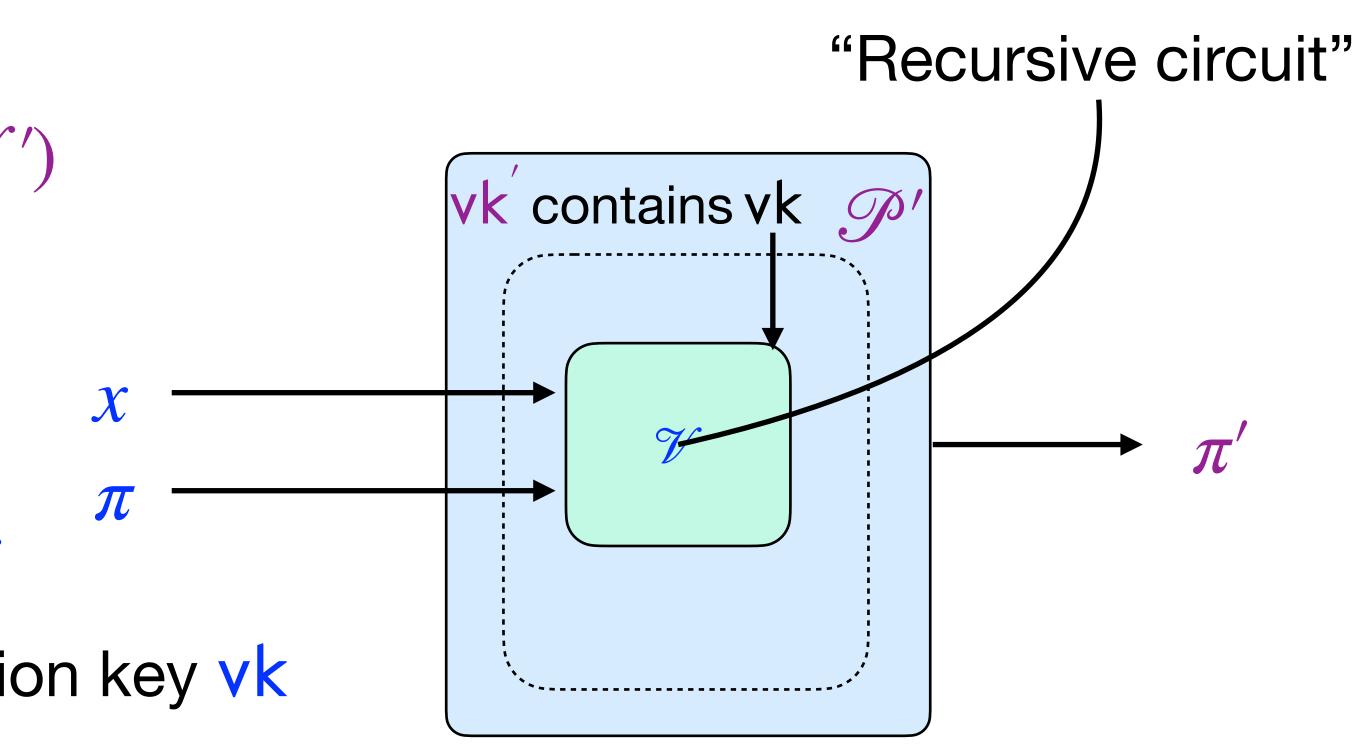
Recursive Proofs: Definitions, Applications, Security and Constructions Benedikt Bünz (NYU)

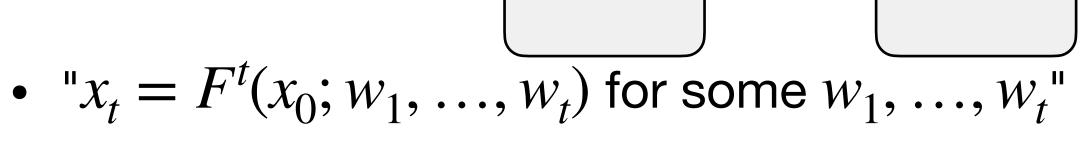
Recursive Proofs [Val08]

- Two SNARK systems $(\mathcal{P}, \mathcal{V}), (\mathcal{P}', \mathcal{V}')$
 - Sometimes they are the same
- \mathcal{P}' proves that
 - it knows a proof π for a statement x
 - In a language indexed by a verification key vk
 - Such that \mathcal{V} accepts π , for statement x and verification key vk
- Knowledge soundness of $(\mathcal{P}', \mathcal{V}')$ implies we can extract π



Motivation 1:

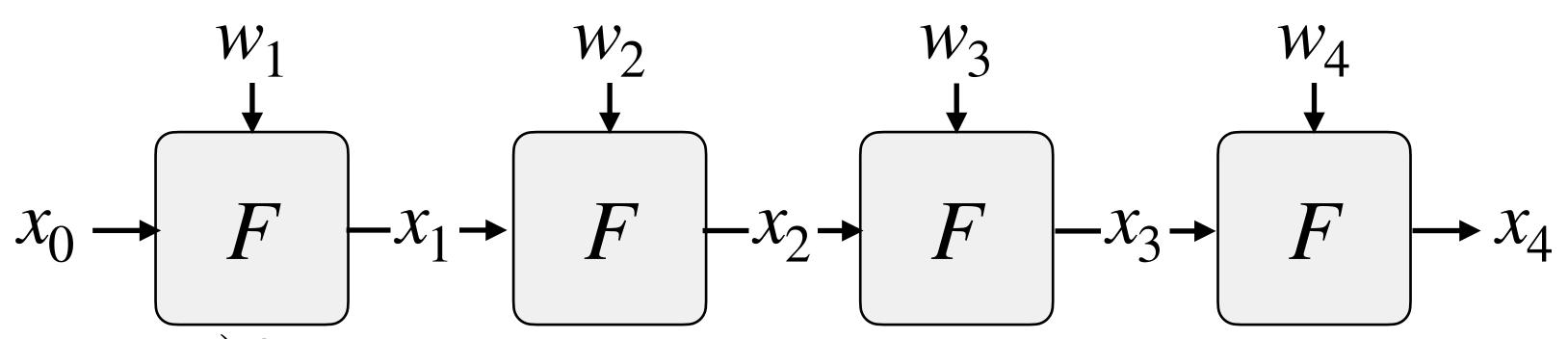
• **Goal:** Prove sequential computations

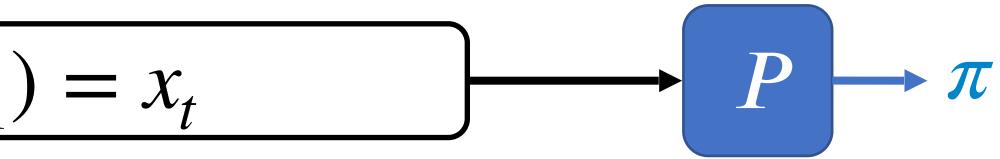


Naive solution: Monolithic proof

$$F^{t}(x_{0}; w_{0}, \dots, w_{t-1})$$

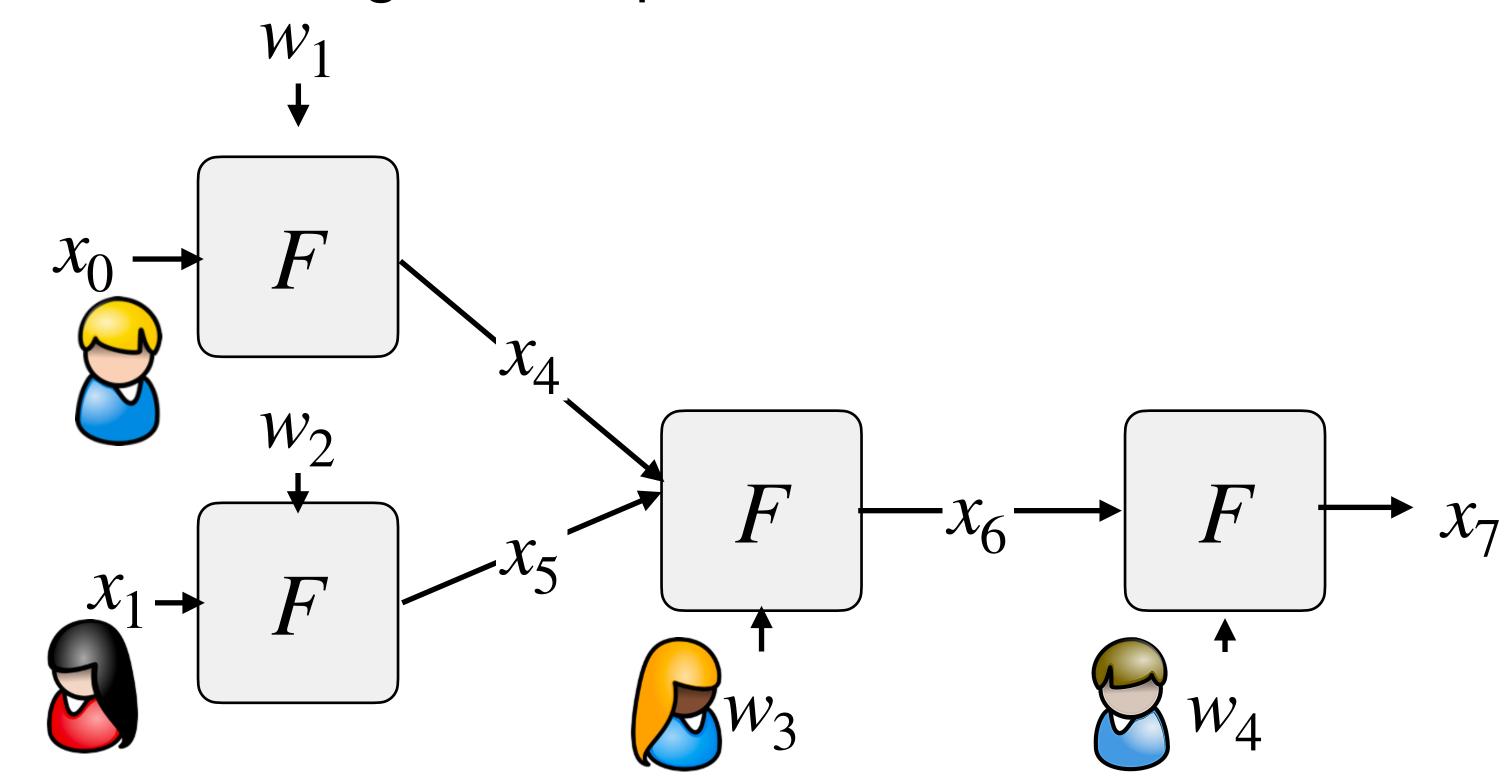
- Not memory-efficient
- Super-linear prover is super-linear in $t \cdot |F|$
- Additional steps requires reproving everything





Motivation 2

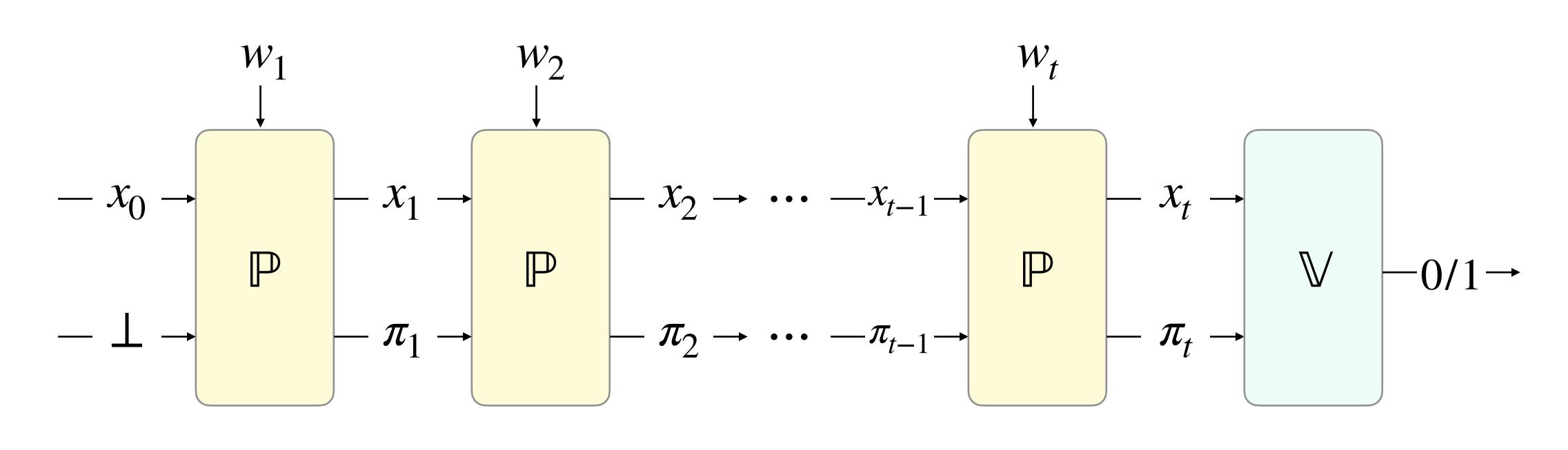
• Goal: Handing off computation



Each party wants to verify the inputs. Some wants to check the entire computation

Naive solution: Each party creates a proof, attach all proofs. • Linear in number of steps

