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Recursive Proofs .o

“Recursive circult”

» Two SNARK systems (£, 7"), (', 7"

N
/

 Sometimes they are the same

e 9’ proves that

e |t knows a proof 7 for a statement x

» In a language indexed by a verification key vk L

» Such that 7" accepts 7, for statement x and verification key vk

» Knowledge soundness of (', 7”") implies we can extract &
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Motivation 1:

* Goal: Prove sequential computations

Wl W2 W3 W4
( * ) ( * ) ( ¢ ) 4 * )
o« "x, = F'(xy; Wy, ...,w,) for some wy, ..., w,'

Naive solution: Monolithic proof

 Not memory-efficient
 Super-linear prover is super-linearin ¢ - | F'|

* Additional steps requires reproving everything



Motivation 2

* Goal: Handing off computation
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v

Xo—rF\
5N

—+— 7 F — Xg— F ™ X~

X
)Cl —p F / S N ? Y i Y
A B 8w

 Each party wants to verify the inputs. Some wants to check the entire computation

Naive solution: Each party creates a proof, attach all proofs.
® Linear in number of steps 4



Incrementally verifiable computation .o

« Completeness: Given valid proof ;_; for x;,_, P generates a valid proof z; for x; := F(x,_{, w;)

» Knowledge soundness: Given valid proof 7, for Xx,, extract withesses wy, ..., w, such that
— Ity -
x, = F'(xg;wy, ..., w,)

» Efficiency: Proof size and prover/verifier runtime should be independent of ¢

IVC for P can be build from batch argumentsikpy19,0Gkv22, PP23] (we will focus on NP)



Proof Carrying Data (PCD) (cr10,sccris)
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L 7 7 Generalization of IVC to arbitrary DAGs
S

1 Needs upper bound on arity
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IVC from recursive composition of SNARKSs
IBCCT13, COS20]

Completeness:
Follows from SNARK completeness
Soundness:

Recursively extract transcript using SNARK
»X;+1 knowledge soundness [BCCT13, C0S20] K3

It's

-

Multiple issues (we’ll discuss in a minute)
;11 Efficiency:

| 7| = size of a SNARK proof for R...

i

Complicated

%



IVC from recursive composition of SNARKSs

[BCCT13, COS20]
IVC.V,

IVC | 7 Proving a statement about ‘
_______________ the SNARK verifier

\

Sublinear verification pleteness

» 0/1

necessary to bound R
: sriscript using SNARK

X -
4 4 1 knowledge soundness [BCCT13, C0S20] Ei¢ Complicated
I Multiple issues (we’ll discuss in a minute)
4 , /l1+1 Efficiency:

l
I
i | 7| = size of a SNARK proof for R...
l



Application 3: Property preserving SNARKSs

* Goal: Improving SNARK prover properties

SNARK A ﬁ SNARK A’

Fast sequential Prover Fast parallel Prover

Non parallel ]
« Constant memor
Large memory e Constant CRS g

Large CRS . .
“Large” verifier Constant size verifier

| F|
—

Solution: Break up function F into T uniform steps F’ of size

e Build binary PCD tree of depth log(T’) for predicate F’.
e T parallelism, memory, CRS and Verifier for F’ + Circuit(V ,)
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Application 4: SNARK composition

* Goal: Combining SNARKSs with different tradeoffs

SNARKA | + [SNARKDB SNARK C

 Fast Prover e« Slow Prover » Fast Prover
» “Slow” Verifier ¢ Fast Verifier » Fast Verifier
* “Large” Proofse Small Proofs * Small Proofs

* Zero-Knowledge . zero-Knowledge

Solution: Use SNARK B to prove correctness of SNARK A
Prover runtime: P, on | F'| + P on Circuit(V,)

Verifier: V, Proof size:

10



Many more applications

Image provenance
INT16]

Verifiable Delay functions Succinct Blockchains
[BBBF20] [BMRS20,KB20,CCDW20]

signature \ short proof \

- (e

zk-SNARK <€—

| 20 kB

* Byzantine agreement [BCG20]

o /K cluster computing [CTV15]

* Enforcing language semantics across trust boundaries [CTV13]
* Private smart contracts|[BCCGMW18]

» Signature aggregation [KZHB25]



* Recursive proofs are widely deployed!

