
Recursive Proofs:
Definitions, Applications,
Security and Constructions
Benedikt Bünz (NYU)

• Two SNARK systems ,

• Sometimes they are the same

• proves that

• it knows a proof for a statement

• In a language indexed by a verification key

• Such that accepts , for statement and verification key

• Knowledge soundness of implies we can extract

(𝒫, 𝒱) (𝒫′ , 𝒱′)

𝒫′

π x
𝗏𝗄

𝒱 π x 𝗏𝗄

(𝒫′ , 𝒱′) π

Recursive Proofs [Val08]

2

𝒫′

π′

x
𝒱

π

𝗏𝗄 contains𝗏𝗄′

“Recursive circuit”

Motivation 1:
• Goal: Prove sequential computations

F F F Fx0 x1 x2 x3 x4

w1 w2 w3 w4

• " for some "

• Not memory-efficient

• Super-linear prover is super-linear in

• Additional steps requires reproving everything

xt = Ft(x0; w1, …, wt) w1, …, wt

t ⋅ |F |

3

Naive solution: Monolithic proof

Ft(x0; w0, …, wt−1) = xt 𝑃 𝜋

Motivation 2

4

F

F
F

F

x0

x1

x6 x7

w1

w2

w3 w4

x4

x5

Naive solution: Each party creates a proof, attach all proofs.
• Linear in number of steps

• Each party wants to verify the inputs. Some wants to check the entire computation

• Goal: Handing off computation

Incrementally verifiable computation [Val08]

• Completeness: Given valid proof for , generates a valid proof for

• Knowledge soundness: Given valid proof for , extract witnesses such that

• Efficiency: Proof size and prover/verifier runtime should be independent of

πi−1 xi−1 ℙ πi xi := F(xi−1, wi)

πt xt w1, …, wt
xt = Ft(x0; w1, …, wt)

t

ℙ ℙ
x1

π1

x2

π2

⋯

⋯

xt−1

πt−1

ℙ
xt

πt

𝕍 0/1

x0

⊥

w1 w2 wt

5
IVC for P can be build from batch arguments[KPY19,DGKV22, PP23] (we will focus on NP)

Proof Carrying Data (PCD) [CT10,BCCT13]

ℙ

ℙ

x1

π1
x2

π2

⋯

⋯

ℙ
xt

πt

𝕍 0/1

x0

⊥

w1

w2 wt

6

⊥

x′ 0 x′ 1

π′ 1
Generalization of IVC to arbitrary DAGs

Needs upper bound on arity

𝖲𝖭𝖠𝖱𝖪 . 𝖯

 R

IVC from recursive composition of SNARKs
[BCCT13, COS20]

7

xt

𝜋𝑡

xt+1

𝜋𝑡+1

F

𝖵

𝖨𝖵𝖢 . ℙF

Completeness:
Follows from SNARK completeness
Soundness:
Recursively extract transcript using SNARK
knowledge soundness [BCCT13, COS20]
Multiple issues (we’ll discuss in a minute)
Efficiency:

 size of a SNARK proof for …|π | = 𝑅

𝖨𝖵𝖢 . 𝕍F

𝖵
x1, xTπT 0/1

𝖲𝖭𝖠𝖱𝖪 . 𝖯

 R

IVC from recursive composition of SNARKs
[BCCT13, COS20]

8

xt

𝜋𝑡

xt+1

𝜋𝑡+1

F

𝖵

𝖨𝖵𝖢 . ℙF

Completeness:
Follows from SNARK completeness
Soundness:
Recursively extract transcript using SNARK
knowledge soundness [BCCT13, COS20]
Multiple issues (we’ll discuss in a minute)
Efficiency:

 size of a SNARK proof for …|π | = 𝑅

𝖨𝖵𝖢 . 𝕍F

𝖵
x1, xTπT 0/1Proving a statement about

the SNARK verifier

Sublinear verification
necessary to bound

⇓

R

Application 3: Property preserving SNARKs

9

• Fast sequential Prover

• Non parallel

• Large memory

• Large CRS

• “Large” verifier

• Goal: Improving SNARK prover properties

SNARK A SNARK A’

• Fast parallel Prover

• Constant memory

• Constant CRS

• Constant size verifier

Solution: Break up function F into T uniform steps F’ of size .

