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• Two SNARK systems , 


• Sometimes they are the same


•  proves that


• it knows a proof  for a statement 


• In a language indexed by a verification key 


• Such that  accepts , for statement  and verification key 


• Knowledge soundness of  implies we can extract 

(𝒫, 𝒱) (𝒫′ , 𝒱′ )

𝒫′ 

π x
𝗏𝗄

𝒱 π x 𝗏𝗄

(𝒫′ , 𝒱′ ) π

Recursive Proofs [Val08]
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“Recursive circuit”



Motivation 1:
• Goal: Prove sequential computations

F F F Fx0 x1 x2 x3 x4

w1 w2 w3 w4

• "  for some "


• Not memory-efficient


• Super-linear prover is super-linear in 


• Additional steps requires reproving everything

xt = Ft(x0; w1, …, wt) w1, …, wt

t ⋅ |F |
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Naive solution: Monolithic proof

Ft(x0; w0, …, wt−1) = xt 𝑃 𝜋



Motivation 2
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Naive solution: Each party creates a proof, attach all proofs. 
• Linear in number of steps

• Each party wants to verify the inputs. Some wants to check the entire computation 

• Goal: Handing off computation



Incrementally verifiable computation [Val08]

• Completeness: Given valid proof  for ,  generates a valid proof  for 


• Knowledge soundness: Given valid proof  for , extract witnesses  such that 



• Efficiency: Proof size and prover/verifier runtime should be independent of 

πi−1 xi−1 ℙ πi xi := F(xi−1, wi)

πt xt w1, …, wt
xt = Ft(x0; w1, …, wt)

t

ℙ ℙ
x1

π1

x2

π2

⋯

⋯

xt−1

πt−1

ℙ
xt

πt

𝕍 0/1

x0

⊥

w1 w2 wt
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IVC for P can be build from batch arguments[KPY19,DGKV22, PP23] (we will focus on NP)



Proof Carrying Data (PCD) [CT10,BCCT13]

ℙ

ℙ

x1

π1
x2

π2

⋯

⋯

ℙ
xt

πt

𝕍 0/1

x0

⊥

w1

w2 wt
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⊥

x′ 0 x′ 1

π′ 1
Generalization of IVC to arbitrary DAGs


Needs upper bound on arity



𝖲𝖭𝖠𝖱𝖪 . 𝖯

 R

IVC from recursive composition of SNARKs 
[BCCT13, COS20]
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xt

𝜋𝑡

xt+1

𝜋𝑡+1

F

𝖵

𝖨𝖵𝖢 . ℙF

Completeness: 
Follows from SNARK completeness 
Soundness: 
Recursively extract transcript using SNARK 
knowledge soundness [BCCT13, COS20] 
Multiple issues (we’ll discuss in a minute) 
Efficiency: 

  size of a SNARK proof for …|π | = 𝑅

𝖨𝖵𝖢 . 𝕍F

𝖵
x1, xTπT 0/1



𝖲𝖭𝖠𝖱𝖪 . 𝖯

 R

IVC from recursive composition of SNARKs 
[BCCT13, COS20]
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xt

𝜋𝑡

xt+1

𝜋𝑡+1

F

𝖵

𝖨𝖵𝖢 . ℙF

Completeness: 
Follows from SNARK completeness 
Soundness: 
Recursively extract transcript using SNARK 
knowledge soundness [BCCT13, COS20] 
Multiple issues (we’ll discuss in a minute) 
Efficiency: 

  size of a SNARK proof for …|π | = 𝑅

𝖨𝖵𝖢 . 𝕍F

𝖵
x1, xTπT 0/1Proving a statement about 

the SNARK verifier 
 

Sublinear verification 
necessary to bound 

⇓

R



Application 3: Property preserving SNARKs
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• Fast sequential Prover

• Non parallel

• Large memory

• Large CRS

• “Large” verifier

• Goal: Improving SNARK prover properties

SNARK A SNARK A’

• Fast parallel Prover

• Constant memory

• Constant CRS

• Constant size verifier

Solution: Break up function F into T uniform steps F’ of size .  