€ zkSync % PO Iyg ON & starkware

£ Succinct

» Vital to understand their security and improve constructions!

Real world deployments (Al-SC’s darling)

- XUS



Security analysis and problems



Security issues: Arithmetizing V

e R contains V = V can’t contain oracles
*  We need to implement V as a circuit

""""""""" | * Security jump: (P’, V") secure in the RO
implies that (V, P)=Fiat-Shamir(P”, V") is
secure in the standard (CRS) model.

X, X * (Generically not truejccHos Bar01.GKo3)
“"t+1 e Recent attack on GKRkrs2s
* Attack relies on evaluating FS-Hash
4 v 141

inside proof system
* Recursion relies on this ability



Security issues: Arithmetizing V

o Attempt 1: Build SNARK in the RO that proves statement about the RO?
* Impossible [BCG24]

o Attempt 2: Extend RO model to enable end-to-end analysis of PCD
o Early attempts required secure hardware [CT10,CCS22]

* Arithmetized Random Oracle Model [CCGOS23] augments the random oracle with

an additional arithmetization oracle. Heuristically, the RO is replaced with SHA256,
and the arithmetization with a circuit of SHA256.

 AROM suffices to build PCD
 But FS-attacks are not captured by the AROM (The insecure SNARK s still secure)

 Open problem: Build model that is sufficient to capture attacks but enables end-to-
end PCD construction (candidates [Zha22,AY25])



Security Issues: Extraction

— —> —— —> | - — —> — —> - — —>
1 :Pl T :PI Ty e T my :PI T,

IVC extractor calls the SNARK extractor using (x,, x,) to extract &,_, x,_{, w,_

To extract from an internal SNARK (e.g. for step 2) we need to simulate a prover P
for that SNARK.

Idea: P’s proofs are generated by invoking the extractor for the outer SNARKS

Problem: each extractor can invoke each P up to poly(1) times

)depth

Thus the runtime of the extractor is poly(4 —> depth must be constant



Security Issues: Extraction

* Constant-depth IVC/PCD only and with major security loss :/
* Old solution: Decrease depth [BccT13] ﬂﬂ ﬂﬂ
\ N

* Use tree-based IVC ,z S x A *
el ppelplelp e lnlple{prp
 With A arity and constant depth we can support poly(4) IVC steps

 Still high security loss

e Practitioner’s solution:

 Don’t do anything

» Assume €1, R €gnark (Soundness error of [VC is independent of depth)

 No matching attack



Saving grace: Straightline extraction

 Assume the SNARK has a straight line (deterministic, one-shot) extractor
 Then we don’t get the exponential blowup (each extractor is called once)

» Union bound: depth - €gnark [CT10,0CG0S23

» Recently improved to €prp & €gnaRK [CGSY23]

* Problem 1: Only able to construct straight-line extraction in idealized models
* Heuristic assumption: straightline extraction in idealized model

« — straightline extractor for real-wold instantiation

* Problem 2: Some SNARKSs of interest don’t have straightline extractors
 Example: SNARKs from non efficiently decodable codes.
 Recent progress [RT24,BCFW25]
o Straightline extraction (in ideal model) should become the norm for SNARKs



Open security problems

Build IVC/PCD in standard model (see Surya’s talk on Thursday)

Build a model that captures Fiat-Shamir attacks but enables proving security
of known SNARK/PCD constructions

Attacks against high-depth IVC/PCD (even contrived)
“Straightline extraction” in standard CRS model (or similar condition)

Proving straightline extraction for more protocols



Efficiency (concerns)