• Build binary PCD tree of depth for predicate F’.
• T parallelism, memory, CRS and Verifier for F’ +

|F |
T

log(T)
𝖢𝗂𝗋𝖼𝗎𝗂𝗍(𝖵𝖠)

Application 4: SNARK composition

10

Solution: Use SNARK B to prove correctness of SNARK A
Prover runtime: on + on
Verifier: , Proof size:

𝖯A |F | 𝖯B 𝖢𝗂𝗋𝖼𝗎𝗂𝗍(𝖵A)
𝖵B πB

• Fast Prover

• “Slow” Verifier

• “Large” Proofs

• Goal: Combining SNARKs with different tradeoffs

SNARK A SNARK B

• Slow Prover

• Fast Verifier

• Small Proofs

• Zero-Knowledge

+ = SNARK C

• Fast Prover

• Fast Verifier

• Small Proofs

• Zero-Knowledge

Many more applications
Image provenance

[NT16]

• Byzantine agreement [BCG20]

• ZK cluster computing [CTV15]

• Enforcing language semantics across trust boundaries [CTV13]

• Private smart contracts[BCCGMW18]

• Signature aggregation [KZHB25]

• …

Verifiable Delay functions

[BBBF20]

Succinct Blockchains

[BMRS20,KB20,CCDW20]

Real world deployments (AI-SC’s darling)
• Recursive proofs are widely deployed!

• Vital to understand their security and improve constructions!

Security analysis and problems

𝖲𝖭𝖠𝖱𝖪 . 𝖯

 R

Security issues: Arithmetizing V

xt

𝜋𝑡

xt+1

𝜋𝑡+1

F

𝖵

𝖨𝖵𝖢 . ℙF

• contains V can’t contain oracles
• We need to implement V as a circuit

• Security jump: secure in the RO
implies that =Fiat-Shamir is
secure in the standard (CRS) model.

• Generically not true[CGH98,Bar01,GK03]

• Recent attack on GKR[KRS25]

• Attack relies on evaluating FS-Hash
inside proof system

• Recursion relies on this ability

R 𝖵 ⟹

(𝖯ρ, 𝖵ρ)
(𝖵, 𝖯) (𝖯ρ, 𝖵ρ)

Security issues: Arithmetizing V
• Attempt 1: Build SNARK in the RO that proves statement about the RO?

• Impossible [BCG24]

• Attempt 2: Extend RO model to enable end-to-end analysis of PCD

• Early attempts required secure hardware [CT10,CCS22]

• Arithmetized Random Oracle Model [CCGOS23] augments the random oracle with

an additional arithmetization oracle. Heuristically, the RO is replaced with SHA256,
and the arithmetization with a circuit of SHA256.

• AROM suffices to build PCD

• But FS-attacks are not captured by the AROM (The insecure SNARK is still secure)

• Open problem: Build model that is sufficient to capture attacks but enables end-to-
end PCD construction (candidates [Zha22,AY25])

Security Issues: Extraction

• IVC extractor calls the SNARK extractor using to extract

• To extract from an internal SNARK (e.g. for step 2) we need to simulate a prover
for that SNARK.

• Idea: ’s proofs are generated by invoking the extractor for the outer SNARKs

• Problem: each extractor can invoke each up to times

• Thus the runtime of the extractor is must be constant

(πt, xt) πt−1, xt−1, wt−1

�̃�

�̃�

�̃� 𝗉𝗈𝗅𝗒(λ)

𝗉𝗈𝗅𝗒(λ)depth ⟹ depth

ℙ ℙ
x1

π1

x2

π2

⋯

⋯

xt−1

πt−1

ℙ
xt

πt

=𝕍 𝖵 0/1
x0

⊥

w1 w2 wt

𝖯 𝖯 𝖯

Security Issues: Extraction
• Constant-depth IVC/PCD only and with major security loss :/