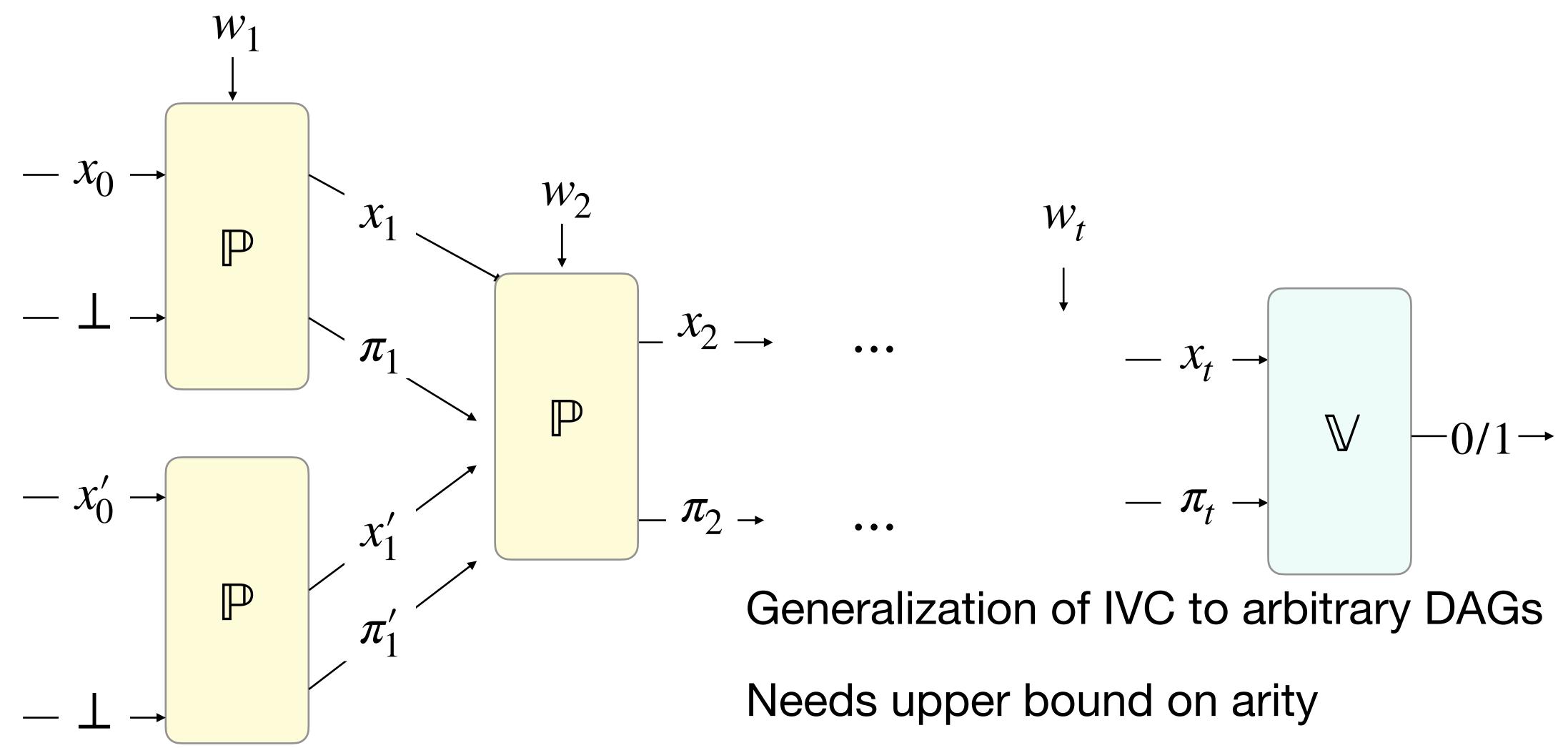
Incrementally verifiable computation [Val08]



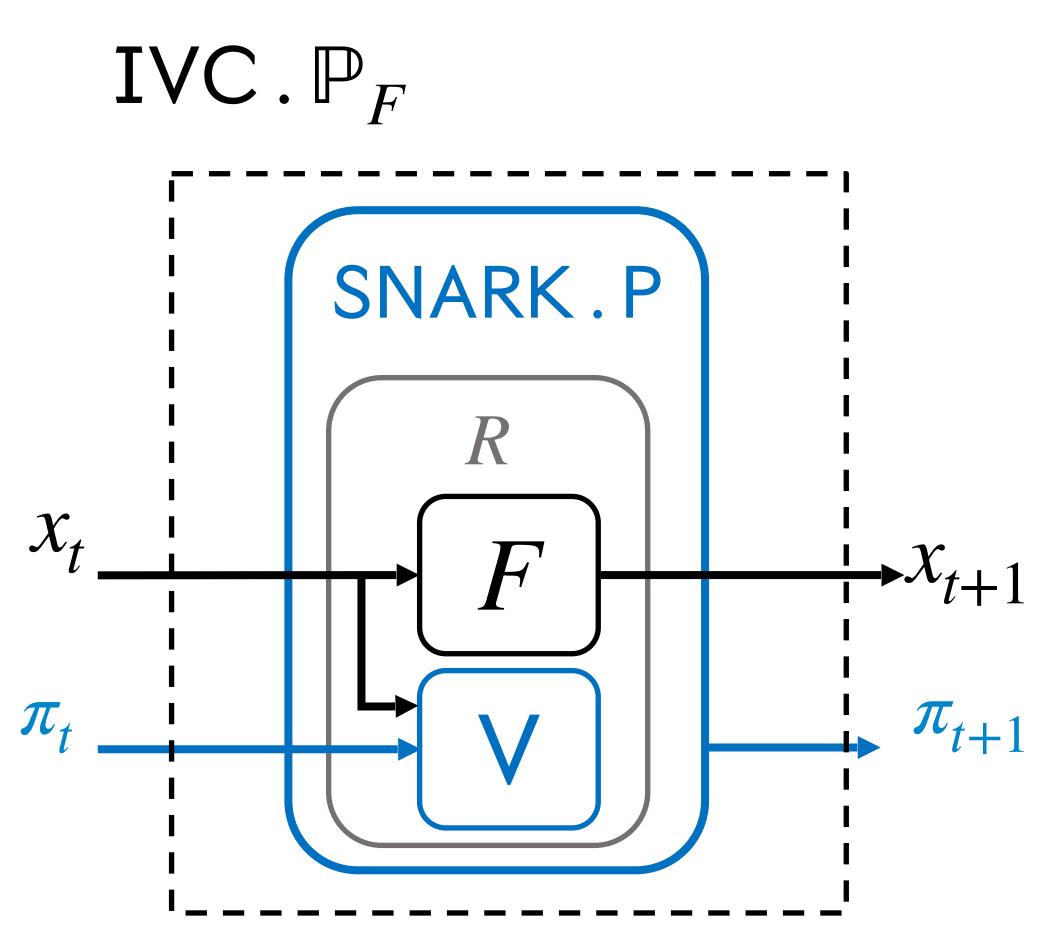
- $x_t = F^t(x_0; w_1, ..., w_t)$
- **Efficiency:** Proof size and prover/verifier runtime should be independent of t IVC for P can be build from batch arguments[KPY19,DGKV22, PP23] (we will focus on NP)

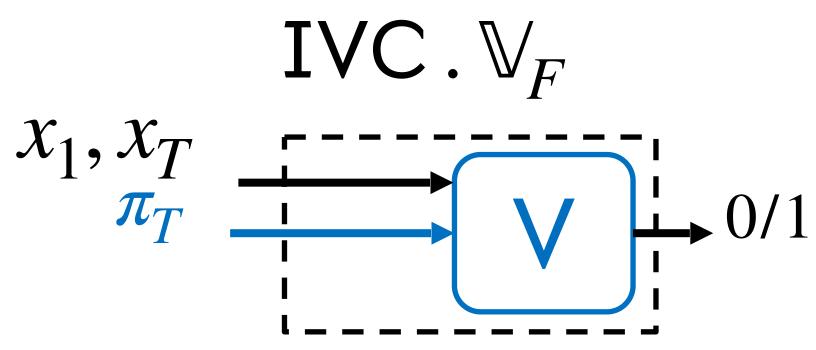
• **Completeness:** Given valid proof π_{i-1} for x_{i-1} , \mathbb{P} generates a valid proof π_i for $x_i := F(x_{i-1}, w_i)$ • **Knowledge soundness:** Given valid proof π_t for x_t , extract witnesses w_1, \ldots, w_t such that

Proof Carrying Data (PCD) [CT10, BCCT13]



IVC from recursive composition of SNARKs [BCCT13, COS20]





Completeness:

Follows from SNARK completeness

Soundness:

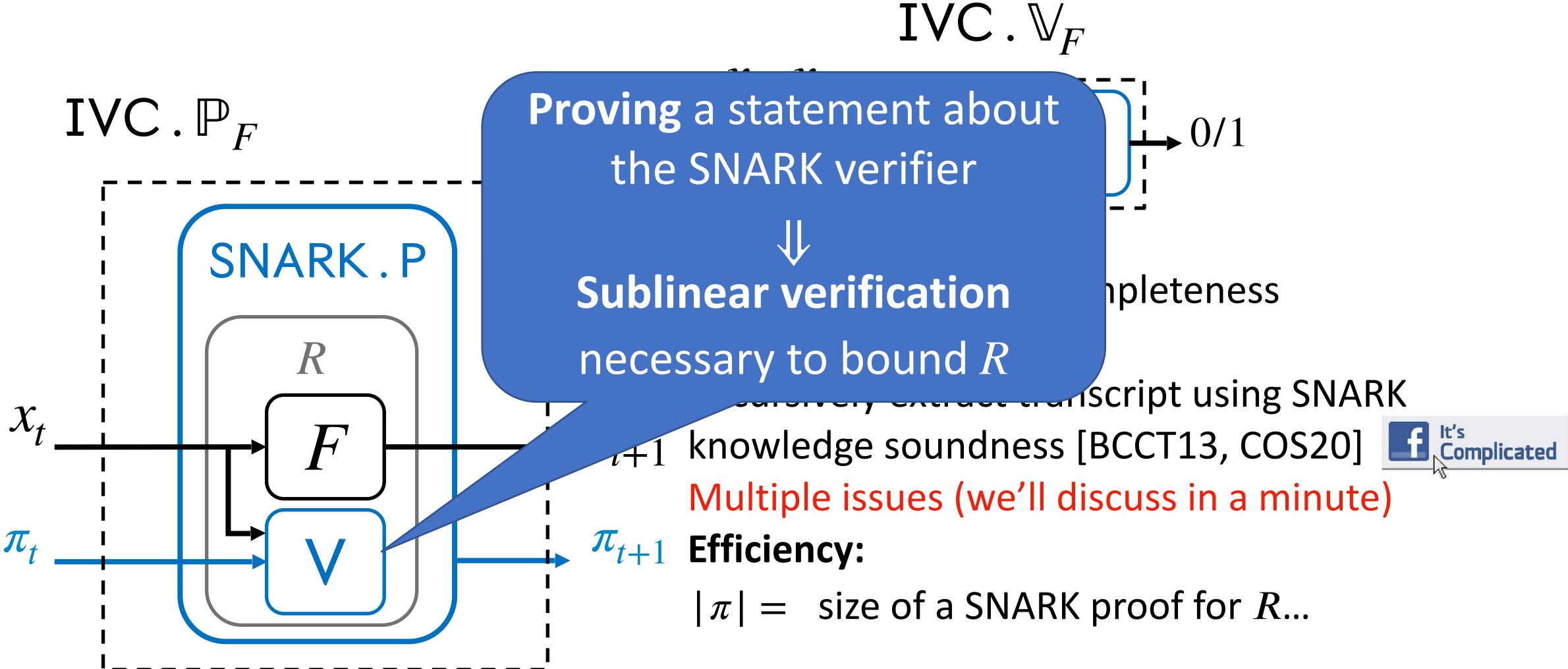
Recursively extract transcript using SNARK

knowledge soundness [BCCT13, COS20]

Multiple issues (we'll discuss in a minute) **Efficiency:**

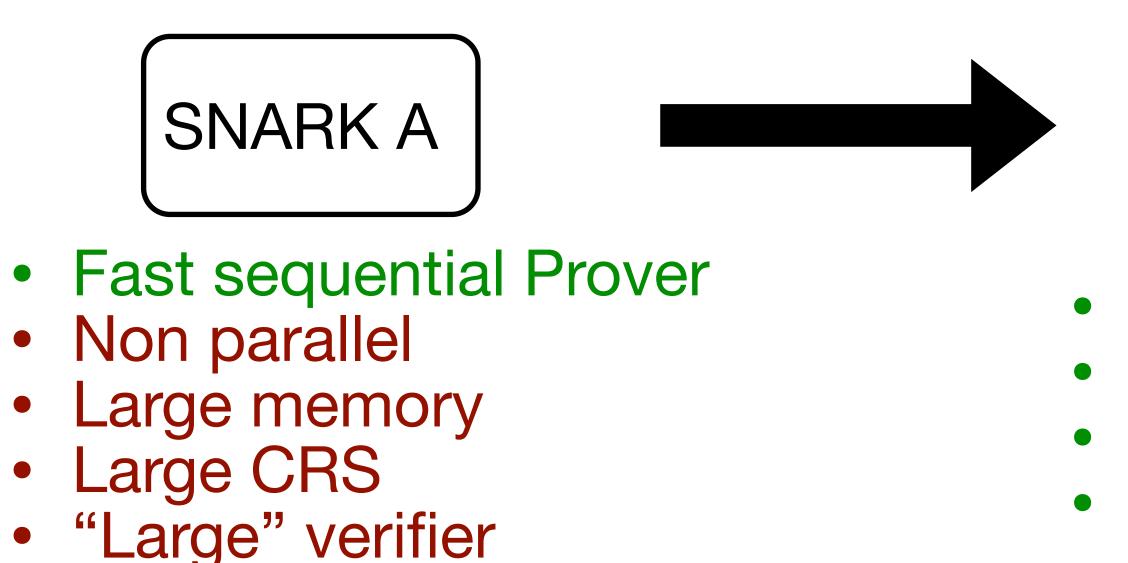
 $|\pi| = \text{size of a SNARK proof for } R...$

IVC from recursive composition of SNARKs [BCCT13, COS20]



Application 3: Property preserving SNARKs

Goal: Improving SNARK prover properties



Solution: Break up function F into T uniform

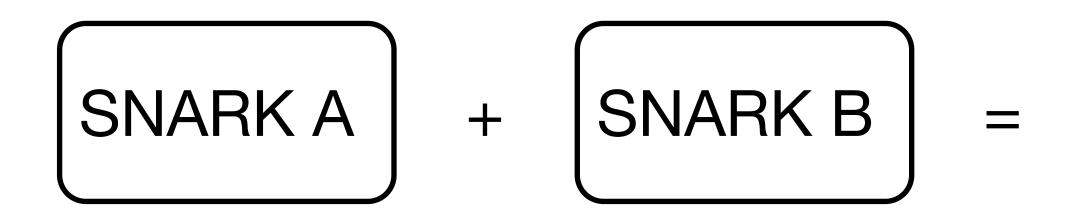
- Build binary PCD tree of depth log(T) for predicate F'.
- T parallelism, memory, CRS and Verifier for F' + Circuit(V_{Δ})

• Fast parallel Prover Constant memory Constant CRS Constant size verifier

n steps F' of size
$$\frac{|F|}{T}$$
.