IVC from succinct arguments

P, is slow ) . P, proves V, , as a circuit
Vg is large § p [
arg
---------------------------- . |
- A
y —;_> '_;—V'_> .
e e e e e e e e S _tL - i F Ny Stl+1
| circuit(V,.,) | is “recursive overhead”, L )
———————————————————————— : 4 )
) I
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Recursive overhead is a bottleneck
* Goal: Improving SNARK prover properties

SNARK A ﬁ SNARK A’

Fast sequential Prover Fast parallel Prover

Non parallel
IEarge ggg]ory . 8822%22% QSQOW Smaller Circuit
| arge verifier Constant size verifier J

| |

Solution: Break up function F into T uniform steps F’ of size -

e Build binary PCD tree of depth log(T') for predicate F.

® T parallelism
e Memory, CRS and Verifier for F’ + Circuit(V )



SNARK prover is a bottleneck

 PCD prover runs SNARK prover

 SNARK provers have large constants arg
 Many SNARKSs have strong assumptions

 E.g. SNARKSs in DLOG groups

 Most efficient SNARKs have large proofs

* Linear-time SNARKs have MB sized proofs \

» | eads to large recursive overheads



Are SNARKSs necessary to build IVC/PCD*?

“No for IVC for P [DGKV22, PP23]



Accumulation Schemes



Review: SNARGs

completeness

succinct non-interactive arguments f (x, w) € R
then V., — 1
(X, W) €9 R
X, W X L(R) :={x:dw,(x,w) € R}
l ARSI l
s 2 soundness
Parg - V... if x & L(R)
N then w.h.p. V., = 0

Oorl knowledge soundness



Background: reductions i

(x, w) S R completeness
if (x,w) €R
then (x’,w') € R’

A soundness

N J it x ¢ L(R)

’ l then w.h.p. x’ & L(R’)
X

knowledge soundness
(x,w') €, R



Accumulation schemes

[BGH19,BCMS20,BCLMS21,KST22]

(X, W) E? R A (X*, W*) E? R*

X, Wy Xy W Xy Xy
4 l ) l

(~ R

PaCC 7[ kVaCCJ
T |
/ /
Wi Xk

ingeneral: R" X R’ - R,
'

J

-

) ™
accumulation scheme for /:

reduction from R X R, to R,
R R,

more precisely, a split accumulation
(or folding) scheme [BCLMS21], [KSTZQD

A
[ weaker than an argument for /X! J




PNARK
outputs

IVC from accumulation scuwvsz

Viarx checks

0

Va,cc( ’x*,i’ ﬂ) — x*,i+1 A F(Sti) — Sti+1




IVC from accumulation scuwvsz

Ajs Xy i

l? .

outputs (v w) & K

checks (x. w) € R

IVC proof
contains

W, W,




Why accumulate?

IVC from succinct arguments

L
.
Parg
st; — F — sty
\_ J
— Varg —

______________________________ )

P__. + Pyri can be than Pa,rg

V... canbe

than V.,

st; —

IVC from accumulation

.
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Accumulation and SNARKSs

 Accumulation is simpler than SNARKs
 We can construct it in settings and with efficiencies that don’t admit SNARKs
* Accumulation suffices to build IVC/PCD
* |VC/PCD enables building SNARKs
e Set F to be a step function of a VM
* How can this be”
* All known “interesting” accumulation schemes require random oracles

e To build IVC/PCD we need accumulation in standard models (heuristic jump)



Accumulation iIs “easy” sciuszr, kst

Check:a,b,cst a,+b;, =c, € Fforalli € [n] | Pyl — ¥ = Commit(a, b, ¢)
—w = (a, b, ¢)
Pacc Vacc |
a (x,w) ER:

{x =Commit(a,b,c)Aa+b—-c=0}

Commit can be built from DLOG
()C/’, W”) < (-xa W)_I_a * Commit(w) + Commit(w’) = Commit(w + w’)