• Old solution: Decrease depth [BCCT13]

• Use tree-based IVC

• With arity and constant depth we can support IVC steps

• Still high security loss

• Practitioner’s solution:

• Don’t do anything

• Assume (Soundness error of IVC is independent of depth)

• No matching attack

λ 𝗉𝗈𝗅𝗒(λ)

ϵ𝖨𝖵𝖢 ≈ ϵ𝖲𝖭𝖠𝖱𝖪

Saving grace: Straightline extraction
• Assume the SNARK has a straight line (deterministic, one-shot) extractor

• Then we don’t get the exponential blowup (each extractor is called once)

• Union bound: [CT10,CCGOS23]

• Recently improved to [CGSY23]

• Problem 1: Only able to construct straight-line extraction in idealized models

• Heuristic assumption: straightline extraction in idealized model

• straightline extractor for real-wold instantiation

• Problem 2: Some SNARKs of interest don’t have straightline extractors

• Example: SNARKs from non efficiently decodable codes.

• Recent progress [RT24,BCFW25]

• Straightline extraction (in ideal model) should become the norm for SNARKs

𝖽𝖾𝗉𝗍𝗁 ⋅ ϵ𝖲𝖭𝖠𝖱𝖪

ϵ𝖯𝖢𝖣 ≈ ϵ𝖲𝖭𝖠𝖱𝖪

⟹

Open security problems
• Build IVC/PCD in standard model (see Surya’s talk on Thursday)

• Build a model that captures Fiat-Shamir attacks but enables proving security
of known SNARK/PCD constructions

• Attacks against high-depth IVC/PCD (even contrived)

• “Straightline extraction” in standard CRS model (or similar condition)

• Proving straightline extraction for more protocols

Efficiency (concerns)

IVC from succinct arguments

P𝚊𝚛𝚐

πi+1

"there exists with a valid proof such that "𝗌𝗍i πi 𝗌𝗍i+1 = F(𝗌𝗍i)

ℙ

πi V𝚊𝚛𝚐

𝗌𝗍i 𝗌𝗍i+1F

concrete issues:
 is slow 
 is large

P𝚊𝚛𝚐
V𝚊𝚛𝚐

 is “recursive overhead”|𝖼𝗂𝗋𝖼𝗎𝗂𝗍(V𝚊𝚛𝚐) |

recursive proof composition:
 proves as a circuit P𝚊𝚛𝚐 V𝚊𝚛𝚐

Recursive overhead is a bottleneck

22

• Fast sequential Prover

• Non parallel

• Large memory

• Large CRS

• Large verifier

• Goal: Improving SNARK prover properties

SNARK A SNARK A’

• Fast parallel Prover

• Constant memory

• Constant CRS

• Constant size verifier

Solution: Break up function F into T uniform steps F’ of size .

• Build binary PCD tree of depth for predicate F’.
• T parallelism
• Memory, CRS and Verifier for F’ +

|F |
T

log(T)

𝖢𝗂𝗋𝖼𝗎𝗂𝗍(𝖵𝖠)

Smaller Circuit

Larger T
⇓

Smaller circuit

Larger T
⇓

SNARK prover is a bottleneck
• PCD prover runs SNARK prover

• SNARK provers have large constants

• Many SNARKs have strong assumptions

• E.g. SNARKs in DLOG groups

• Most efficient SNARKs have large proofs

• Linear-time SNARKs have MB sized proofs

• Leads to large recursive overheads

ℙ
P𝚊𝚛𝚐

Are SNARKs necessary to build IVC/PCD*?