• Build binary PCD tree of depth  for predicate F’. 
• T parallelism, memory, CRS and Verifier for F’ + 

|F |
T

log(T)
𝖢𝗂𝗋𝖼𝗎𝗂𝗍(𝖵𝖠)



Application 4: SNARK composition
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Solution: Use SNARK B to prove correctness of SNARK A 
Prover runtime:  on  +  on  
Verifier: , Proof size:  

𝖯A |F | 𝖯B 𝖢𝗂𝗋𝖼𝗎𝗂𝗍(𝖵A)
𝖵B πB

• Fast Prover

• “Slow” Verifier

• “Large” Proofs

• Goal: Combining SNARKs with different tradeoffs

SNARK A SNARK B

• Slow Prover

• Fast Verifier

• Small Proofs

• Zero-Knowledge

+ = SNARK C

• Fast Prover

• Fast Verifier

• Small Proofs

• Zero-Knowledge



Many more applications
Image provenance

[NT16]

• Byzantine agreement [BCG20]

• ZK cluster computing [CTV15]

• Enforcing language semantics across trust boundaries [CTV13]

• Private smart contracts[BCCGMW18]

• Signature aggregation [KZHB25]

• …

Verifiable Delay functions

[BBBF20]

Succinct Blockchains

[BMRS20,KB20,CCDW20]



Real world deployments (AI-SC’s darling)
• Recursive proofs are widely deployed!


• Vital to understand their security and improve constructions!



Security analysis and problems



𝖲𝖭𝖠𝖱𝖪 . 𝖯

 R

Security issues: Arithmetizing V

xt

𝜋𝑡

xt+1

𝜋𝑡+1

F

𝖵

𝖨𝖵𝖢 . ℙF

•  contains   V can’t contain oracles
• We need to implement V as a circuit

• Security jump:  secure in the RO 
implies that =Fiat-Shamir  is 
secure in the standard (CRS) model.

• Generically not true[CGH98,Bar01,GK03]

• Recent attack on GKR[KRS25]

• Attack relies on evaluating FS-Hash 
inside proof system

• Recursion relies on this ability

R 𝖵 ⟹

(𝖯ρ, 𝖵ρ)
(𝖵, 𝖯) (𝖯ρ, 𝖵ρ)



Security issues: Arithmetizing V
• Attempt 1: Build SNARK in the RO that proves statement about the RO?

• Impossible [BCG24]


• Attempt 2: Extend RO model to enable end-to-end analysis of PCD

• Early attempts required secure hardware [CT10,CCS22]

• Arithmetized Random Oracle Model [CCGOS23] augments the random oracle with 

an additional arithmetization oracle. Heuristically, the RO is replaced with SHA256, 
and the arithmetization with a circuit of SHA256.


• AROM suffices to build PCD

• But FS-attacks are not captured by the AROM (The insecure SNARK is still secure)


• Open problem: Build model that is sufficient to capture attacks but enables end-to-
end PCD construction (candidates [Zha22,AY25])



Security Issues: Extraction

• IVC extractor calls the SNARK extractor using  to extract 


• To extract from an internal SNARK (e.g. for step 2) we need to simulate a prover  
for that SNARK.


• Idea: ’s proofs are generated by invoking the extractor for the outer SNARKs


• Problem: each extractor can invoke each  up to  times


• Thus the runtime of the extractor is  must be constant

(πt, xt) πt−1, xt−1, wt−1

�̃�

�̃�

�̃� 𝗉𝗈𝗅𝗒(λ)

𝗉𝗈𝗅𝗒(λ)depth ⟹ depth

ℙ ℙ
x1

π1

x2

π2

⋯

⋯

xt−1

πt−1

ℙ
xt

πt

=𝕍 𝖵 0/1
x0

⊥

w1 w2 wt

𝖯 𝖯 𝖯



Security Issues: Extraction
• Constant-depth IVC/PCD only and with major security loss :/


• Old solution: Decrease depth [BCCT13]


• Use tree-based IVC


• With  arity and constant depth we can support  IVC steps


• Still high security loss


• Practitioner’s solution:


• Don’t do anything 

• Assume  (Soundness error of IVC is independent of depth)


• No matching attack

λ 𝗉𝗈𝗅𝗒(λ)

ϵ𝖨𝖵𝖢 ≈ ϵ𝖲𝖭𝖠𝖱𝖪



Saving grace: Straightline extraction
• Assume the SNARK has a straight line (deterministic, one-shot) extractor

•  Then we don’t get the exponential blowup (each extractor is called once)

• Union bound:  [CT10,CCGOS23]


• Recently improved to  [CGSY23] 


• Problem 1: Only able to construct straight-line extraction in idealized models

• Heuristic assumption: straightline extraction in idealized model 

•  straightline extractor for real-wold instantiation


• Problem 2: Some SNARKs of interest don’t have straightline extractors

• Example: SNARKs from non efficiently decodable codes. 