(x,w) € R, ER=> (x,w)+Y - ER



Accumulation iIs “easy’” sciuszr, kst

Check: a, b, C S.l. al + bl — Cl c I-foralli € [n] PNARK
P V . J—w=@byo

dCC dCC

a — [ .
Non-interactivity | {)V)jfé +b—-c=0)

through Fiat-Shamir

Commit can be built from DLOG
(X//, W/’) < ()C, W)_I_ (X ()C” W’) Commit(w) + Commit(w’) = Commit(w + w’)

— x = Commit(a, b, ¢)

(x,w)ER,(x,w)ER=>(x,w)+Y- -(x, W) ER




Accumulation iIs “easy” sciuszr, kst

— x = Commit(a, b, ¢)

Check: q, b, C S.l. al y bl — Cl € I-forall1 € [I’l] Pyarx
— W = (aa ba C)
Pacc Vacc ‘

(x,w) ER:
{x =Commit(a,b,c) Aaeb—-—c=0)}

(x,w) ER, :

{x =Commit(a,b,c,ct) Aaob — ¢ = ct}

(x,w) ER, ER#H (xX",w") ER
but
(a+Y-a)o(b+Y-b)=c+Y?-c+Y-ct




Accumulation for multiplication

Reduction from R X R — R,

Reduction from R X R, — R _is very similar!

Multiplication and addition suffice to build accumulation for NP

Only cryptography needed is a homomorphic vector commitment + Fiat-Shamir
* No PCPs

* No polynomial commitments

* No trusted setup

e Single commitment

Acc verifier does 2 group scalar multiplications (check homomorphism)
 Needs to check elliptic curve operations

* |n practice: Use cycles of elliptic curves for efficiency (mismatched fields)



A universe of accumulation

* Lowering recursion overhead [KotSetSzi22,KotSet23,BunChe23,DimGarManVia24,Blun24]
* Down to only one scalar multiplication
* |less than 10k gates vs. 100k+ gates for SNARKs

* Multi-instance proving (for PCD)[KotSet23,EagGab23]

* Supporting high degree gates [Moh22,KotSet23,BC23]

* Faster prover[KotSet24]

 Handling cycles of elliptic curves[KotSet23Db]

» Zero-Knowlege support [ZheGaoGuoXia23]

 Memory operations [BC24,AruSet24]

* Qutsourcing verification [ZSCZ25]

 Smaller accumulators [BGH19,BF24,KZHB25]}

* Non-uniformity[KS22,BC23,KZHB25]

* Parallel SNARK constructions [NDTCB24]

* Tighter security analysis [NBS23,L.524]




Post-quantum accumulation

 Accumulation verifier needs to check
 Accumulation scheme require homomorphic vector commitment

 Pedersen commitment is built from the DLOG assumption

 Not post-quantum

 Goal: Get rid of the homomorphism



Lattice-based accumulation

e SIS-commitment

Matrix A

Withess needs to be low-norm

* Only limited homomorphism
* |dea: Resplit withess and combine low-norm components [BC24]

* Multiple improvements [GKNP24,BC25,SN25] (See Binyi’s talk)

* Larger recursion overhead than EC-based, but possibly very fast prover



Can we build accumulation in the RO?

 No additional assumptions
* Trivial answer: Yes, SNARKs imply accumlation

e Can we do better?