*No for IVC for P [DGKV22, PP23]

Accumulation Schemes

Review: SNARGs
succinct non-interactive arguments

completeness

if  
then

(x, w) ∈ R
V𝚊𝚛𝚐 → 1

soundness

if  
then w.h.p.

x ∉ L(R)
V𝚊𝚛𝚐 → 0

P𝚊𝚛𝚐 V𝚊𝚛𝚐

x, w x

 or 0 1

(x, w) ∈? R

in general: knowledge soundness

π

L(R) := {x : ∃w, (x, w) ∈ R}

|V𝚊𝚛𝚐 | ≪ |w |

|π | ≪ |w |

Background: reductions [KP22]

completeness

if  
then

(x, w) ∈ R
(x′ , w′) ∈ R′

soundness

if  
then w.h.p.

x ∉ L(R)
x′ ∉ L(R′)

P V

x, w x

w′ x′

(x, w) ∈? R

(x′ , w′) ∈? R′

π

in general: knowledge soundness

Accumulation schemes

 (x, w) ∈? R ∧ (x⋆, w⋆) ∈? R⋆

P𝚊𝚌𝚌 V𝚊𝚌𝚌

 x, w, x⋆, w⋆ x, x⋆

w′ ⋆ x′ ⋆

 (x′ ⋆, w′ ⋆) ∈? R⋆

π

accumulation scheme for :

reduction from to

R
R × R⋆ R⋆

R R⋆

R⋆R

R⋆R

R⋆
more precisely, a split accumulation 
(or folding) scheme [BCLMS21], [KST22]

in general: Rn × Rm
⋆ → R⋆

weaker than an argument for !R

[BGH19,BCMS20,BCLMS21,KST22]

IVC from accumulation [BCLMS20]

P𝙽𝙰𝚁𝙺

, xi x⋆,i V𝚊𝚌𝚌

𝗌𝗍i 𝗌𝗍i+1F

P𝚊𝚌𝚌 wi, w⋆,i w⋆,i

x⋆,i

xi+1, wi+1
𝕍

(xT, wT) ∈ R
π𝚊𝚌𝚌 (x⋆,T, w⋆,T) ∈ R⋆

P𝙽𝙰𝚁𝙺

;

,

(xi+1 wi+1) ∈ R
⇕

V𝚊𝚌𝚌(xi x⋆,i, π) = x⋆,i+1 ∧ F(𝗌𝗍𝗂) = 𝗌𝗍𝗂+𝟣

outputs (x, w) ∈ R

V𝙽𝙰𝚁𝙺 checks (x, w) ∈ R

ℙ

IVC from accumulation [BCLMS20]

P𝙽𝙰𝚁𝙺

, xi x⋆,i V𝚊𝚌𝚌

𝗌𝗍i 𝗌𝗍i+1F

P𝚊𝚌𝚌 wi, w⋆,i w⋆,i

x⋆,i

xi+1, wi+1
𝕍

(xT, wT) ∈ R
π𝚊𝚌𝚌 (x⋆,T, w⋆,T) ∈ R⋆

P𝙽𝙰𝚁𝙺

;

,

(xi+1 wi+1) ∈ R
⇕

V𝚊𝚌𝚌(xi x⋆,i, π) = x⋆,i+1 ∧ F(𝗌𝗍𝗂) = 𝗌𝗍𝗂+𝟣

outputs (x, w) ∈ R

V𝙽𝙰𝚁𝙺 checks (x, w) ∈ R

ℙ
IVC proof
contains
w, w⋆

Smaller circuit

Larger T
⇓

 can be faster than

 can be smaller than

P𝚊𝚌𝚌 + P𝙽𝙰𝚁𝙺 P𝚊𝚛𝚐

V𝚊𝚌𝚌 V𝚊𝚛𝚐

Why accumulate?

𝗌𝗍i

σi+1

𝗌𝗍i+1

σi

ℙ
P𝚊𝚛𝚐

F

V𝚊𝚛𝚐

IVC from succinct arguments

𝗌𝗍i

σi+1

𝗌𝗍i+1

σi

ℙ
P𝙽𝙰𝚁𝙺

F

V𝚊𝚌𝚌

IVC from accumulation

P𝚊𝚌𝚌wi wi+1

π

Accumulation and SNARKs
• Accumulation is simpler than SNARKs

• We can construct it in settings and with efficiencies that don’t admit SNARKs

• Accumulation suffices to build IVC/PCD

• IVC/PCD enables building SNARKs

• Set F to be a step function of a VM

• How can this be?