• Recent progress [RT24,BCFW25] 


• Straightline extraction (in ideal model) should become the norm for SNARKs

𝖽𝖾𝗉𝗍𝗁 ⋅ ϵ𝖲𝖭𝖠𝖱𝖪

ϵ𝖯𝖢𝖣 ≈ ϵ𝖲𝖭𝖠𝖱𝖪

⟹



Open security problems
• Build IVC/PCD in standard model (see Surya’s talk on Thursday)


• Build a model that captures Fiat-Shamir attacks but enables proving security 
of known SNARK/PCD constructions


• Attacks against high-depth IVC/PCD (even contrived)


• “Straightline extraction” in standard CRS model (or similar condition)


• Proving straightline extraction for more protocols



Efficiency (concerns)



IVC from succinct arguments

P𝚊𝚛𝚐

πi+1

"there exists  with a valid proof  such that "𝗌𝗍i πi 𝗌𝗍i+1 = F(𝗌𝗍i)

ℙ

πi V𝚊𝚛𝚐

𝗌𝗍i 𝗌𝗍i+1F

concrete issues: 
 is slow 
 is large

P𝚊𝚛𝚐
V𝚊𝚛𝚐

 is “recursive overhead”|𝖼𝗂𝗋𝖼𝗎𝗂𝗍(V𝚊𝚛𝚐) |

recursive proof composition: 
 proves  as a circuit P𝚊𝚛𝚐 V𝚊𝚛𝚐



Recursive overhead is a bottleneck
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• Fast sequential Prover

• Non parallel

• Large memory

• Large CRS

• Large verifier

• Goal: Improving SNARK prover properties

SNARK A SNARK A’

• Fast parallel Prover

• Constant memory

• Constant CRS

• Constant size verifier

Solution: Break up function F into T uniform steps F’ of size .  

• Build binary PCD tree of depth  for predicate F’. 
• T parallelism 
• Memory, CRS and Verifier for F’ + 

|F |
T

log(T)

𝖢𝗂𝗋𝖼𝗎𝗂𝗍(𝖵𝖠)

Smaller Circuit 
 

Larger T
⇓

Smaller circuit 
 

Larger T
⇓



SNARK prover is a bottleneck
• PCD prover runs SNARK prover


• SNARK provers have large constants


• Many SNARKs have strong assumptions


• E.g. SNARKs in DLOG groups


• Most efficient SNARKs have large proofs


• Linear-time SNARKs have MB sized proofs


• Leads to large recursive overheads

ℙ
P𝚊𝚛𝚐



Are SNARKs necessary to build IVC/PCD*?

*No for IVC for P [DGKV22, PP23]



Accumulation Schemes



Review: SNARGs
succinct non-interactive arguments

completeness

if  
then 

(x, w) ∈ R
V𝚊𝚛𝚐 → 1

soundness

if  
then w.h.p. 

x ∉ L(R)
V𝚊𝚛𝚐 → 0

P𝚊𝚛𝚐 V𝚊𝚛𝚐

x, w x

 or 0 1

(x, w) ∈? R

in general: knowledge soundness

π

L(R) := {x : ∃w, (x, w) ∈ R}

|V𝚊𝚛𝚐 | ≪ |w |

|π | ≪ |w |



Background: reductions [KP22]

completeness

if  
then 

(x, w) ∈ R
(x′ , w′ ) ∈ R′ 

soundness

if  
then w.h.p. 

x ∉ L(R)
x′ ∉ L(R′ )