Application 4: SNARK composition

Goal: Combining SNARKs with different tradeoffs



- Fast Prover Slow Prover
- "Slow" Verifier Fast Verifier
- "Large" Proofs Small Proofs
 - Zero-Knowledge

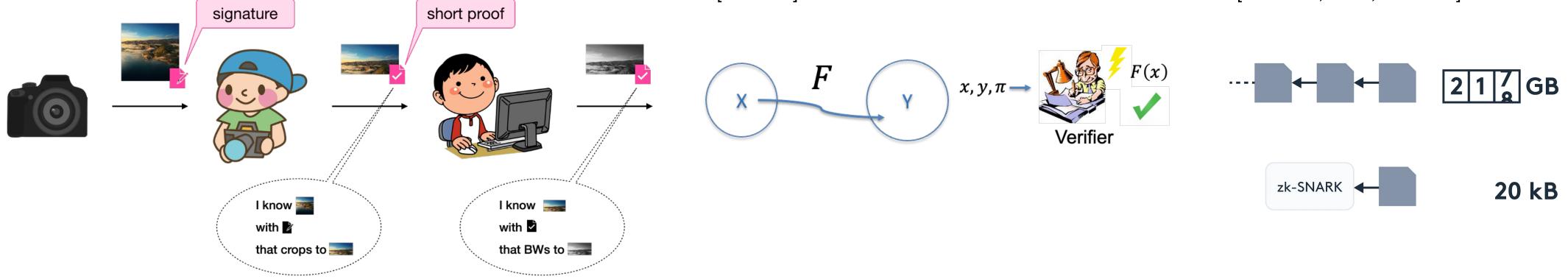
Solution: Use SNARK B to prove correctness of SNARK A **Prover runtime**: P_A on $|F| + P_R$ on Circuit(V_A) **Verifier**: V_R , Proof size: π_R

- Fast Prover
- Fast Verifier
- Small Proofs
- Zero-Knowledge

Many more applications

Image provenance [NT16]

[BBBF20]



- Byzantine agreement [BCG20]
- ZK cluster computing [CTV15]
- Enforcing language semantics across trust boundaries [CTV13]
- Private smart contracts[BCCGMW18] \bullet
- Signature aggregation [KZHB25]
- . . .

Verifiable Delay functions

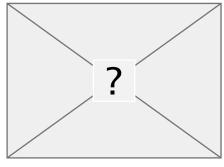
Succinct Blockchains

[BMRS20,KB20,CCDW20]

Real world deployments (AI-SC's darling)

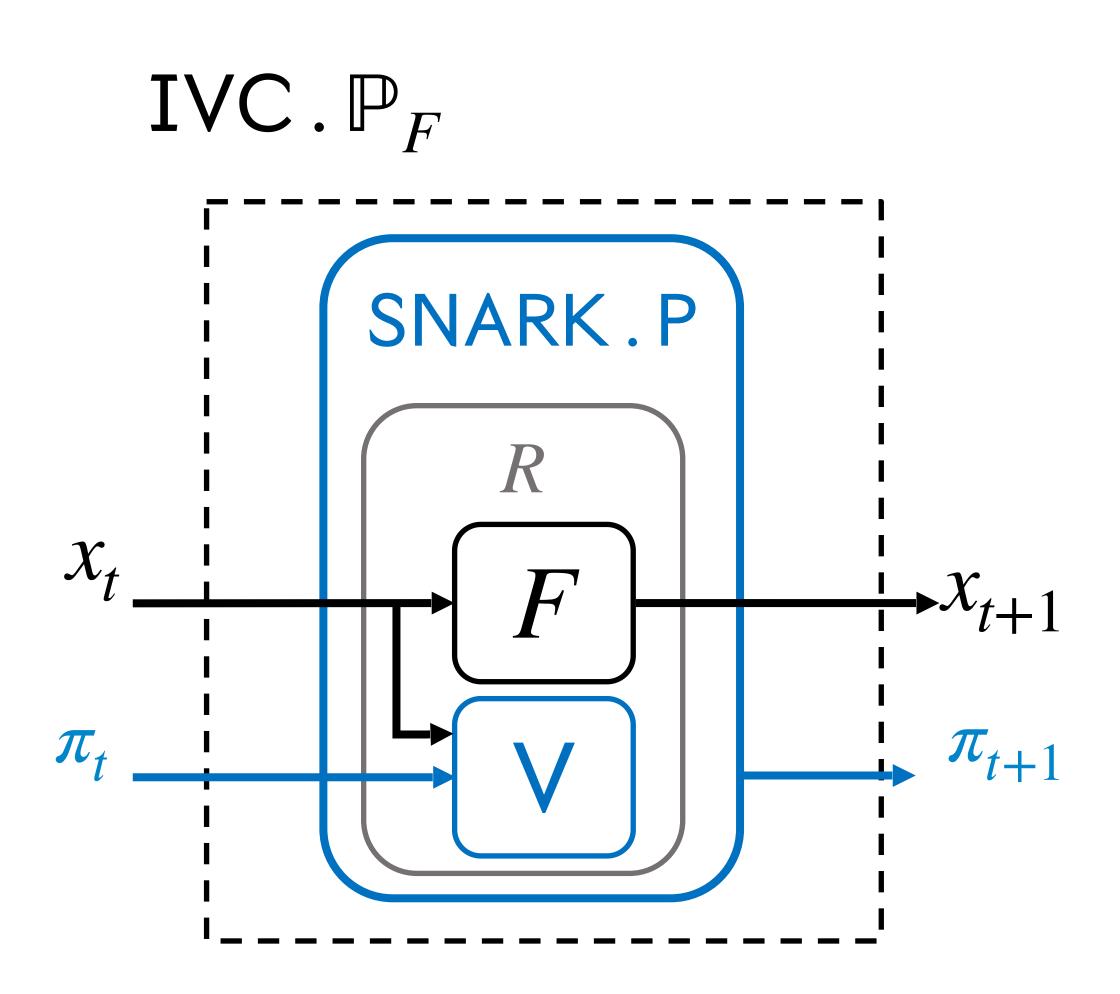
Recursive proofs are widely deployed!

Vital to understand their security and improve constructions!



Security analysis and problems

Security issues: Arithmetizing V



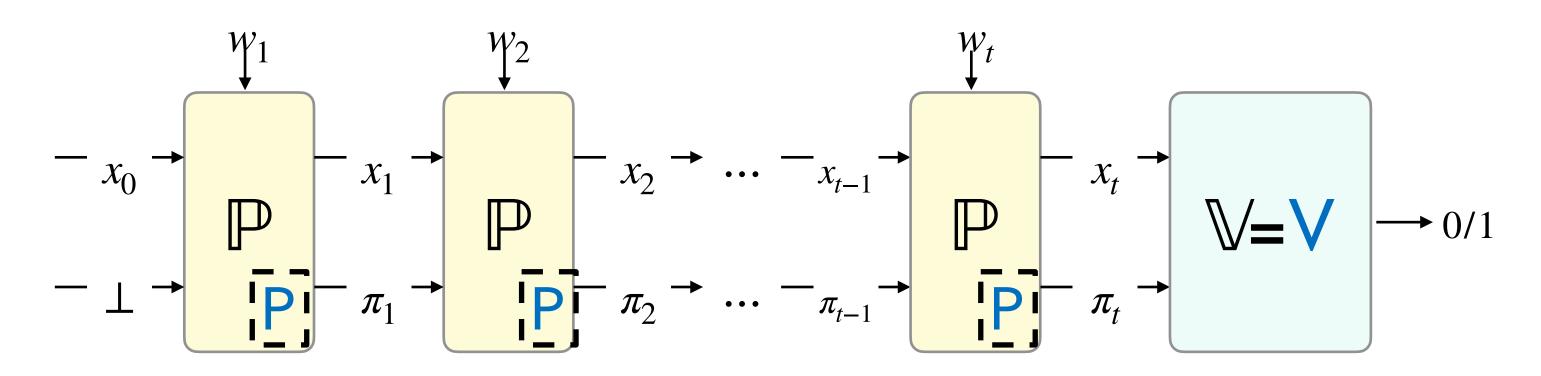
- *R* contains V ⇒ V can't contain oracles
 We need to implement V as a circuit
 - Security jump: (P^{ρ}, V^{ρ}) secure in the RO implies that (V, P)=Fiat-Shamir (P^{ρ}, V^{ρ}) is secure in the standard (CRS) model.
 - Generically not true[CGH98,Bar01,GK03]
 - Recent attack on GKR[KRS25]
 - Attack relies on evaluating FS-Hash inside proof system
 - Recursion relies on this ability

r R (P) is

Security issues: Arithmetizing V

- Attempt 1: Build SNARK in the RO that proves statement about the RO?
 - Impossible [BCG24]
- Attempt 2: Extend RO model to enable end-to-end analysis of PCD
 - Early attempts required secure hardware [CT10,CCS22]
 - Arithmetized Random Oracle Model [CCGOS23] augments the random oracle with an additional arithmetization oracle. Heuristically, the RO is replaced with SHA256, and the arithmetization with a circuit of SHA256.
 - AROM suffices to build PCD
 - But FS-attacks are not captured by the AROM (The insecure SNARK is still secure)
- Open problem: Build model that is sufficient to capture attacks but enables end-toend PCD construction (candidates [Zha22,AY25])

Security Issues: Extraction



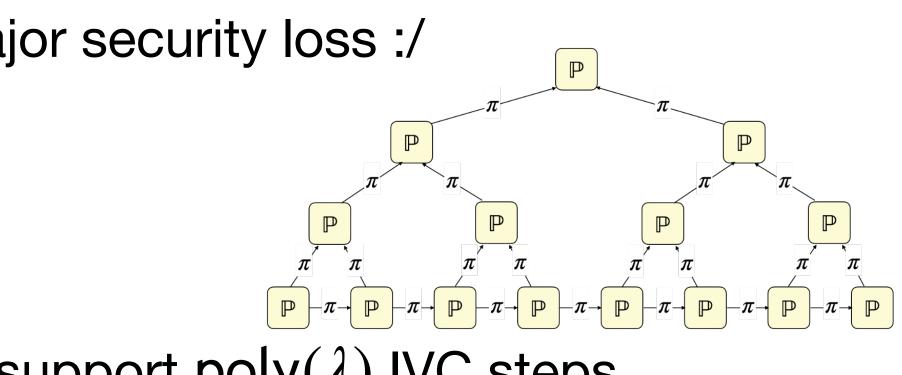
- IVC extractor calls the SNARK extractor using (π_t, x_t) to extract $\pi_{t-1}, x_{t-1}, w_{t-1}$
- for that SNARK.
- Idea: P's proofs are generated by invoking the extractor for the outer SNARKs lacksquare
- **Problem**: each extractor can invoke each P up to $poly(\lambda)$ times
- Thus the runtime of the extractor is $poly(\lambda)^{depth}$

• To extract from an internal SNARK (e.g. for step 2) we need to simulate a prover P

 \implies depth must be **constant**

Security Issues: Extraction

- Constant-depth IVC/PCD only and with major security loss :/ •
- Old solution: **Decrease depth** [BCCT13] lacksquare
 - Use tree-based IVC
 - With λ arity and constant depth we can support $poly(\lambda)$ IVC steps
 - Still high security loss
- Practitioner's solution:
 - Don't do anything
 - Assume $\epsilon_{IVC} \approx \epsilon_{SNARK}$ (Soundness error of IVC is independent of depth)
 - No matching attack



Saving grace: Straightline extraction

- Assume the SNARK has a straight line (deterministic, one-shot) extractor Then we don't get the exponential blowup (each extractor is called once) •

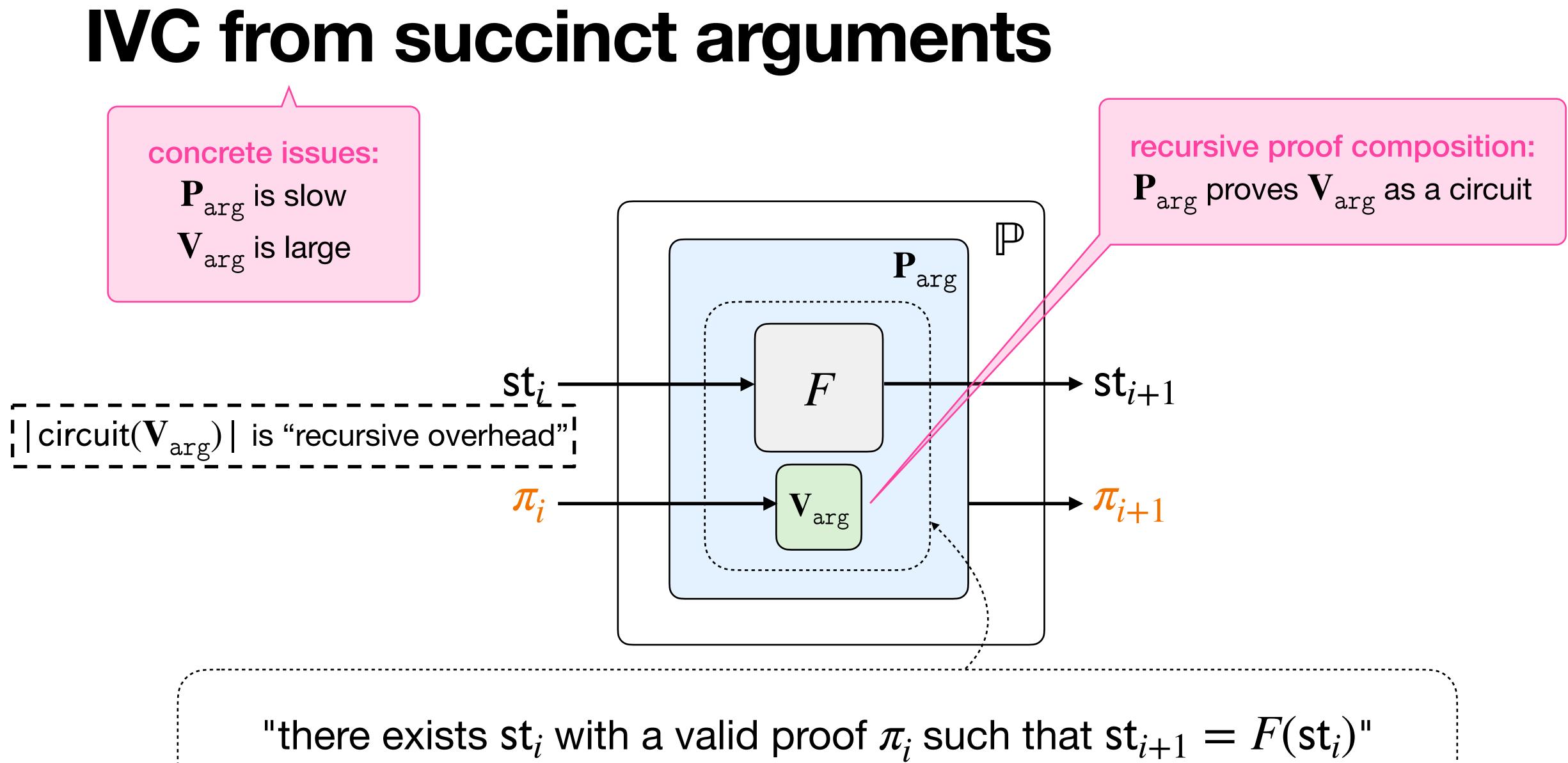
 - Union bound: depth ϵ_{SNARK} [CT10,CCGOS23]
 - Recently improved to $\epsilon_{PCD} \approx \epsilon_{SNARK}$ [CGSY23]
- **Problem 1:** Only able to construct straight-line extraction in idealized models Heuristic assumption: straightline extraction in idealized model