Homomorphic accumulation

— x = Commit(a, b, ¢)

Check: a, b, C S.l. al + bl — Cl c I-forall1 € [n] PNARK
—w = (a, b, ¢)
Pacc Vacc ‘
a«— [F (x,w) ER :

{x =Commit(a,b,c)Aa+b—-c=0}

Commit can be built from DLOG
()C/’, W”) < (-xa W)_I_a * Commit(w) + Commit(w’) = Commit(w + w’)

(x,w) € R, ER=> (x,w)+Y - ER



Non-Homomorphic accumulation

Check: a, b, ¢ s.t. a; + bi = C; € Fforalli € [n] | Pyl — X = MT(a, b, c)
—w = (a,b,c)
Pacc Vacc |
a < [F (x,w) ER :

{Ix=MT(a,b,c)Aa+b—-c=0}

X", W)« (x,w)+a- (x,w') V... can’t check this

operation anymore

(x,w)ER,(x,w)ER=>(x,w)+Y- -(x, W) ER



Checking the homomorphism

0 Sample Q C [n] V

wlQ], wlQ], z[ O]

——————————— | Check opening proofs

Foreach 1 € Q:

w'[i] = wli| + a - z]i]




Checking the homomorphism

? _
— w
t t ot

« Suppose o-fraction of locations are inconsistent

—/

W

T a-Z

tot

e Then ¢ queries miss w.p. (1 — §)’

Problem: How to detect

o I = g = (1 -0)' < 27" a single inconsistency?

44



New tool: linear codes

= from "messages" to "codewords"

:n_>[

e Linear map C : [

* Distance: minimum relative Hamming distance between any two codewords

 Decoding: given a noisy codeword, recover the original message

C

—

Dec

—

 Unique decoding radius = maximum number of errors allowed

 We want a linear code with large distance/decoding radius, e.g. Reed-

Solomon codes

45




Attempt 1: Spotchecks (BMNW24]

Check:a,b,cst. a,+ b, =c; € [Fforalli € [n] | Py — X = MT(C(a, b, c))
—w=(a,b,c)
Pacc Vacc |
a < [ (x,w) ER:

Ix=MT(C(a,b,c)) Aa+b—-c=0)}

Use linear code C

x", w") « (x,w)+a- (x,w) Check homomorphism at

Random spots

(x,w)ER,(x,w)ER=>(x,w)+Y- -(x, W) ER



Soundness analysis

—/

?
W p—

=]
1
=
|

a b C
» Decider guarantees: a € C

» Verifier guarantees: A(a, b+ ac) < 06 = b+ acis o-closeto C
° b are c are o0-closeto C (by proximity gap for C: BCIKS23, RVW13, AHIV17, DP23a)
« —> Dec(a) = Dec(b) + a - Dec(c)

» "Proof": Encode both sides, they are 30-close = equal (@assuming 35 < distance)

47



Accumulating multiple times

 To support d accumulations: codeword

« Spot check parameter 0

o-far from C

e do < unique decoding radius

 Matching attack I 25-far from C

U | 36-far from C




Solution: Use constrained codes svnwzexnszssepzsscrwes,

J1€:Cp A f € Cg,

f1sf.
' linear code C : ¥ = [
o, D, .
"low-degree polynomial®
l constraint ® : F* — F
p ] . Constrained code
I Co = {Cv) : D) = 0}
),



Accumulation from constrained codes

 Prover sends new claimed codeword f

» Verifier queries f,, f, at random locations

» Constrain f given the query responses from f;, />

e More detalls: Willlam’s talk



Accumulation for linear codeScerws:ssumss

 Accumulation for any linear code with essentially optimal parameters

« Accumulation verifier does O(A) oracle queries (MT paths after compilation)
* Not known for SNARKs
* Linear time prover (for large fields)
* Up to list-decoding radius
o Straightline extraction without efficient decoding
* Direct accumulation for NP

* No need to go through PIOPs



Constructions open questions

Linear time accumulation for small fields (binary even)
» Easier than the related SNARK question
Linear time accumulation from lattices
 Smaller acc verifier than hash-based schemes
Accumulation without random oracles
* Would yield PCD and SNARK in the standard model
 Minimal assumptions needed?

Smaller accumulator size
e aCC.Ww needs to be forwarded as part of the PCD

» For all post-quantum constructions |acc| = O(| F'|). High communication

e Can we do better?



Recursive proofs are powerful but can
be built from simple assumptions™®

* with security jumps



Thank you
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