P V

x, w x

w′ x′ 

(x, w) ∈? R

(x′ , w′ ) ∈? R′ 

π

in general: knowledge soundness



Accumulation schemes

        (x, w) ∈? R ∧ (x⋆, w⋆) ∈? R⋆

P𝚊𝚌𝚌 V𝚊𝚌𝚌

   x, w, x⋆, w⋆  x, x⋆

w′ ⋆ x′ ⋆

 (x′ ⋆, w′ ⋆) ∈? R⋆

π

accumulation scheme for :

reduction from    to 

R
R × R⋆ R⋆

R R⋆

R⋆R

R⋆R

R⋆
more precisely, a split accumulation 
(or folding) scheme [BCLMS21], [KST22]

in general: Rn × Rm
⋆ → R⋆

weaker than an argument for !R

[BGH19,BCMS20,BCLMS21,KST22]



IVC from accumulation [BCLMS20]

P𝙽𝙰𝚁𝙺

, xi x⋆,i V𝚊𝚌𝚌

𝗌𝗍i 𝗌𝗍i+1F

P𝚊𝚌𝚌 wi, w⋆,i w⋆,i

x⋆,i

xi+1, wi+1
𝕍

(xT, wT) ∈ R
π𝚊𝚌𝚌 (x⋆,T, w⋆,T) ∈ R⋆

P𝙽𝙰𝚁𝙺

; 




,  

(xi+1 wi+1) ∈ R
⇕

V𝚊𝚌𝚌(xi x⋆,i, π) = x⋆,i+1 ∧ F(𝗌𝗍𝗂) = 𝗌𝗍𝗂+𝟣

outputs (x, w) ∈ R

V𝙽𝙰𝚁𝙺 checks (x, w) ∈ R

ℙ



IVC from accumulation [BCLMS20]

P𝙽𝙰𝚁𝙺

, xi x⋆,i V𝚊𝚌𝚌

𝗌𝗍i 𝗌𝗍i+1F

P𝚊𝚌𝚌 wi, w⋆,i w⋆,i

x⋆,i

xi+1, wi+1
𝕍

(xT, wT) ∈ R
π𝚊𝚌𝚌 (x⋆,T, w⋆,T) ∈ R⋆

P𝙽𝙰𝚁𝙺

; 




,  

(xi+1 wi+1) ∈ R
⇕

V𝚊𝚌𝚌(xi x⋆,i, π) = x⋆,i+1 ∧ F(𝗌𝗍𝗂) = 𝗌𝗍𝗂+𝟣

outputs (x, w) ∈ R

V𝙽𝙰𝚁𝙺 checks (x, w) ∈ R

ℙ
IVC proof 
contains 
w, w⋆

Smaller circuit 
 

Larger T
⇓



 can be faster than 


 can be smaller than 

P𝚊𝚌𝚌 + P𝙽𝙰𝚁𝙺 P𝚊𝚛𝚐

V𝚊𝚌𝚌 V𝚊𝚛𝚐

Why accumulate?

𝗌𝗍i

σi+1

𝗌𝗍i+1

σi

ℙ
P𝚊𝚛𝚐

F

V𝚊𝚛𝚐

IVC from succinct arguments

𝗌𝗍i

σi+1

𝗌𝗍i+1

σi

ℙ
P𝙽𝙰𝚁𝙺

F

V𝚊𝚌𝚌

IVC from accumulation

P𝚊𝚌𝚌wi wi+1

π



Accumulation and SNARKs
• Accumulation is simpler than SNARKs


• We can construct it in settings and with efficiencies  that don’t admit SNARKs


• Accumulation suffices to build IVC/PCD


• IVC/PCD enables building SNARKs


• Set F to be a step function of a VM


• How can this be?


• All known “interesting” accumulation schemes require random oracles


• To build IVC/PCD we need accumulation in standard models (heuristic jump)



Accumulation is “easy” [BCLMS21, KST22] 

Check: a, b, c s.t.  for all ai + bi = ci ∈ 𝔽 i ∈ [n]

Commit can be built from DLOG 
𝖢𝗈𝗆𝗆𝗂𝗍(w) + 𝖢𝗈𝗆𝗆𝗂𝗍(w′ ) = 𝖢𝗈𝗆𝗆𝗂𝗍(w + w′ )