 - \implies straightline extractor for real-wold instantiation
- **Problem 2**: Some SNARKs of interest don't have straightline extractors Example: SNARKs from non efficiently decodable codes.
 - - Recent progress [RT24,BCFW25]
 - Straightline extraction (in ideal model) should become the norm for SNARKs

Open security problems

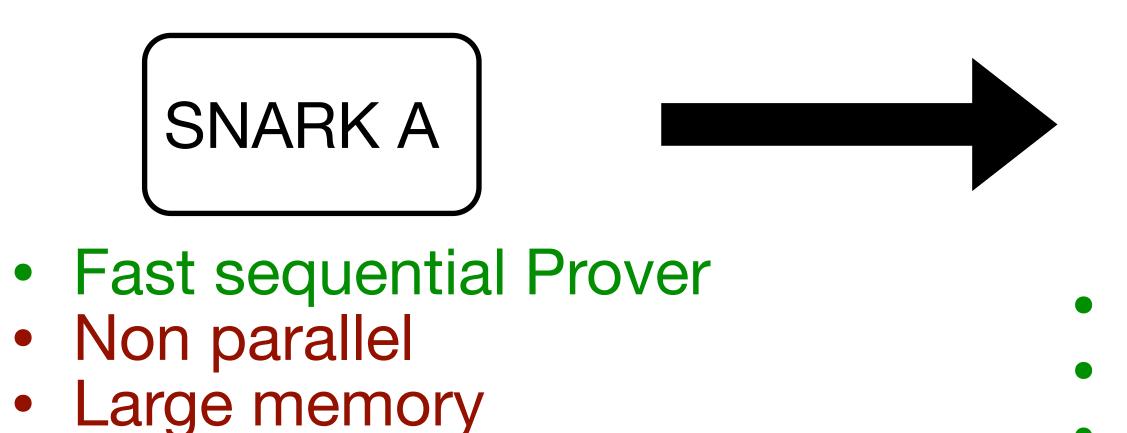
- Build IVC/PCD in standard model (see Surya's talk on Thursday)
- Build a model that captures Fiat-Shamir attacks but enables proving security of known SNARK/PCD constructions
- Attacks against high-depth IVC/PCD (even contrived)
- "Straightline extraction" in standard CRS model (or similar condition)
- Proving straightline extraction for more protocols

Efficiency (concerns)



Recursive overhead is a bottleneck

Goal: Improving SNARK prover properties

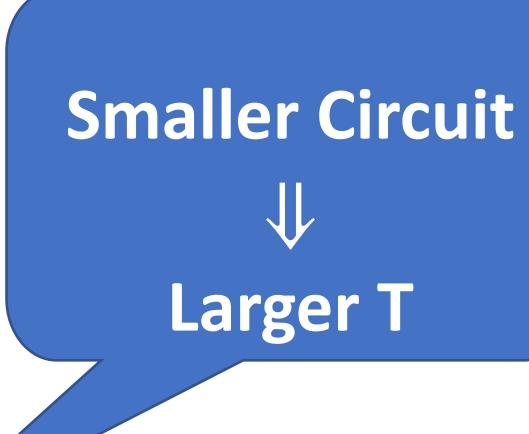


- Large CRS
- Large verifier

Solution: Break up function F into T uniform steps F' of size –

- Build binary PCD tree of depth log(T) for predicate F'.
- **T** parallelism
- Memory, CRS and Verifier for $F' + Circuit(V_{\Delta})$

• Fast parallel Prover Constant memory Constant CRS • Constant size verifier



SNARK prover is a bottleneck

- PCD prover runs SNARK prover
- SNARK provers have large constants
- Many SNARKs have strong assumptions
 - E.g. SNARKs in DLOG groups
- Most efficient SNARKs have large proofs
 - Linear-time SNARKs have MB sized proofs
 - Leads to large recursive overheads

Parg

 \mathbb{P}

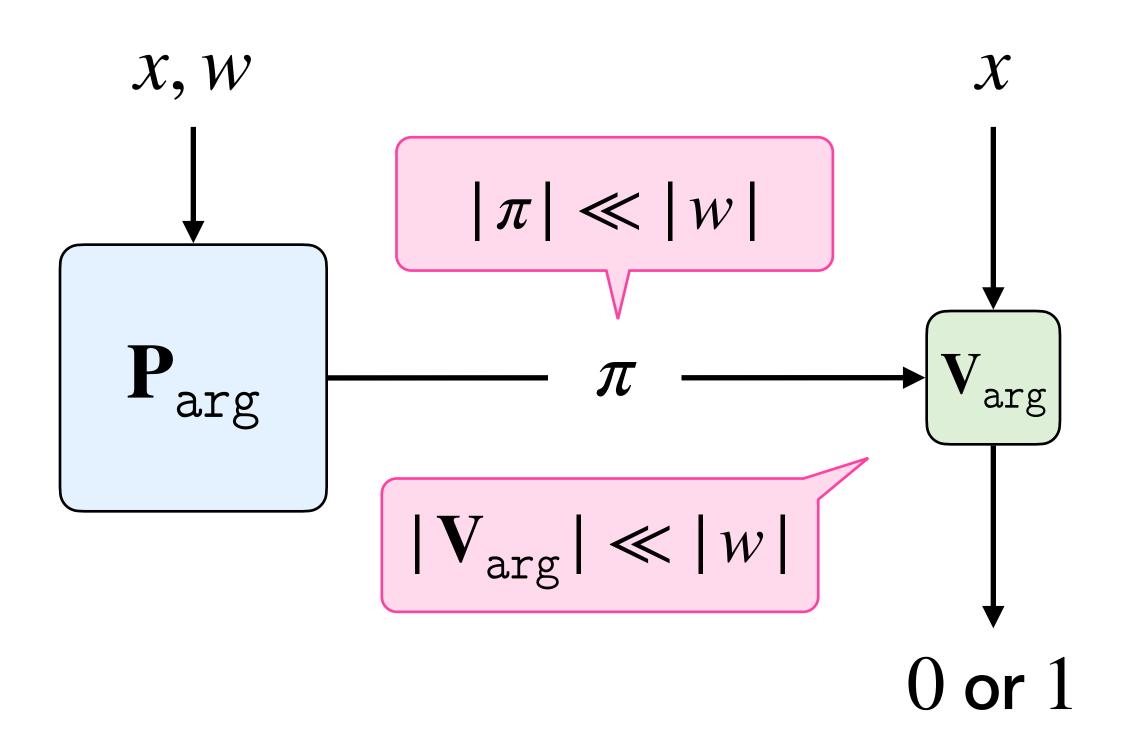
Are SNARKs necessary to build IVC/PCD*?

*No for IVC for P [DGKV22, PP23]

Accumulation Schemes

Review: SNARGs succinct non-interactive arguments

 $(x, w) \in R$



completeness

$$\begin{array}{l} \text{if} \left(x, w \right) \in R \\ \text{then} \ \mathbf{V}_{\mathrm{arg}} \to 1 \end{array} \end{array}$$

$$L(R) := \{x : \exists w, (x, w) \in R\}$$

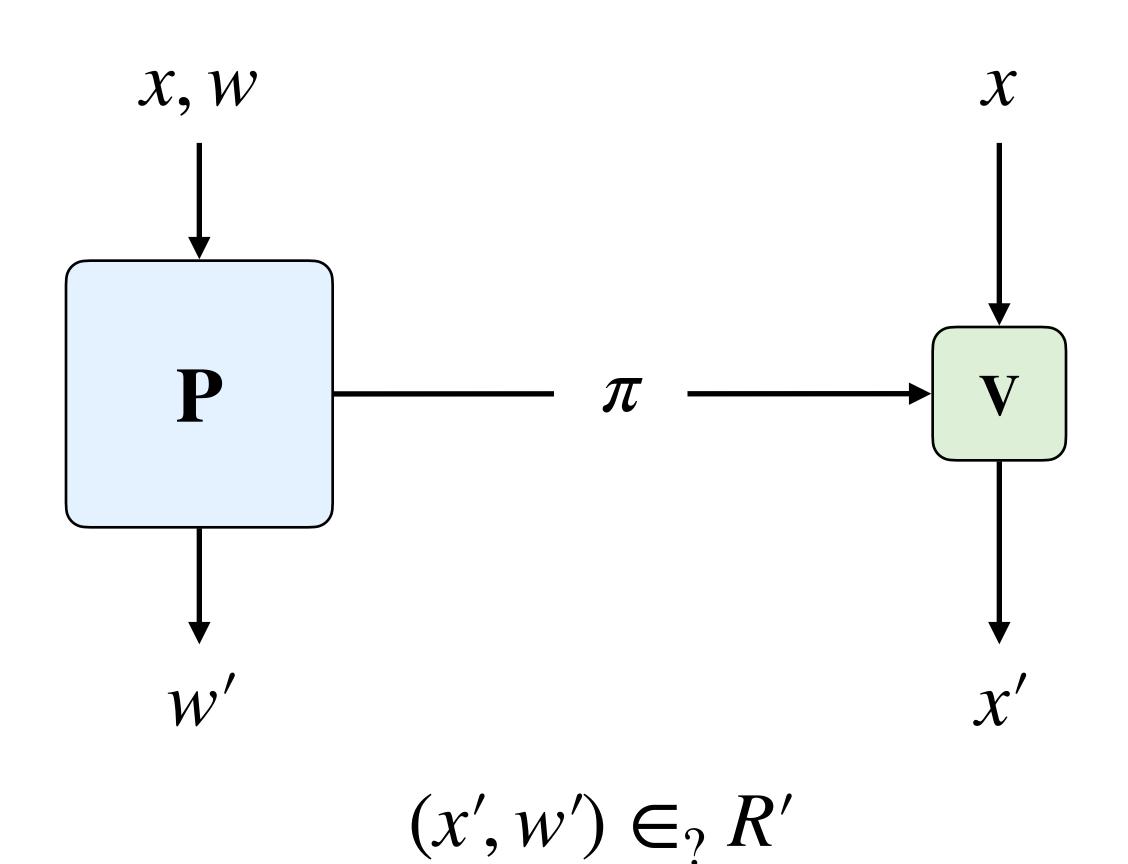
soundness

if $x \notin L(R)$ then w.h.p. $V_{\text{arg}} \rightarrow 0$

in general: knowledge soundness

Background: reductions [KP22]