• All known “interesting” accumulation schemes require random oracles

• To build IVC/PCD we need accumulation in standard models (heuristic jump)

Accumulation is “easy” [BCLMS21, KST22]

Check: a, b, c s.t. for all ai + bi = ci ∈ 𝔽 i ∈ [n]

Commit can be built from DLOG
𝖢𝗈𝗆𝗆𝗂𝗍(w) + 𝖢𝗈𝗆𝗆𝗂𝗍(w′) = 𝖢𝗈𝗆𝗆𝗂𝗍(w + w′)

𝖯𝖺𝖼𝖼 V𝖺𝖼𝖼
α ← 𝔽

P𝙽𝙰𝚁𝙺
x = 𝖢𝗈𝗆𝗆𝗂𝗍(a, b, c)
w = (a, b, c)

 (x, w) ∈ R :
{x = 𝖢𝗈𝗆𝗆𝗂𝗍(a, b, c) ∧ a + b − c = 0}

(x, w) ∈ R, (x, w′) ∈ R ⇒ (x, w)+Y ⋅ (x′ , w′) ∈ R

(x′ ′ , w′ ′) ← (x, w)+α ⋅ (x′ , w′)

Accumulation is “easy” [BCLMS21, KST22]

Check: a, b, c s.t. for all ai + bi = ci ∈ 𝔽 i ∈ [n]

Commit can be built from DLOG
𝖢𝗈𝗆𝗆𝗂𝗍(w) + 𝖢𝗈𝗆𝗆𝗂𝗍(w′) = 𝖢𝗈𝗆𝗆𝗂𝗍(w + w′)

𝖯𝖺𝖼𝖼 V𝖺𝖼𝖼
α ← 𝔽

P𝙽𝙰𝚁𝙺
x = 𝖢𝗈𝗆𝗆𝗂𝗍(a, b, c)
w = (a, b, c)

 (x, w) ∈ R :
{x = 𝖢𝗈𝗆𝗆𝗂𝗍(a, b, c) ∧ a + b − c = 0}

(x, w) ∈ R, (x, w′) ∈ R ⇒ (x, w)+Y ⋅ (x′ , w′) ∈ R

(x′ ′ , w′ ′) ← (x, w)+α ⋅ (x′ , w′)

Non-interactivity
through Fiat-Shamir

Accumulation is “easy” [BCLMS21, KST22]

Check: a, b, c s.t. for all ai ⋅ bi = ci ∈ 𝔽 i ∈ [n]

but
(x, w) ∈ R, (x, w′) ∈ R ⇏ (x′ ′ , w′ ′) ∈ R

(a+Y ⋅ a′) ∘ (b+Y ⋅ b′) = c+Y2 ⋅ c′ +Y ⋅ 𝖼𝗍

𝖯𝖺𝖼𝖼 V𝖺𝖼𝖼

x′ ′ ← x+α ⋅ x′ | |𝖼𝗍
w′ ′ ← w+α ⋅ w′

x′ ′ , w′ ′ ∈ R⋆

𝛼

P𝙽𝙰𝚁𝙺
x = 𝖢𝗈𝗆𝗆𝗂𝗍(a, b, c)
w = (a, b, c)

 (x, w) ∈ R :
{x = 𝖢𝗈𝗆𝗆𝗂𝗍(a, b, c) ∧ a ∘ b − c = 0}

𝖼𝗍

 (x, w) ∈ R⋆ :
{x = 𝖢𝗈𝗆𝗆𝗂𝗍(a, b, c, 𝖼𝗍) ∧ a ∘ b − c = 𝖼𝗍}

Accumulation for multiplication
• Reduction from

• Reduction from is very similar!