𝖯𝖺𝖼𝖼 V𝖺𝖼𝖼
α ← 𝔽

P𝙽𝙰𝚁𝙺
x = 𝖢𝗈𝗆𝗆𝗂𝗍(a, b, c)
w = (a, b, c)

 (x, w) ∈ R :
{x = 𝖢𝗈𝗆𝗆𝗂𝗍(a, b, c) ∧ a + b − c = 0}

(x, w) ∈ R, (x, w′ ) ∈ R ⇒ (x, w)+Y ⋅ (x′ , w′ ) ∈ R

(x′ ′ , w′ ′ ) ← (x, w)+α ⋅ (x′ , w′ )



Accumulation is “easy” [BCLMS21, KST22] 

Check: a, b, c s.t.  for all ai + bi = ci ∈ 𝔽 i ∈ [n]

Commit can be built from DLOG 
𝖢𝗈𝗆𝗆𝗂𝗍(w) + 𝖢𝗈𝗆𝗆𝗂𝗍(w′ ) = 𝖢𝗈𝗆𝗆𝗂𝗍(w + w′ )

𝖯𝖺𝖼𝖼 V𝖺𝖼𝖼
α ← 𝔽

P𝙽𝙰𝚁𝙺
x = 𝖢𝗈𝗆𝗆𝗂𝗍(a, b, c)
w = (a, b, c)

 (x, w) ∈ R :
{x = 𝖢𝗈𝗆𝗆𝗂𝗍(a, b, c) ∧ a + b − c = 0}

(x, w) ∈ R, (x, w′ ) ∈ R ⇒ (x, w)+Y ⋅ (x′ , w′ ) ∈ R

(x′ ′ , w′ ′ ) ← (x, w)+α ⋅ (x′ , w′ )

Non-interactivity 
through Fiat-Shamir



Accumulation is “easy” [BCLMS21, KST22] 

Check: a, b, c s.t.  for all ai ⋅ bi = ci ∈ 𝔽 i ∈ [n]

but
(x, w) ∈ R, (x, w′ ) ∈ R ⇏ (x′ ′ , w′ ′ ) ∈ R

(a+Y ⋅ a′ ) ∘ (b+Y ⋅ b′ ) = c+Y2 ⋅ c′ +Y ⋅ 𝖼𝗍

𝖯𝖺𝖼𝖼 V𝖺𝖼𝖼

x′ ′ ← x+α ⋅ x′ | |𝖼𝗍
w′ ′ ← w+α ⋅ w′ 

x′ ′ , w′ ′ ∈ R⋆

𝛼

P𝙽𝙰𝚁𝙺
x = 𝖢𝗈𝗆𝗆𝗂𝗍(a, b, c)
w = (a, b, c)

 (x, w) ∈ R :
{x = 𝖢𝗈𝗆𝗆𝗂𝗍(a, b, c) ∧ a ∘ b − c = 0}

𝖼𝗍

 (x, w) ∈ R⋆ :
{x = 𝖢𝗈𝗆𝗆𝗂𝗍(a, b, c, 𝖼𝗍) ∧ a ∘ b − c = 𝖼𝗍}



Accumulation for multiplication
• Reduction from 


• Reduction from  is very similar! 


• Multiplication and addition suffice to build accumulation for NP

• Only cryptography needed is a homomorphic vector commitment + Fiat-Shamir

• No PCPs

• No polynomial commitments

• No trusted setup 
• Single commitment 

• Acc verifier does 2 group scalar multiplications (check homomorphism) 

• Needs to check elliptic curve operations

• In practice: Use cycles of elliptic curves for efficiency (mismatched fields)

R × R → R⋆

R × R⋆ → R⋆



A universe of accumulation
• Lowering recursion overhead [KotSetSzi22,KotSet23,BünChe23,DimGarManVla24,Bün24]


• Down to only one scalar multiplication 

• less than 10k gates vs. 100k+ gates for SNARKs


• Multi-instance proving (for PCD)[KotSet23,EagGab23]

• Supporting high degree gates [Moh22,KotSet23,BC23]

• Faster prover[KotSet24]

• Handling cycles of elliptic curves[KotSet23b]

• Zero-Knowlege support [ZheGaoGuoXia23]

• Memory operations [BC24,AruSet24]

• Outsourcing verification [ZSCZ25]

• Smaller accumulators [BGH19,BF24,KZHB25]