 $(x, w) \in_? R$



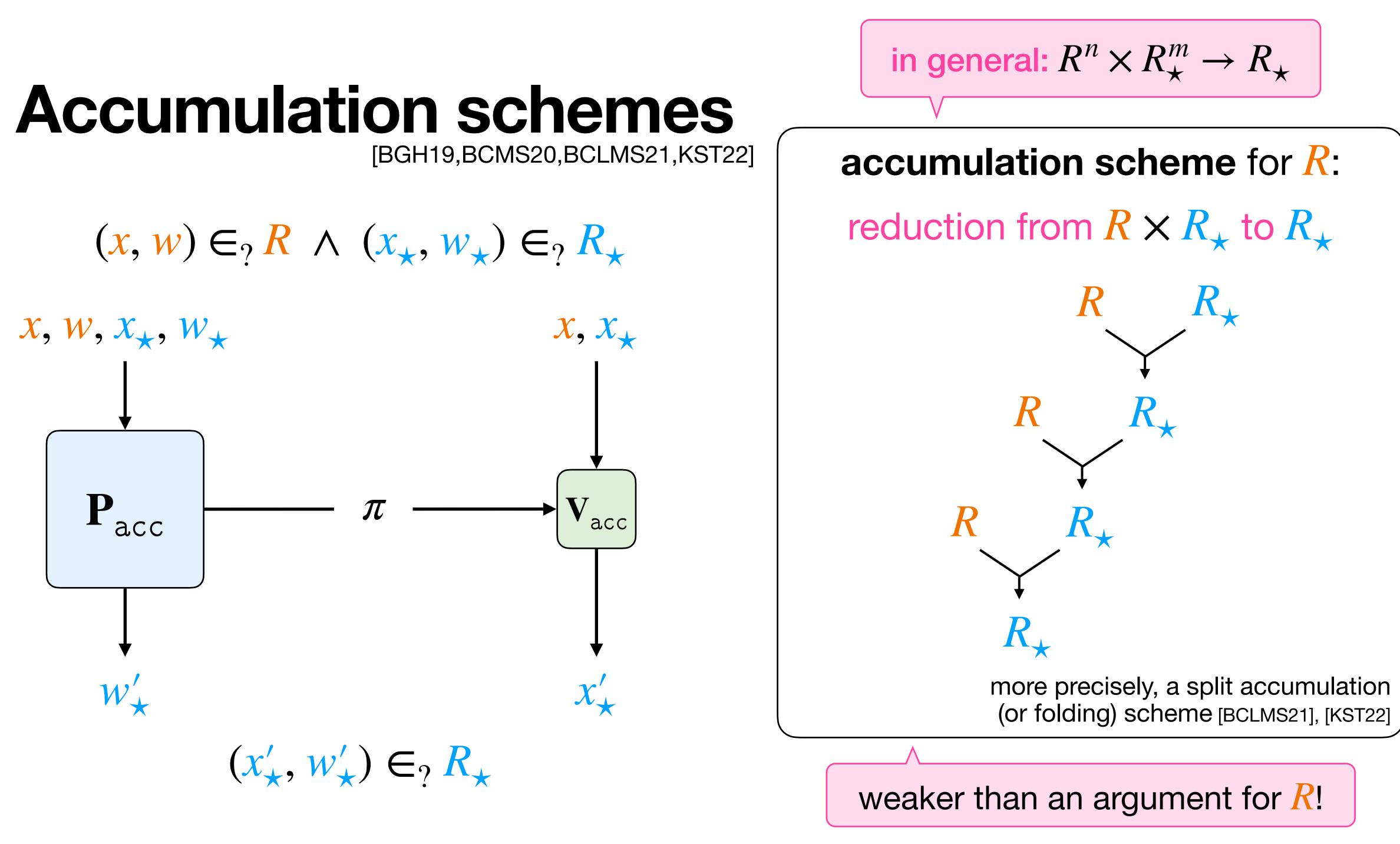
completeness

if $(x, w) \in R$ then $(x', w') \in R'$

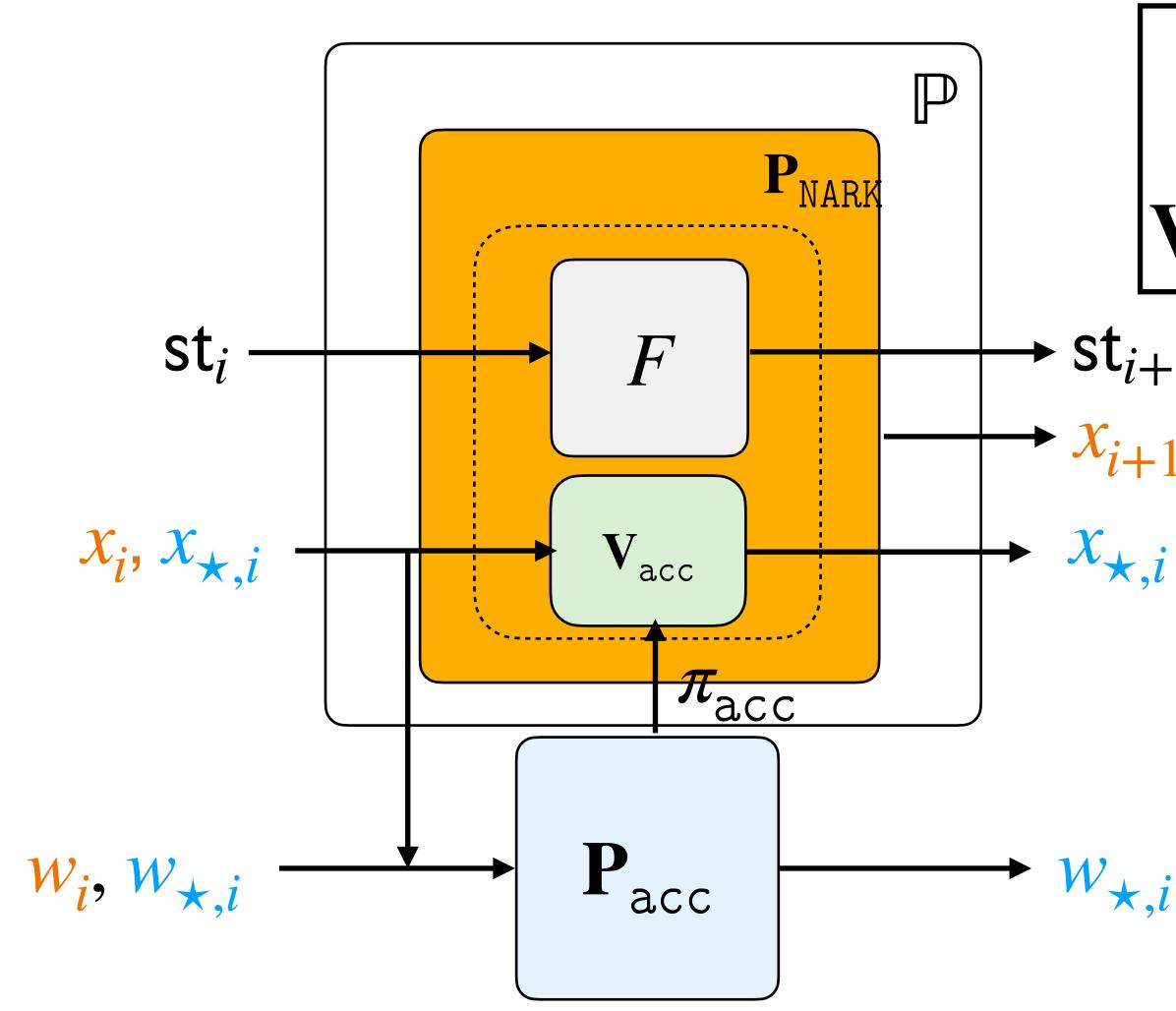
soundness

if $x \notin L(R)$ then w.h.p. $x' \notin L(R')$

in general: knowledge soundness



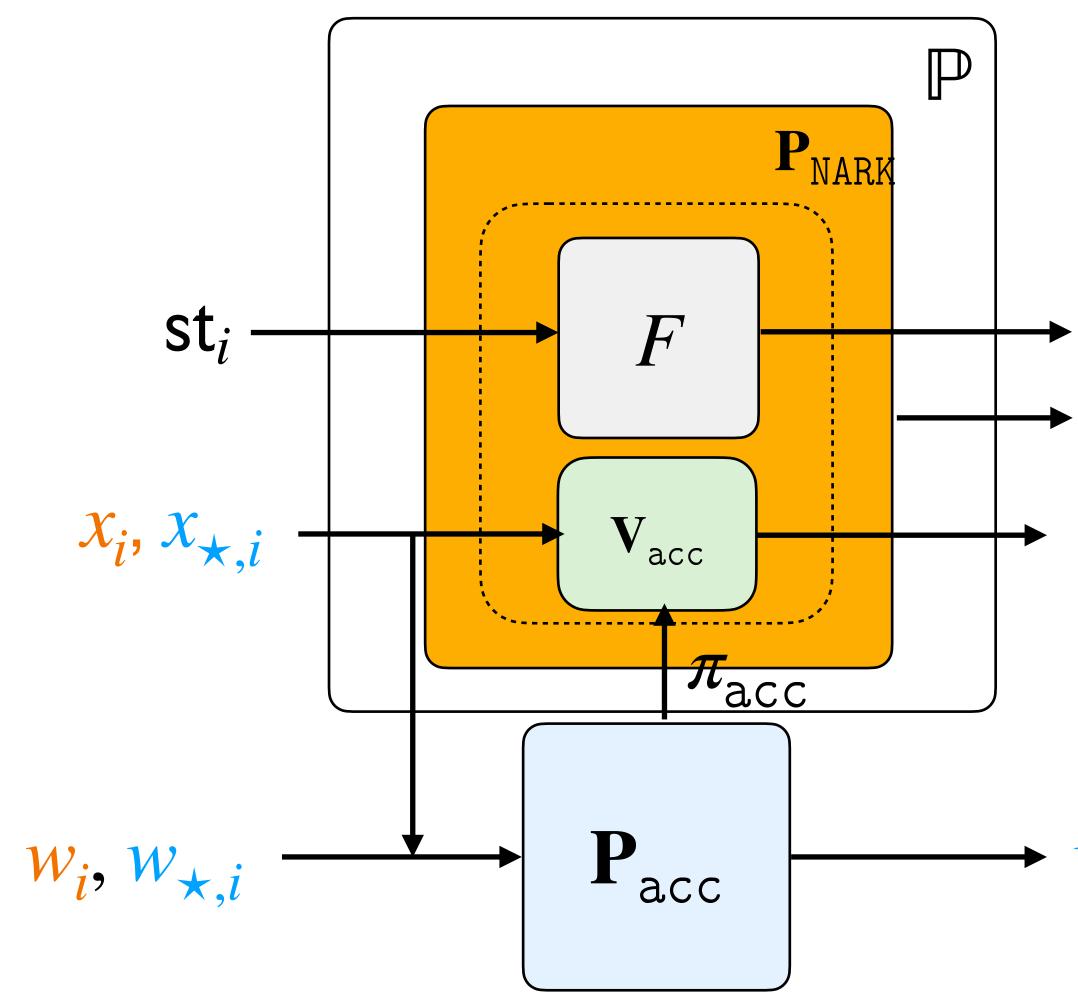
IVC from accumulatio



DN [BCLMS20]
PNARK outputs
$$(x, w) \in R$$

VNARK checks $(x, w) \in R$
 $(x_{i+1}; w_{i+1}) \in R$
 $(x_{i+1}; w_{i+1}) \in R$
 $(x_{acc}(x_i, x_{\star,i}, \pi) = x_{\star,i+1} \wedge F(st_i) = st_i$
 St_{i+1}
 $(x_{i+1}, w_{i+1}, \dots, k_{\star,i+1}) \in R$
 $(x_T, w_T) \in R$
 $(x_{\star,T}, w_{\star,T}) \in R_{\star}$

IVC from accumulatic



DN [BCLMS20]

$$P_{NARK} \text{ outputs } (x, w) \in R$$

$$V_{NARK} \text{ checks } (x, w) \in R$$

$$(x_{i+1}; w_{i+1}) \in \mathbb{V}$$

$$V_{acc}(x_i, x_{\star,i}, \pi) = x_{\star,i+1}$$

$$V_{acc}(x_i, x_{\star,i}, \pi) = x_{\star,i+1}$$

$$V_{acc}(x_i, x_{\star,i}, \pi) = x_{\star,i+1}$$

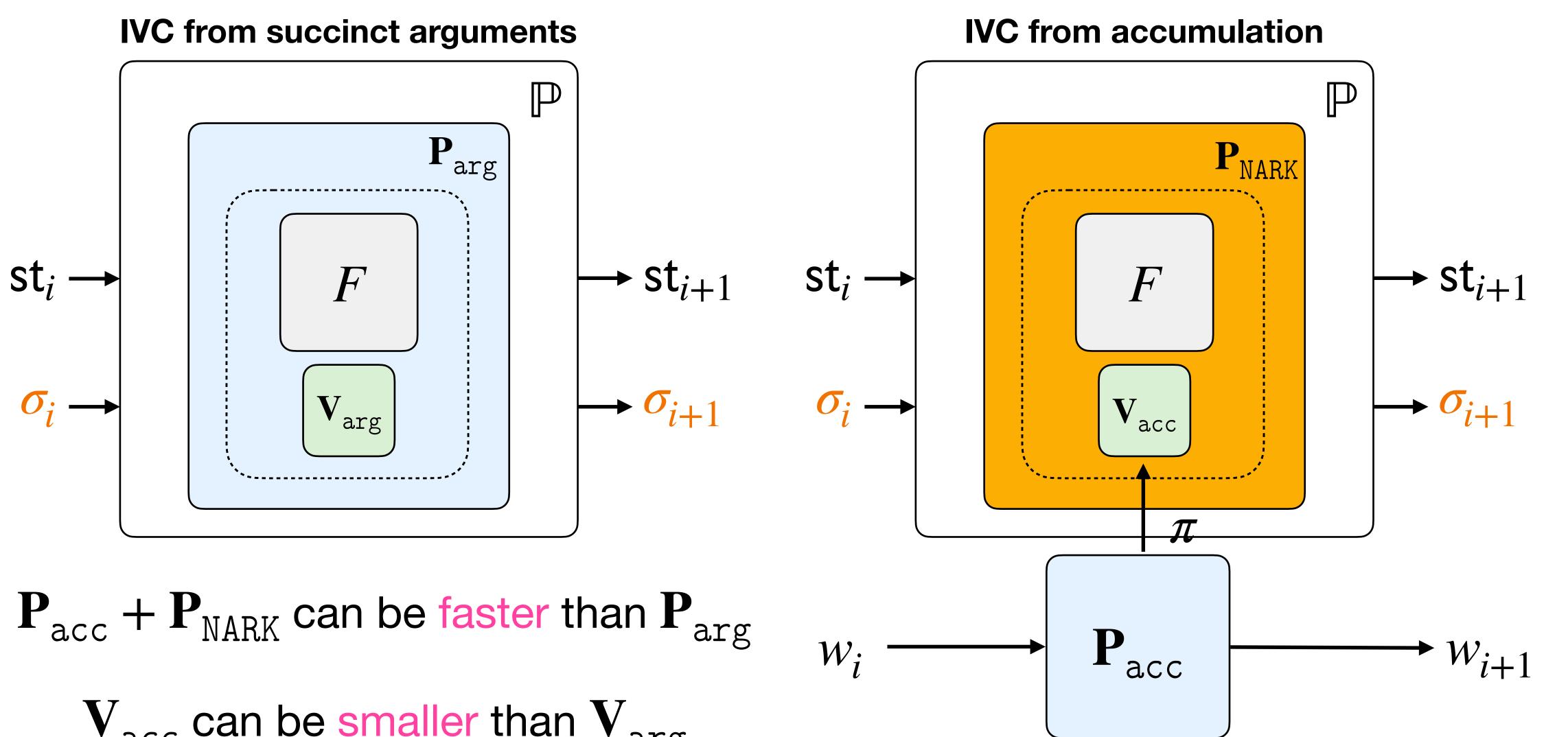
$$W, w_{\star}$$

$$(x_T, w_T) \in R$$

$$(x_{\star,T}, w_{\star,T}) \in R_{\star}$$

 $W_{\star,i}$

Why accumulate?