• Multiplication and addition suffice to build accumulation for NP

• Only cryptography needed is a homomorphic vector commitment + Fiat-Shamir

• No PCPs

• No polynomial commitments

• No trusted setup
• Single commitment

• Acc verifier does 2 group scalar multiplications (check homomorphism)

• Needs to check elliptic curve operations

• In practice: Use cycles of elliptic curves for efficiency (mismatched fields)

R × R → R⋆

R × R⋆ → R⋆

A universe of accumulation
• Lowering recursion overhead [KotSetSzi22,KotSet23,BünChe23,DimGarManVla24,Bün24]

• Down to only one scalar multiplication

• less than 10k gates vs. 100k+ gates for SNARKs

• Multi-instance proving (for PCD)[KotSet23,EagGab23]

• Supporting high degree gates [Moh22,KotSet23,BC23]

• Faster prover[KotSet24]

• Handling cycles of elliptic curves[KotSet23b]

• Zero-Knowlege support [ZheGaoGuoXia23]

• Memory operations [BC24,AruSet24]

• Outsourcing verification [ZSCZ25]

• Smaller accumulators [BGH19,BF24,KZHB25]

• Non-uniformity[KS22,BC23,KZHB25]

• Parallel SNARK constructions [NDTCB24]

• Tighter security analysis [NBS23,LS24]

• …

Post-quantum accumulation

• Accumulation verifier needs to check

• Accumulation scheme require homomorphic vector commitment

• Pedersen commitment is built from the DLOG assumption

• Not post-quantum

• Goal: Get rid of the homomorphism

w′

?= w + α ⋅ z

Lattice-based accumulation
• SIS-commitment

• Only limited homomorphism

• Idea: Resplit witness and combine low-norm components [BC24]

• Multiple improvements [GKNP24,BC25,SN25] (See Binyi’s talk)

• Larger recursion overhead than EC-based, but possibly very fast prover

Matrix A

W
itness

CM=

Witness needs to be low-norm

Can we build accumulation in the RO?
• No additional assumptions

• Trivial answer: Yes, SNARKs imply accumlation

• Can we do better?

Homomorphic accumulation
Check: a, b, c s.t. for all ai + bi = ci ∈ 𝔽 i ∈ [n]

Commit can be built from DLOG
𝖢𝗈𝗆𝗆𝗂𝗍(w) + 𝖢𝗈𝗆𝗆𝗂𝗍(w′) = 𝖢𝗈𝗆𝗆𝗂𝗍(w + w′)

𝖯𝖺𝖼𝖼 V𝖺𝖼𝖼
α ← 𝔽

P𝙽𝙰𝚁𝙺
x = 𝖢𝗈𝗆𝗆𝗂𝗍(a, b, c)
w = (a, b, c)

 (x, w) ∈ R :
{x = 𝖢𝗈𝗆𝗆𝗂𝗍(a, b, c) ∧ a + b − c = 0}

(x, w) ∈ R, (x, w′) ∈ R ⇒ (x, w)+Y ⋅ (x′ , w′) ∈ R

(x′ ′ , w′ ′) ← (x, w)+α ⋅ (x′ , w′)

Non-Homomorphic accumulation
Check: a, b, c s.t. for all ai + bi = ci ∈ 𝔽 i ∈ [n]

𝖯𝖺𝖼𝖼 V𝖺𝖼𝖼
α ← 𝔽

P𝙽𝙰𝚁𝙺
x = 𝖬𝖳(a, b, c)
w = (a, b, c)

 (x, w) ∈ R :
{x = 𝖬𝖳(a, b, c) ∧ a + b − c = 0}

(x, w) ∈ R, (x, w′) ∈ R ⇒ (x, w)+Y ⋅ (x′ , w′) ∈ R

(x′ ′ , w′ ′) ← (x, w)+α ⋅ (x′ , w′) can’t check this
operation anymore
V𝚊𝚌𝚌

Checking the homomorphism
w′ w z

Q Sample Q ⊂ [n]

opening proofs

w′ [Q], w[Q], z[Q]
Check opening proofs

For each :
i ∈ Q
w′ [i] ?= w[i] + α ⋅ z[i]

VP

?= + α ⋅

43

Checking the homomorphism

• Suppose -fraction of locations are inconsistent

• Then queries miss w.p.

