{.7}}$ of rounding boundary

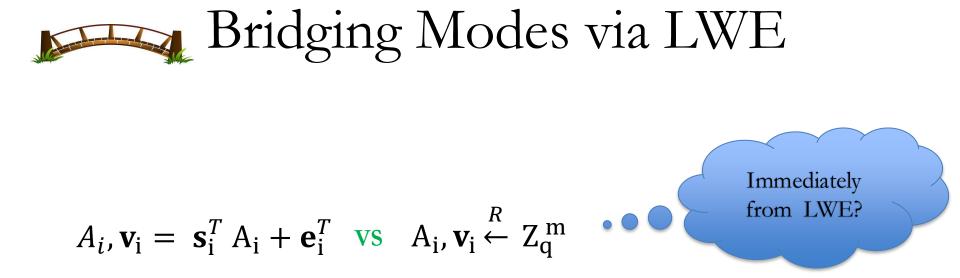
Options: Negligible correctness error OR push to hiding error



Hiding Mode

Construction Hiding Mode

Setup $(1^{\lambda}, 1^{k}) \rightarrow crs$ (1) Choose prime $q \approx 2^{\lambda}$, params $n < m = 2 \lg(q) n < L = \lambda mk$ (2) $U \stackrel{R}{\leftarrow} Z_{q}^{n \times L}$ (3) Sample $A_{i} \in Z_{q}^{n \times m}$ $W_{i} \in Z_{q}^{m \times L}$: $U = A_{i}W_{i}$; W_{i} short $i \in [k]$ (4) $\mathbf{v}_{i} \stackrel{R}{\leftarrow} Z_{q}^{m}$ $i \in [k]$



Params: $U = A_i W_i$; W_i short $i \in [k]$

Issue: Reduction needs trapdoors for all A_i

Solution: Reduction needs trapdoor for all but one A_i

Hybrid Proof

Hybrid j:
$$\mathbf{v}_{i} = \mathbf{s}_{i}^{T} A_{i} + \mathbf{e}_{i}^{T} i \in [j, k]$$

 $\mathbf{v}_{i} \stackrel{R}{\leftarrow} Z_{q}^{m} \qquad i \in [1, j - 1]$

Indistinguishability of Hyb j-1 and Hyb j:

Reduction gets A_i from LWE challenger samples other A_i itself

Hiding Analysis of i-th bit

🚫 Lynchpin:

∃ short *c*:

(A)
$$W_j c = 0^m \quad \forall j \neq i$$
 Does not change proofs
(B) $v_i^T W_i c = \lfloor \frac{q}{2} \rfloor$ Flips ith bit

Goals:

(1) Show vector exists

(2) Show it hides ith bit

Establishing the vector

 \exists short \boldsymbol{c} : $W_j \boldsymbol{c} = 0^m$ $\forall j \neq i$ AND $\boldsymbol{v}_i^T W_i \boldsymbol{c} = \lfloor \frac{q}{2} \rfloor$

 $\exists \mathbf{y} \neq \mathbf{z} \in \{0,1\}^L : W_j \mathbf{y} = W_j \mathbf{z} \quad \forall j \neq i$

 $h = y - z \in \{-1, 0, 1\}: W_j h = 0^m \quad \forall j \neq i$

Collect: Linearly independent $h_1, ..., h_T$: $W_j h_k = 0^m$

W.h.p. exists:
$$x_1, ..., x_T \in \{0, 1\} : \boldsymbol{v}_i^T \ W_i(x_1 \boldsymbol{h}_1 + \cdots x_T \boldsymbol{h}_T) = \lfloor \frac{q}{2} \rfloor$$

Leftover hash lemma & randomness of v 📓

Bit hiding with smudging

GenBits₀(crs)
(1)
$$\mathbf{t} \stackrel{R}{\leftarrow} \left[-2^{.5 \lambda}, 2^{.5 \lambda}\right]$$

(2) com = U (\mathbf{t})
(3) $\boldsymbol{\pi}_{j} = W_{j}$ (\mathbf{t}), $r_{j} = \lfloor \boldsymbol{v}_{j}^{T} W_{j}(\mathbf{t}) \rfloor$