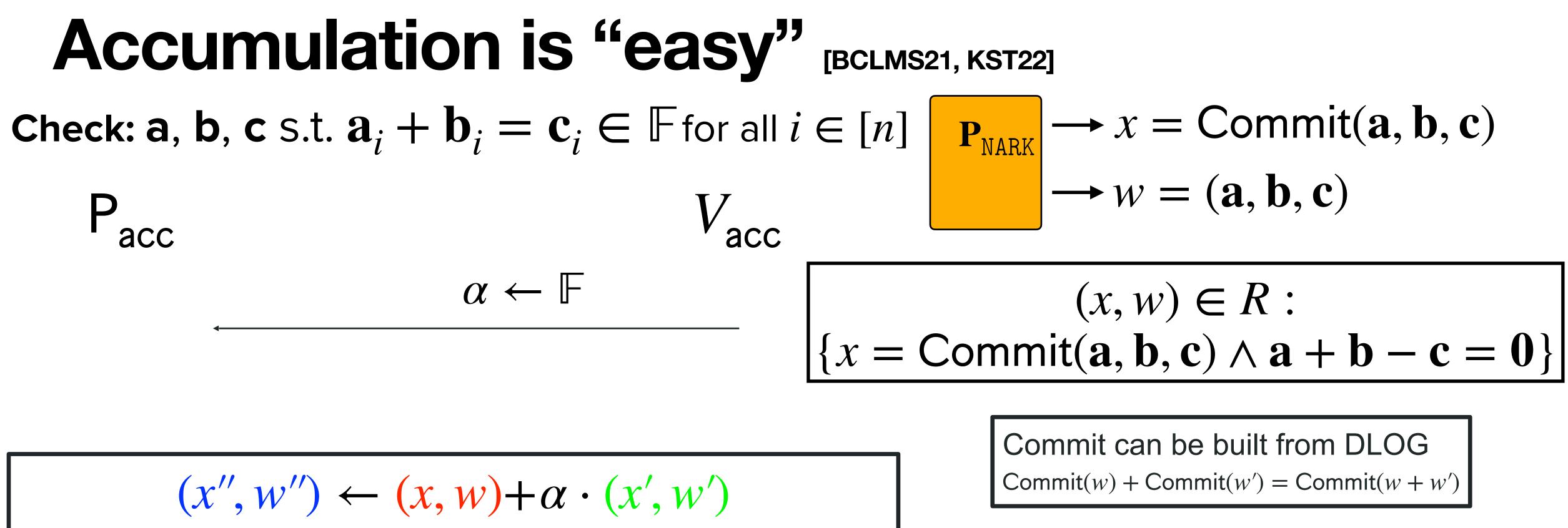


 V_{acc} can be smaller than V_{arg}

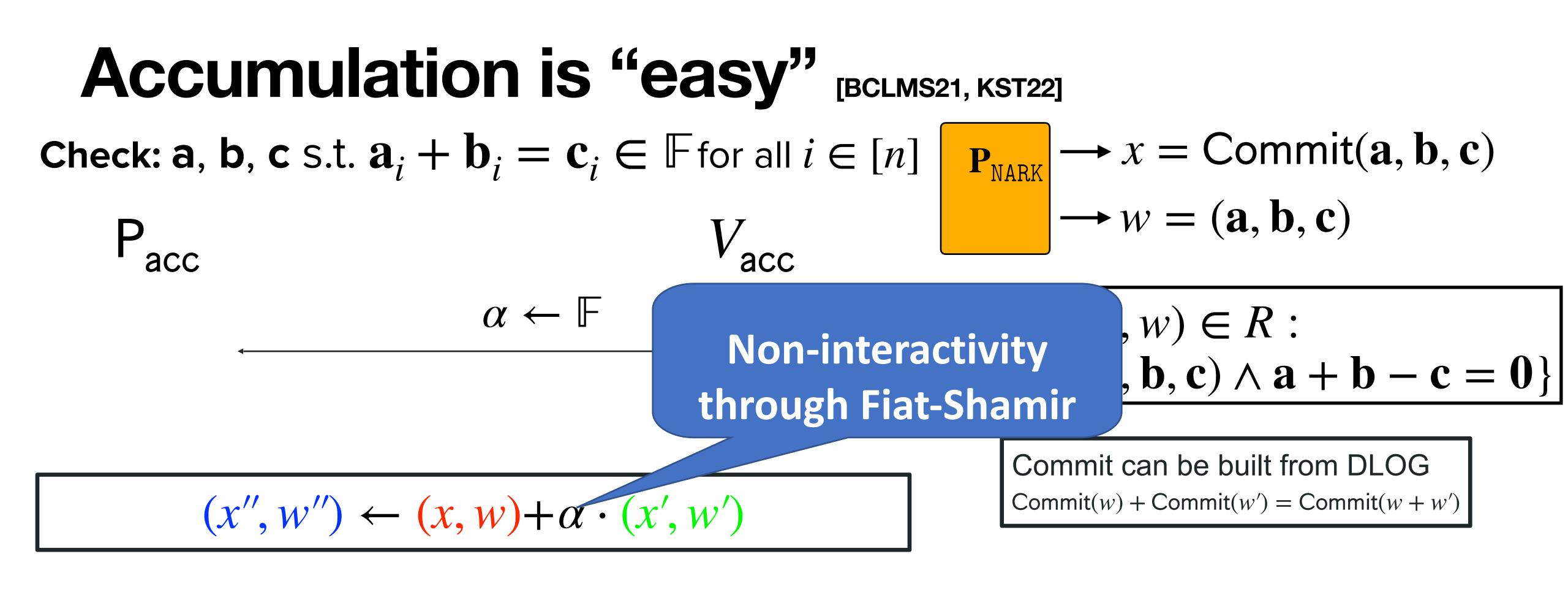
Accumulation and SNARKs

- Accumulation is simpler than SNARKs
- We can construct it in settings and with efficiencies that don't admit SNARKs Accumulation suffices to build IVC/PCD
- IVC/PCD enables building SNARKs
 - Set F to be a step function of a VM
- How can this be?
 - All known "interesting" accumulation schemes require random oracles
 - To build IVC/PCD we need accumulation in standard models (heuristic jump)

Accumulation is "easy" [BCLMS21, KST22] Pacc $\alpha \leftarrow \Vdash$ $(x'', w'') \leftarrow (x, w) + \alpha \cdot (x', w')$ $(x, w) \in R, (x, w') \in R \Rightarrow (x, w) + Y$

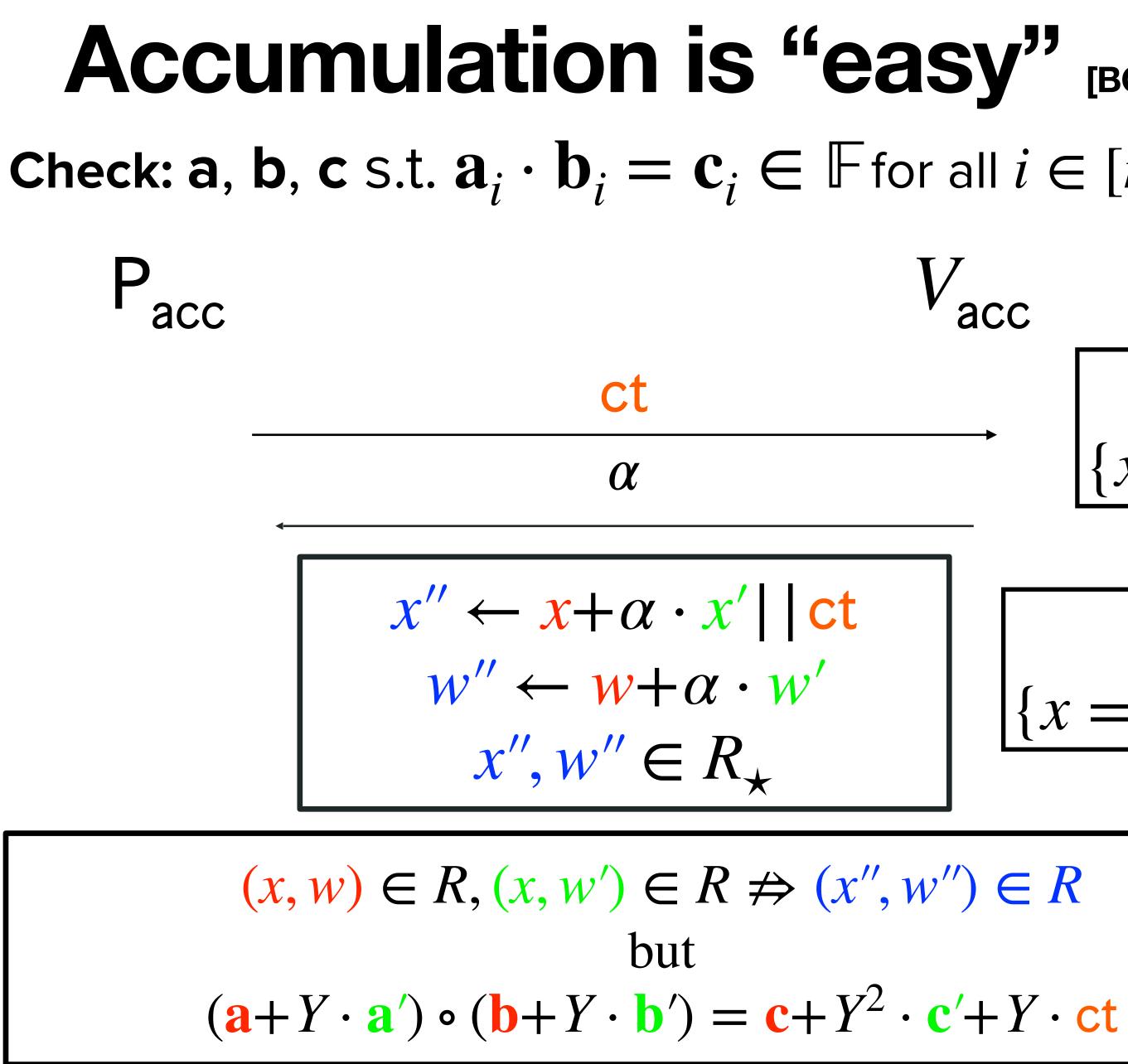


$$(x',w')\in R$$



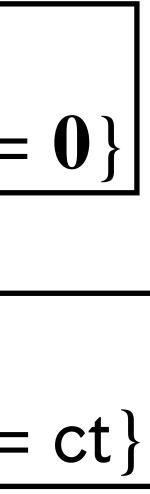
$(x, w) \in R, (x, w') \in R \Rightarrow (x, w) + Y$.

$$(x',w') \in R$$



by" [BCLMS21, KST22]
all
$$i \in [n]$$
 $P_{\text{NARK}} \rightarrow x = \text{Commit}(\mathbf{a}, \mathbf{b}, \mathbf{c})$
acc
 $\downarrow \qquad (x, w) \in R :$
 $\{x = \text{Commit}(\mathbf{a}, \mathbf{b}, \mathbf{c}) \land \mathbf{a} \circ \mathbf{b} - \mathbf{c} =$
 $(x, w) \in R_{\star} :$

 $|\{x = \text{Commit}(\mathbf{a}, \mathbf{b}, \mathbf{c}, \operatorname{ct}) \land \mathbf{a} \circ \mathbf{b} - \mathbf{c} = \operatorname{ct}\}|$



Accumulation for multiplication

- Reduction from $R \times R \rightarrow R_{\star}$
- Reduction from $R \times R_{\star} \to R_{\star}$ is very similar!
- Multiplication and addition suffice to build accumulation for NP
- Only cryptography needed is a homomorphic vector commitment + Fiat-Shamir
 - No PCPs
 - No polynomial commitments
 - No trusted setup
 - Single commitment
- Acc verifier does 2 group scalar multiplications (check homomorphism)
 - Needs to check elliptic curve operations
 - In practice: Use cycles of elliptic curves for efficiency (mismatched fields)

A universe of accumulation

- Lowering recursion overhead [KotSetSzi22,KotSet23,BünChe23,DimGarManVla24,Bün24]
 - Down to only one scalar multiplication
 - less than 10k gates vs. 100k+ gates for SNARKs
- Multi-instance proving (for PCD)[KotSet23,EagGab23]
- Supporting high degree gates [Moh22,KotSet23,BC23]
- Faster prover[KotSet24]
- Handling cycles of elliptic curves[KotSet23b]
- Zero-Knowlege support [ZheGaoGuoXia23]
- Memory operations [BC24, AruSet24]
- Outsourcing verification [ZSCZ25]
- Smaller accumulators [BGH19,BF24,KZHB25]
- Non-uniformity[KS22,BC23,KZHB25]
- Parallel SNARK constructions [NDTCB24]
- Tighter security analysis [NBS23,LS24]

• . . .

Post-quantum accumulation

- Accumulation verifier needs to check $\overline{w}' \stackrel{?}{=} \overline{w} + \alpha \cdot \overline{z}$
- Accumulation scheme require homomorphic vector commitment
 - Pedersen commitment is built from the DLOG assumption
 - Not post-quantum
- Goal: Get rid of the homomorphism

Lattice-based accumulation

SIS-commitment

- Only limited homomorphism
- Idea: Resplit witness and combine low-norm components [BC24]
- Multiple improvements [GKNP24,BC25,SN25] (See Binyi's talk)
- Larger recursion overhead than EC-based, but possibly very fast prover

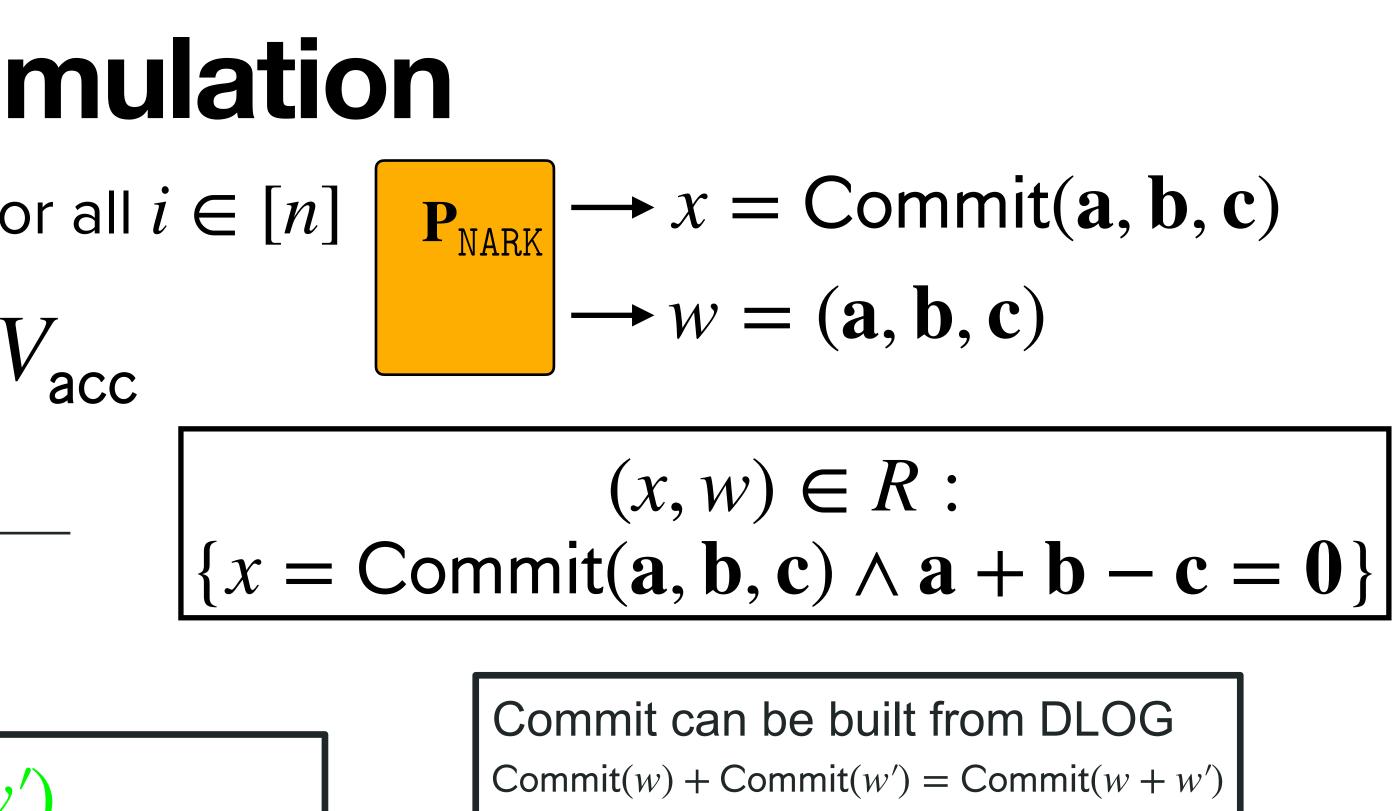
Witness needs to be low-norm

Can we build accumulation in the RO?