•

δ

t (1 − δ)t

t =
λ
δ

⟹ (1 − δ)t ≤ 2−λ

w′ w z?= + α ⋅

Problem: How to detect
a single inconsistency?

44

New tool: linear codes

• Linear map from "messages" to "codewords"

• Distance: minimum relative Hamming distance between any two codewords

• Decoding: given a noisy codeword, recover the original message

C : 𝔽n → 𝔽ℓ

C

• Unique decoding radius = maximum number of errors allowed

• We want a linear code with large distance/decoding radius, e.g. Reed–
Solomon codes

45

𝖣𝖾𝖼

Attempt 1: Spotchecks [BMNW24]
Check: a, b, c s.t. for all ai + bi = ci ∈ 𝔽 i ∈ [n]

𝖯𝖺𝖼𝖼 V𝖺𝖼𝖼
α ← 𝔽

P𝙽𝙰𝚁𝙺
x = 𝖬𝖳(C(a, b, c))
w = (a, b, c)

 (x, w) ∈ R :
{x = 𝖬𝖳(C(a, b, c)) ∧ a + b − c = 0}

(x, w) ∈ R, (x, w′) ∈ R ⇒ (x, w)+Y ⋅ (x′ , w′) ∈ R

(x′ ′ , w′ ′) ← (x, w)+α ⋅ (x′ , w′)
Use linear code C

Check homomorphism at
Random spots

Soundness analysis
w′ w z

a b c
• Decider guarantees:

• Verifier guarantees: is -close to

• are are -close to (by proximity gap for : BCIKS23, RVW13, AHIV17, DP23a)

•

• "Proof": Encode both sides, they are 3 -close → equal (assuming)

a ∈ C

Δ(a, b + αc) < δ ⟹ b + αc δ C

b c δ C C

⟹ 𝖣𝖾𝖼(a) = 𝖣𝖾𝖼(b) + α ⋅ 𝖣𝖾𝖼(c)

δ 3δ < distance

?= + α ⋅

47

• To support accumulations:

• Spot check parameter

• unique decoding radius

• Matching attack

d

δ

dδ <

Accumulating multiple times

-far from δ C

2 -far from δ C

3 -far from δ C

codeword

Solution: Use constrained codes [BMNW24,KNS24,Szep24,BCFW25]

Any linear code

Any "low-degree polynomial"
constraint

Constrained code

C : 𝔽k → 𝔽n

Φ : 𝔽k → 𝔽

CΦ := {C(v) : Φ(v) = 0}P V

Φ1, Φ2

Φ

f1 ∈? CΦ1
∧ f2 ∈? CΦ2

f ∈? CΦ

f

f1, f2

Accumulation from constrained codes

• Prover sends new claimed codeword

• Verifier queries at random locations

• Constrain given the query responses from

• More details: William’s talk

f

f1, f2

f f1, f2

Lemma: If Δ(f1, Cϕ) > δ ∨ Δ(f2, Cϕ) > δ ⟹
w.h.p

Δ(f, Cϕ) > δ

Accumulation for linear codes[BCPFW25,BMMS25]

• Accumulation for any linear code with essentially optimal parameters

• Accumulation verifier does O() oracle queries (MT paths after compilation)

• Not known for SNARKs

• Linear time prover (for large fields)

• Up to list-decoding radius

• Straightline extraction without efficient decoding

• Direct accumulation for NP

• No need to go through PIOPs

λ

Constructions open questions
• Linear time accumulation for small fields (binary even)

• Easier than the related SNARK question

• Linear time accumulation from lattices

• Smaller acc verifier than hash-based schemes

• Accumulation without random oracles

• Would yield PCD and SNARK in the standard model

• Minimal assumptions needed?

• Smaller accumulator size

• needs to be forwarded as part of the PCD

• For all post-quantum constructions . High communication

• Can we do better?