GenBits₁(crs)
(1)
$$\mathbf{t} \stackrel{R}{\leftarrow} \left[-2^{.5 \lambda}, 2^{.5 \lambda}\right], \mathbf{b} \stackrel{R}{\leftarrow} \{0,1\}$$

(2) com = $U(\mathbf{t} + b\mathbf{c})$
(3) $\pi_j = W_j(\mathbf{t} + b\mathbf{c}), \quad r_j = \lfloor \mathbf{v}_j^T W_j(\mathbf{t} + b\mathbf{c}) \rfloor$

Indistinguishable due to size of t relative to c

Attackers advantage negligibly close

Bit flipping

GenBits₁(crs)
(1)
$$\mathbf{t} \stackrel{R}{\leftarrow} \left[-2^{.5 \lambda}, 2^{.5 \lambda}\right], b \stackrel{R}{\leftarrow} \{0,1\}$$

(2) com = $U(\mathbf{t} + b\mathbf{c})$
(3) $\boldsymbol{\pi}_j = W_j(\mathbf{t} + b\mathbf{c}), \qquad r_j = \left[\boldsymbol{v}_j^T W_j(\mathbf{t} + b\mathbf{c}) \right]$

GenBits₂(crs)
(1)
$$\mathbf{t} \stackrel{R}{\leftarrow} \left[-2^{.5 \lambda}, 2^{.5 \lambda}\right], b \stackrel{R}{\leftarrow} \{0,1\}$$

(2) com = U (\mathbf{t})
(3) $\boldsymbol{\pi}_{j} = W_{j}(\mathbf{t}), \quad r_{j} = \left[\boldsymbol{\nu}_{j}^{T} W_{j}(\mathbf{t}) \right] \quad \forall j \neq i$
(4) $r_{i} = \left[\boldsymbol{\nu}_{i}^{T} W_{i}(\mathbf{t}) \right] \bigoplus \mathbf{b}$

(A)
$$W_j \mathbf{c} = 0^m \quad \forall j \neq i, U\mathbf{c} = 0^n$$

(B) $\boldsymbol{v}_i^T W_i \mathbf{c} = \lfloor \frac{q}{2} \rfloor$

No Information!

GenBits₂(crs)
(1)
$$\mathbf{t} \stackrel{R}{\leftarrow} \left[-2^{.5 \lambda}, 2^{.5 \lambda}\right], b \stackrel{R}{\leftarrow} \{0,1\}$$

(2) com = U (\mathbf{t})
(3) $\boldsymbol{\pi}_{j} = W_{j}(\mathbf{t}), \quad r_{j} = \left[\boldsymbol{v}_{j}^{T} W_{j}(\mathbf{t}) \right] \quad \forall j \neq i$
(4) $r_{i} = \left[\boldsymbol{v}_{i}^{T} W_{i}(\mathbf{t}) \right] \bigoplus \mathbf{b}$

Bilinear Maps to LWE

Target Group Assumption: $g^{a}, g^{b}, g^{c}, e(g, g)^{\{abc\}} \approx_{c} g^{a}, g^{b}, g^{c}, h$

Source Group Assumption: $g^{a}, g^{b}, g^{c}, g^{\{abc\}} \approx_{c} g^{a}, g^{b}, g^{c}, u$

Bilinear Maps to LWE

Target Group Assumption

Source Group Assumption

- Adaptive IBE
- Selective Attribute-Based Encryption
- Hidden Bits NIZK

- Adaptive ABE
- Broadcast Encryption w/o q-type
- GOS style NIZK

Followup Work

W-Wee-Wu:

LWE NIZK: (A) transparent setup, (B)poly-size modulus, (C) Short CRS

Branco-Choudhuri-Döttling-Jain-Malavota-Srinivasan: LWE NIZK: (A) transparent setup, (B) poly-size modulus DDH+LPN NIZK

Bradley-Lu-Nassar-W-Wu:

LWE ZAP

Conclusions and Thoughts

Hidden bits model works for LWE

Retrospective: RSA solution --- CRS publishes images, prover publishes short function + inverses of images

Our Solution: Joint sampling of small commitment