- No additional assumptions
- Trivial answer: Yes, SNARKs imply accumulation
- Can we do better?

Homomorphic accumulation **Check: a**, **b**, **c** s.t. $\mathbf{a}_i + \mathbf{b}_i = \mathbf{c}_i \in \mathbb{F}$ for all $i \in [n]$ **P**_{NARK} Pacc $\alpha \leftarrow \mathbb{F}$ $(x'', w'') \leftarrow (x, w) + \alpha \cdot (x', w')$

$(x, w) \in R, (x, w') \in R \Rightarrow (x, w) + Y$



$$(x',w')\in R$$

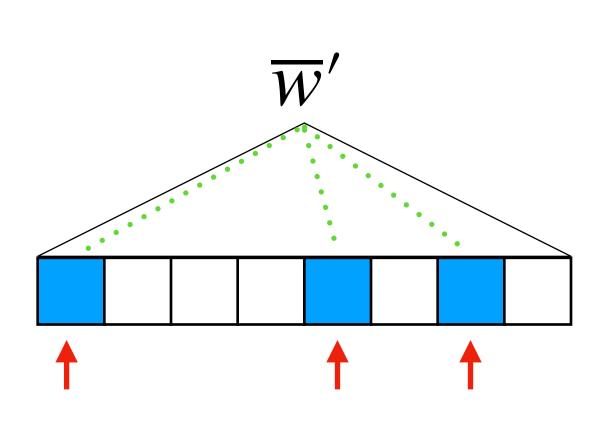
Non-Homomorphic accumulation Check: **a**, **b**, **c** s.t. $\mathbf{a}_i + \mathbf{b}_i = \mathbf{c}_i \in \mathbb{F}$ for all $i \in [n]$ $\mathbf{P}_{\text{NARK}} \rightarrow x = \text{MT}(\mathbf{a}, \mathbf{b}, \mathbf{c})$ $\mathbf{W} = (\mathbf{a}, \mathbf{b}, \mathbf{c})$ Pacc Vacc $\alpha \leftarrow \mathbb{F}$ $V_{\rm acc}$ can't check this $(x'', w'') \leftarrow (x, w) + \alpha \cdot (x', w')$ operation anymore

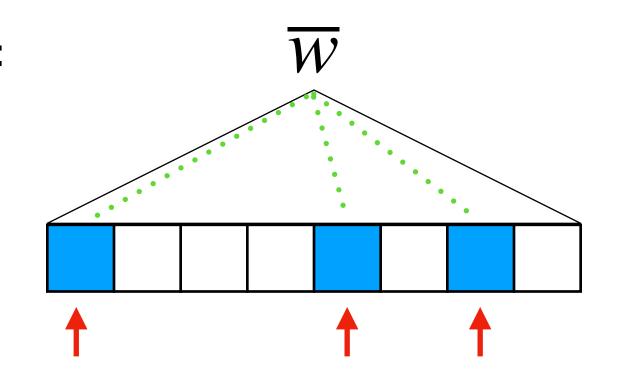
$(x, w) \in R, (x, w') \in R \Rightarrow (x, w) + Y \cdot ($

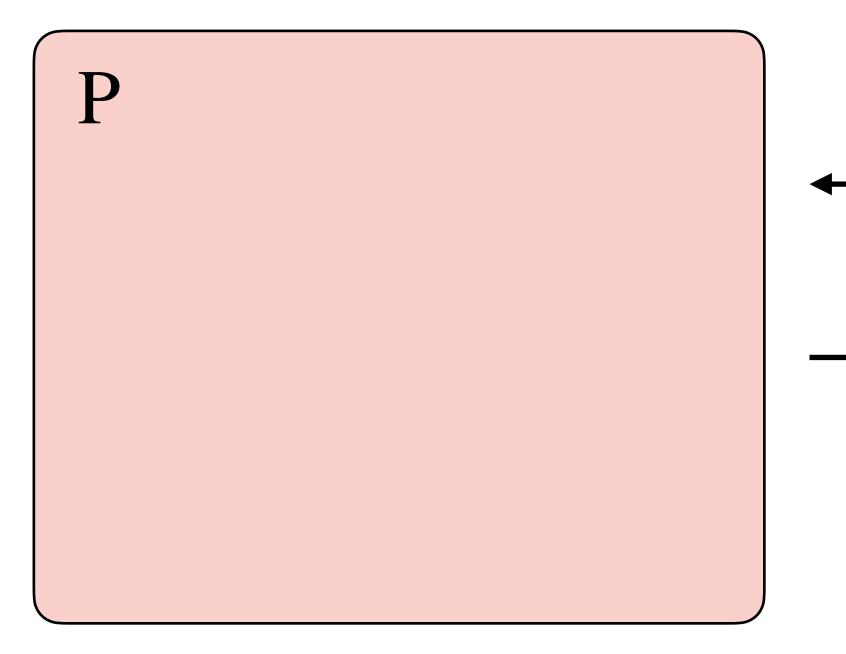
$$(x, w) \in R$$
:
 $\{x = MT(\mathbf{a}, \mathbf{b}, \mathbf{c}) \land \mathbf{a} + \mathbf{b} - \mathbf{c} = 0\}$

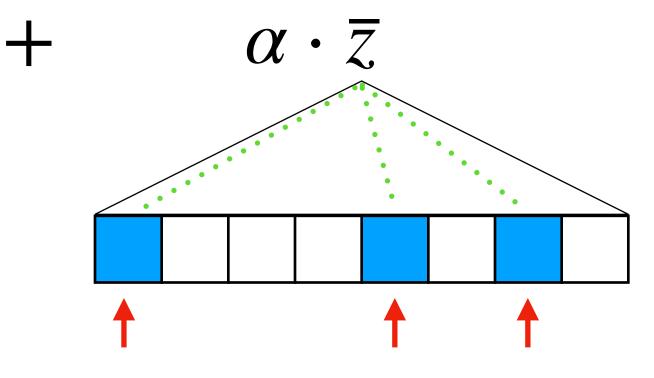
$$(x',w')\in R$$

Checking the homomorphism









w′[*Q*], *w*[*Q*], *z*[*Q*] opening proofs

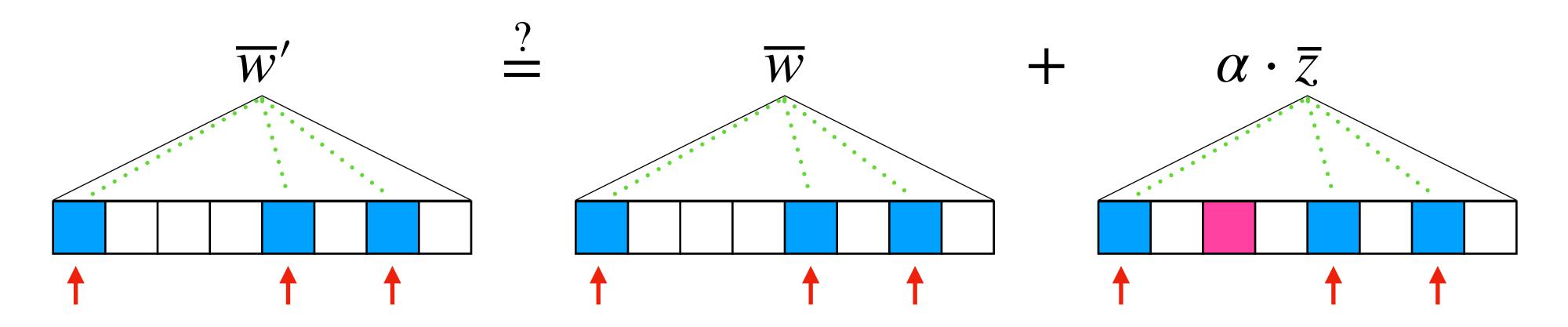
Sample $Q \subset [n]$

 \mathbf{V}

Check opening proofs

For each $i \in Q$: $w'[i] \stackrel{?}{=} w[i] + \alpha \cdot z[i]$

Checking the homomorphism



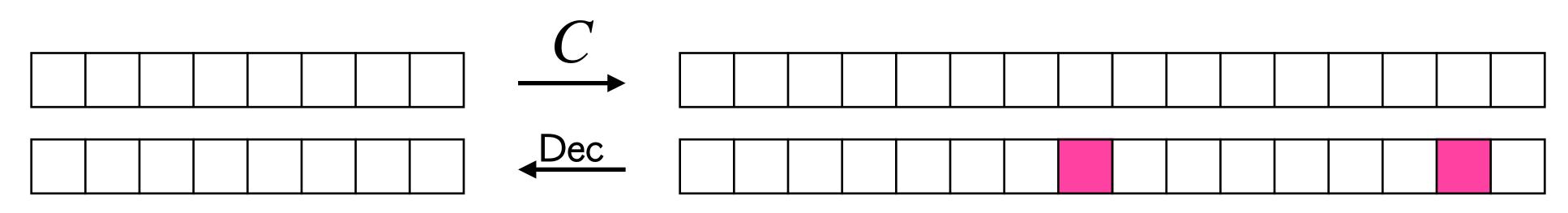
- Suppose δ -fraction of locations are inconsistent
- Then *t* queries miss w.p. $(1 \delta)^t$

•
$$t = \frac{\lambda}{\delta} \implies (1 - \delta)^t \le 2^{-\lambda}$$

Problem: How to detect a single inconsistency?

New tool: linear codes

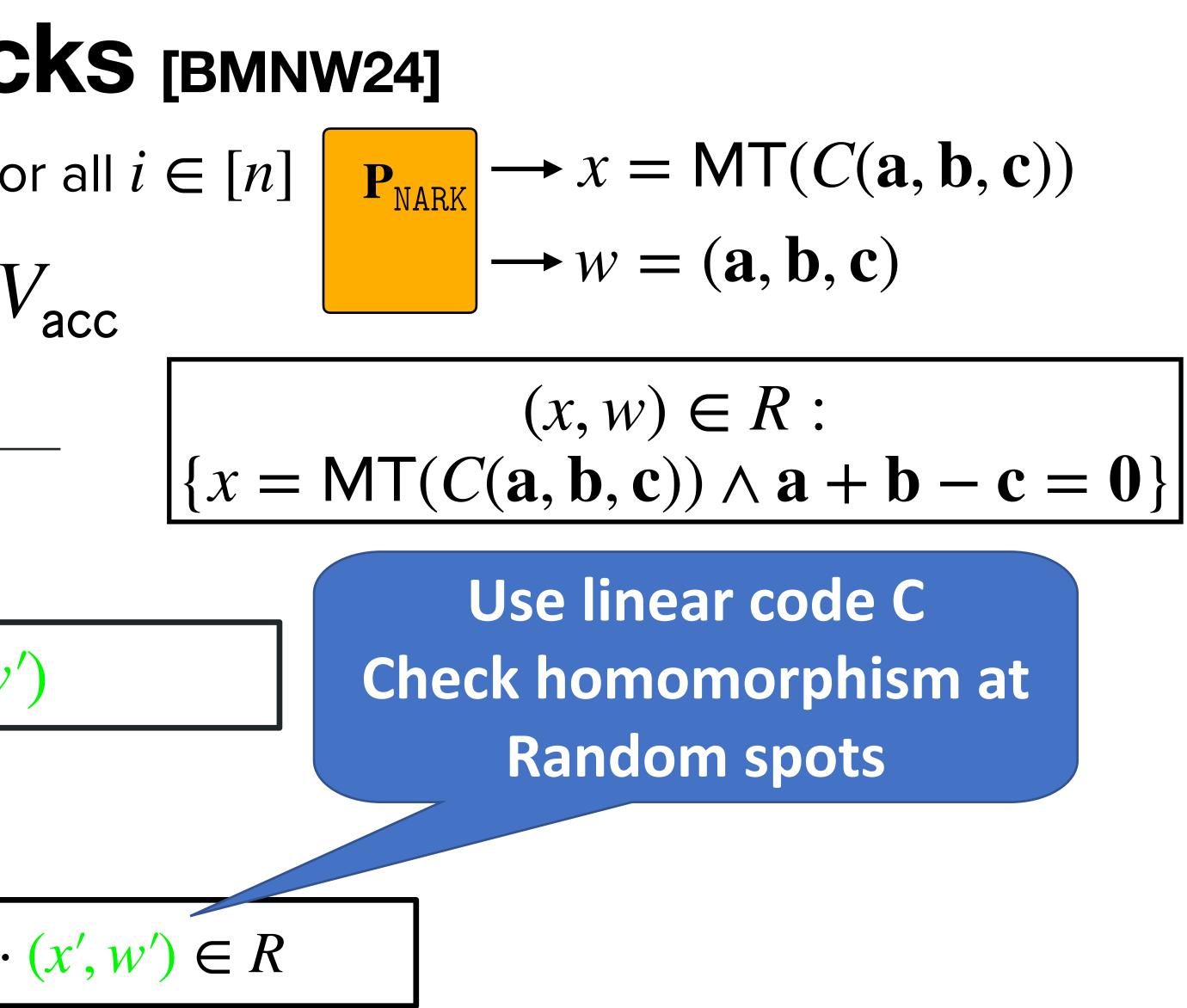
- Linear map $C: \mathbb{F}^n \to \mathbb{F}^\ell$ from "messages" to "codewords"
- Distance: minimum relative Hamming distance between any two codewords
- Decoding: given a noisy codeword, recover the original message