𝚊𝚌𝚌 . w

|𝚊𝚌𝚌 | = Θ(|F |)

Recursive proofs are powerful but can
be built from simple assumptions*

* with security jumps

Thank you

Citations (general)
• [Val08] Incrementally Verifiable Computation or Proofs of Knowledge Imply Time/

Space Efficiency

• [CT10] Proof-Carrying Data and Hearsay Arguments from Signature Cards

• [BCCT13] Recursive Composition and Bootstrapping for SNARKs and Proof-
Carrying Data

• [COS20] Fractal: Post-Quantum and Transparent Recursive Proofs from Holography

• [KP22] Algebraic Reductions of Knowledge

• [DGKV22] Rate-1 non-interactive arguments for batch-NP and applications

• [PP23] Incrementally Verifiable Computation via Rate-1 Batch Arguments

Citations (applications)
• [CTV13] Enforcing Language Semantics Using Proof-Carrying Data

• [CTV15] Cluster Computing in Zero Knowledge

• [NT16] PhotoProof: Cryptographic Image Authentication for Any Set of Permissible Transformations

• [BCCGMW18] Zexe: Enabling Decentralized Private Computation

• [BCG20] Breaking the O(√n)-Bit Barrier: Byzantine Agreement with Polylog Bits Per Party

• [KB20] Proof of Necessary Work: Succinct State Verification with Fairness Guarantee

• [BMRS20] Coda: Decentralized Cryptocurrency at Scale

• [BBBF20] Verifiable Delay Functions

• [CCDW20] Reducing Participation Costs via Incremental Verification for Ledger Systems

• [KB20] Proof of Necessary Work: Succinct State Verification with Fairness Guarantees

Citations (security)
• [CGH98] The Random Oracle Methodology Revisited

• [Bar01] How to go beyond the black-box simulation barrier

• [GK03] On the (In)security of the Fiat-Shamir Paradigm

• [CCS22] On succinct non-interactive arguments in relativized worlds

• [Zhandry22] Augmented Random Oracles

• [CCGOS23] Proof-Carrying Data From Arithmetized Random Oracles

• [CGSY23] Security Bounds for Proof-Carrying Data from Straightline Extractors

• [BCG24] Relativized Succinct Arguments in the ROM Do Not Exist

• [RT24] Straight-Line Knowledge Extraction for Multi-Round Protocols

• [KRS25] How to Prove False Statements: Practical Attacks on Fiat-Shamir

• [AY25] Towards a White-Box Secure Fiat-Shamir Transformation

Citations (accumulation)
• [BGH19] Halo: Recursive Proof Composition without a Trusted Setup

• [BCMS20] Recursive Proof Composition from Accumulation Schemes

• [BCLMS21] Proof-Carrying Data Without Succinct Arguments

• [KST22] Nova: Recursive Zero-Knowledge Arguments from Folding Schemes

• [Moh22] Sangria

• [KS22] SuperNova

• [KotSet23] HyperNova

• [BC23] Protostar: Generic Efficient Accumulation/Folding for Special-Sound Protocols

• [EatGab23] Protogalaxy

• [KotSet23b] Cyclefold

• [ZheGaoGuoXia23] KiloNova

• [NBS23] Revisiting the Nova Proof System on a Cycle of Curves

• [BF24] Mira

• [DimGarManVla24] Mova

• [Bünz24] Ova

• [KotSet24] NeutronNova

• [BC24] Proofs for deep thought

• [BC24b] LatticeFold: A Lattice-based Folding Scheme and its Applications to Succinct Proof Systems

• [AruSet24] Nebula

• [NDCTB24] Mangrove: A Scalable Framework for Folding-Based SNARKs

• [LS24] On the Security of Nova Recursive Proof System

• [GKNP24] Lova

• [BMNW24] Accumulation without homomorphism

• [BC25] Latticefold+: Faster, Simpler, Shorter Lattice-Based Folding for Succinct Proof Systems

• [BCFW25] Linear-Time Accumulation Schemes

• [KZHB25] KZH-Fold: Accountable Voting from Sublinear Accumulation

• [ZSCZ25] MicroNova

• [SN25] Neo