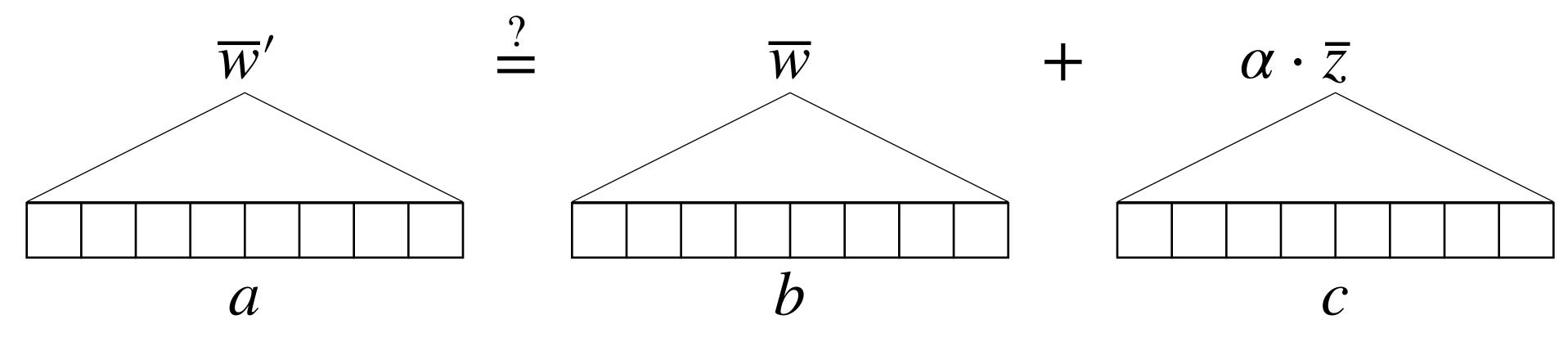
- Unique decoding radius = maximum number of errors allowed
- We want a linear code with large distance/decoding radius, e.g. Reed– Solomon codes

Attempt 1: Spotchecks [BMNW24] Check: a, b, c s.t. $\mathbf{a}_i + \mathbf{b}_i = \mathbf{c}_i \in \mathbb{F}$ for all $i \in [n]$ **P**_{NARK} Pacc $\alpha \leftarrow \mathbb{F}$ $(x'', w'') \leftarrow (x, w) + \alpha \cdot (x', w')$

$(x, w) \in R, (x, w') \in R \Rightarrow (x, w) + Y \cdot (x', w') \in R$



Soundness analysis

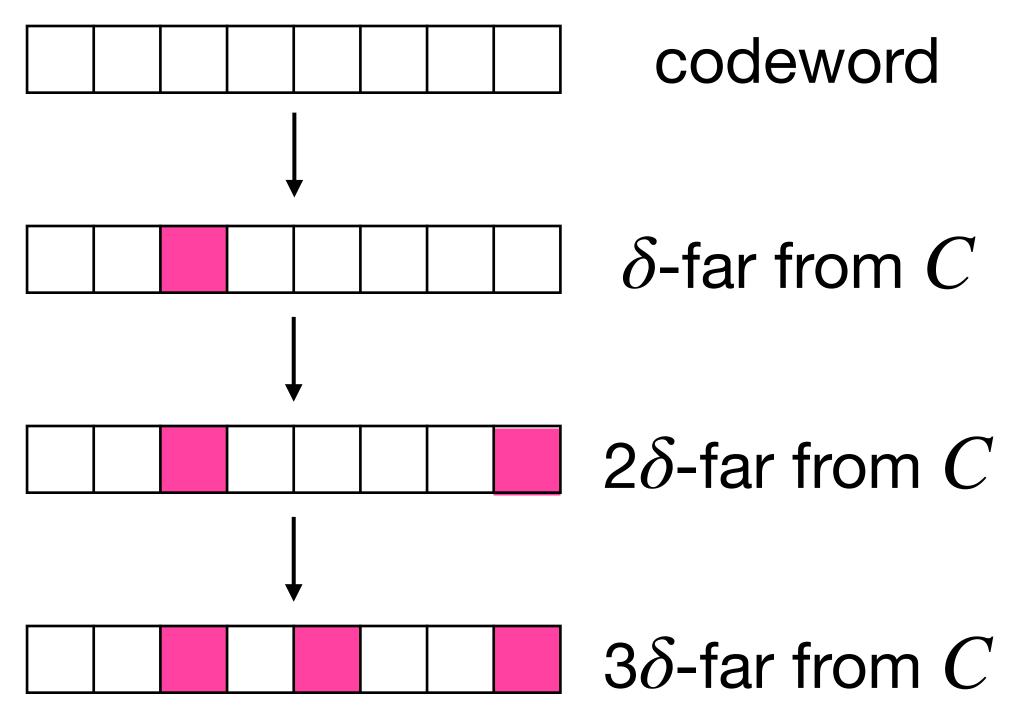


- Decider guarantees: $a \in C$
- Verifier guarantees: $\Delta(a, b + \alpha c) < \delta \implies b + \alpha c$ is δ -close to C
- $b \text{ are } c \text{ are } \delta \text{-close to } C$ (by proximity gap for C: BCIKS23, RVW13, AHIV17, DP23a)
- $Dec(a) = Dec(b) + \alpha \cdot Dec(c)$

• "Proof": Encode both sides, they are 3δ -close \rightarrow equal (assuming 3δ < distance)

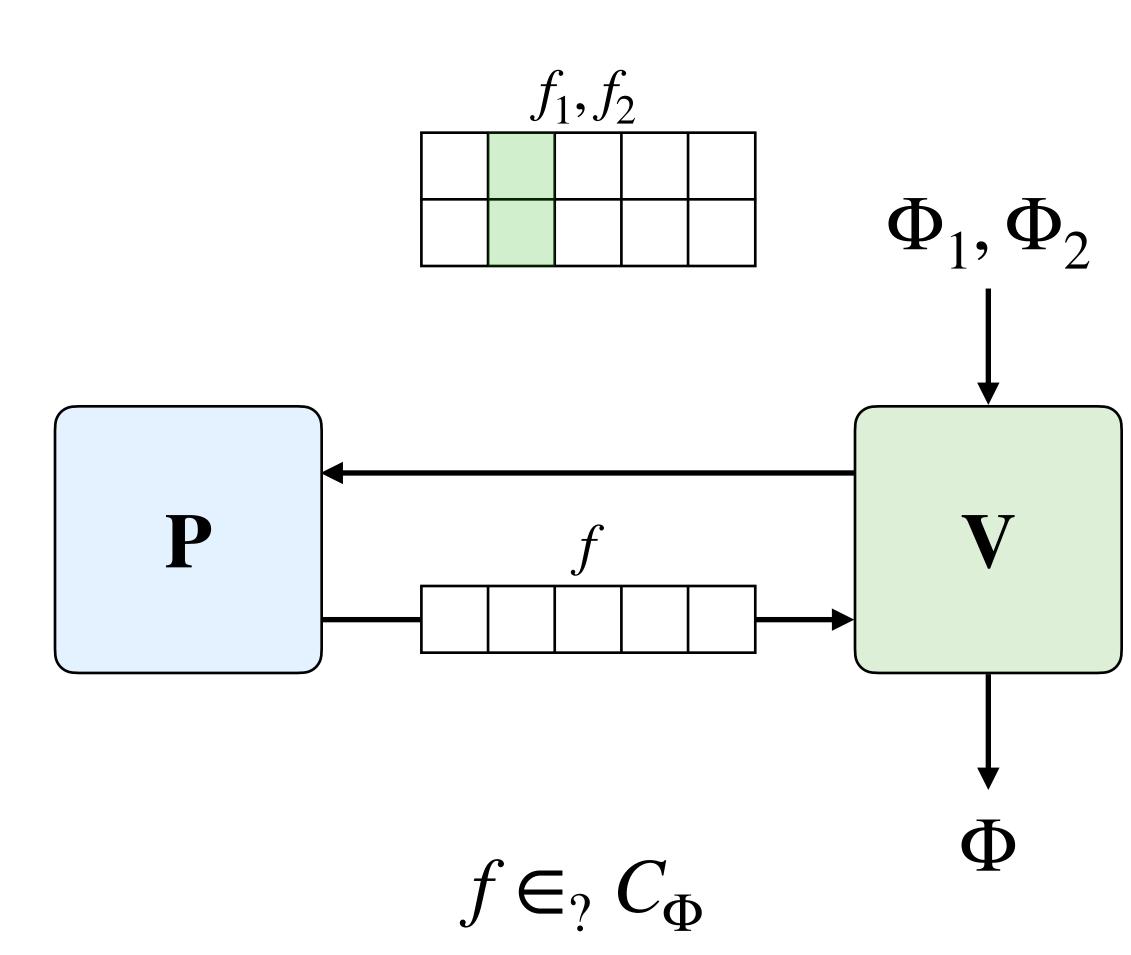
Accumulating multiple times

- To support d accumulations:
 - Spot check parameter δ
 - $d\delta$ < unique decoding radius
- Matching attack



Solution: Use constrained codes [BMNW24,KNS24,Szep24,BCFW25]

 $f_1 \in C_{\Phi_1} \land f_2 \in C_{\Phi_2}$



Any linear code $C : \mathbb{F}^k \to \mathbb{F}^n$ Any "low-degree polynomial" constraint $\Phi : \mathbb{F}^k \to \mathbb{F}$

Constrained code $C_{\Phi} := \{ C(v) : \Phi(v) = 0 \}$

Accumulation from constrained codes

- Prover sends new claimed codeword \boldsymbol{f}
- Verifier queries f_1, f_2 at random locations
- Constrain f given the query responses from f_1,f_2

Lemma: If $\Delta(f_1, C_{\phi}) > \delta \lor \Delta(f_2, C_{\phi})$

More details: William's talk

$$\delta \implies \Delta(f, C_{\phi}) > \delta$$

w.h.p

Accumulation for linear codes[BCPFW25,BMMS25]

- Accumulation for any linear code with essentially optimal parameters
 - Accumulation verifier does $O(\lambda)$ oracle queries (MT paths after compilation)
 - Not known for SNARKs
 - Linear time prover (for large fields)
 - Up to list-decoding radius
- Straightline extraction without efficient decoding
- Direct accumulation for NP
 - No need to go through PIOPs

Constructions open questions

- Linear time accumulation for small fields (binary even)
 - Easier than the related SNARK question
- Linear time accumulation from lattices
 - Smaller acc verifier than hash-based schemes
- Accumulation without random oracles
 - Would yield PCD and SNARK in the standard model
 - Minimal assumptions needed?
- Smaller accumulator size
 - acc. w needs to be forwarded as part of the PCD
 - For all post-quantum constructions $|acc| = \Theta(|F|)$. High communication
 - Can we do better?

Recursive proofs are powerful but can be built from simple assumptions*

* with security jumps

Thank you

Citations (general)

- **Space Efficiency**
- [CT10] Proof-Carrying Data and Hearsay Arguments from Signature Cards
- Carrying Data
- lacksquare
- [KP22] Algebraic Reductions of Knowledge
- [DGKV22] Rate-1 non-interactive arguments for batch-NP and applications
- [PP23] Incrementally Verifiable Computation via Rate-1 Batch Arguments

[Val08] Incrementally Verifiable Computation or Proofs of Knowledge Imply Time/

[BCCT13] Recursive Composition and Bootstrapping for SNARKs and Proof-

[COS20] Fractal: Post-Quantum and Transparent Recursive Proofs from Holography

Citations (applications)

- [CTV13] Enforcing Language Semantics Using Proof-Carrying Data
- [CTV15] Cluster Computing in Zero Knowledge
- [NT16] PhotoProof: Cryptographic Image Authentication for Any Set of Permissible Transformations
- [BCCGMW18] Zexe: Enabling Decentralized Private Computation
- [BCG20] Breaking the $O(\sqrt{n})$ -Bit Barrier: Byzantine Agreement with Polylog Bits Per Party
- [KB20] Proof of Necessary Work: Succinct State Verification with Fairness Guarantee
- [BMRS20] Coda: Decentralized Cryptocurrency at Scale
- [BBBF20] Verifiable Delay Functions
- [CCDW20] Reducing Participation Costs via Incremental Verification for Ledger Systems • [KB20] Proof of Necessary Work: Succinct State Verification with Fairness Guarantees

Citations (security)

- [CGH98] The Random Oracle Methodology Revisited
- [Bar01] How to go beyond the black-box simulation barrier
- [GK03] On the (In)security of the Fiat-Shamir Paradigm
- [CCS22] On succinct non-interactive arguments in relativized worlds
- [Zhandry22] Augmented Random Oracles
- [CCGOS23] Proof-Carrying Data From Arithmetized Random Oracles
- [CGSY23] Security Bounds for Proof-Carrying Data from Straightline Extractors
- [BCG24] Relativized Succinct Arguments in the ROM Do Not Exist
- [RT24] Straight-Line Knowledge Extraction for Multi-Round Protocols
- [KRS25] How to Prove False Statements: Practical Attacks on Fiat-Shamir
- [AY25] Towards a White-Box Secure Fiat-Shamir Transformation

Citations (accumulation)

- [BGH19] Halo: Recursive Proof Composition without a Trusted Setup
- [BCMS20] Recursive Proof Composition from Accumulation Schemes
- [BCLMS21] Proof-Carrying Data Without Succinct Arguments
- [KST22] Nova: Recursive Zero-Knowledge Arguments from Folding Schemes
- [Moh22] Sangria
- [KS22] SuperNova
- [KotSet23] HyperNova
- [BC23] Protostar: Generic Efficient Accumulation/Folding for Special-Sound Protocols
- [EatGab23] Protogalaxy
- [KotSet23b] Cyclefold
- [ZheGaoGuoXia23] KiloNova
- [NBS23] Revisiting the Nova Proof System on a Cycle of Curves
- [BF24] Mira
- [DimGarManVla24] Mova
- [Bünz24] Ova
- [KotSet24] NeutronNova
- [BC24] Proofs for deep thought
- [BC24b] LatticeFold: A Lattice-based Folding Scheme and its Applications to Succinct Proof Systems
- [AruSet24] Nebula
- [NDCTB24] Mangrove: A Scalable Framework for Folding-Based SNARKs
- [LS24] On the Security of Nova Recursive Proof System
- [GKNP24] Lova
- [BMNW24] Accumulation without homomorphism
- [BC25] Latticefold+: Faster, Simpler, Shorter Lattice-Based Folding for Succinct Proof Systems
- [BCFW25] Linear-Time Accumulation Schemes
- [KZHB25] KZH-Fold: Accountable Voting from Sublinear Accumulation
- [ZSCZ25] MicroNova
- [SN25] Neo