• Non-uniformity[KS22,BC23,KZHB25]

• Parallel SNARK constructions [NDTCB24]

• Tighter security analysis [NBS23,LS24]

• …



Post-quantum accumulation

• Accumulation verifier needs to check  


• Accumulation scheme require homomorphic vector commitment


• Pedersen commitment is built from the DLOG assumption


• Not post-quantum


• Goal: Get rid of the homomorphism

w′ 

?= w + α ⋅ z



Lattice-based accumulation
• SIS-commitment


• Only limited homomorphism


• Idea: Resplit witness and combine low-norm components [BC24]


• Multiple improvements [GKNP24,BC25,SN25] (See Binyi’s talk) 


• Larger recursion overhead than EC-based, but possibly very fast prover

Matrix A

W
itness

CM=

Witness needs to be low-norm



Can we build accumulation in the RO?
• No additional assumptions


• Trivial answer: Yes, SNARKs imply accumlation


• Can we do better?



Homomorphic accumulation
Check: a, b, c s.t.  for all ai + bi = ci ∈ 𝔽 i ∈ [n]

Commit can be built from DLOG 
𝖢𝗈𝗆𝗆𝗂𝗍(w) + 𝖢𝗈𝗆𝗆𝗂𝗍(w′ ) = 𝖢𝗈𝗆𝗆𝗂𝗍(w + w′ )

𝖯𝖺𝖼𝖼 V𝖺𝖼𝖼
α ← 𝔽

P𝙽𝙰𝚁𝙺
x = 𝖢𝗈𝗆𝗆𝗂𝗍(a, b, c)
w = (a, b, c)

 (x, w) ∈ R :
{x = 𝖢𝗈𝗆𝗆𝗂𝗍(a, b, c) ∧ a + b − c = 0}

(x, w) ∈ R, (x, w′ ) ∈ R ⇒ (x, w)+Y ⋅ (x′ , w′ ) ∈ R

(x′ ′ , w′ ′ ) ← (x, w)+α ⋅ (x′ , w′ )



Non-Homomorphic accumulation
Check: a, b, c s.t.  for all ai + bi = ci ∈ 𝔽 i ∈ [n]

𝖯𝖺𝖼𝖼 V𝖺𝖼𝖼
α ← 𝔽

P𝙽𝙰𝚁𝙺
x = 𝖬𝖳(a, b, c)
w = (a, b, c)

 (x, w) ∈ R :
{x = 𝖬𝖳(a, b, c) ∧ a + b − c = 0}

(x, w) ∈ R, (x, w′ ) ∈ R ⇒ (x, w)+Y ⋅ (x′ , w′ ) ∈ R

(x′ ′ , w′ ′ ) ← (x, w)+α ⋅ (x′ , w′ )  can’t check this 
operation anymore
V𝚊𝚌𝚌



Checking the homomorphism
w′ w z

Q Sample Q ⊂ [n]



opening proofs

w′ [Q], w[Q], z[Q]
Check opening proofs


For each :
i ∈ Q
w′ [i] ?= w[i] + α ⋅ z[i]

VP

?= + α ⋅
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Checking the homomorphism

• Suppose -fraction of locations are inconsistent


• Then  queries miss w.p. 


•

δ

t (1 − δ)t

t =
λ
δ

⟹ (1 − δ)t ≤ 2−λ

w′ w z?= + α ⋅

Problem: How to detect 
a single inconsistency?
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New tool: linear codes

• Linear map  from "messages" to "codewords"


• Distance: minimum relative Hamming distance between any two codewords


• Decoding: given a noisy codeword, recover the original message

C : 𝔽n → 𝔽ℓ

C

• Unique decoding radius = maximum number of errors allowed


• We want a linear code with large distance/decoding radius, e.g. Reed–
Solomon codes

45
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Attempt 1: Spotchecks [BMNW24]
Check: a, b, c s.t.  for all ai + bi = ci ∈ 𝔽 i ∈ [n]

𝖯𝖺𝖼𝖼 V𝖺𝖼𝖼
α ← 𝔽

P𝙽𝙰𝚁𝙺
x = 𝖬𝖳(C(a, b, c))
w = (a, b, c)

 (x, w) ∈ R :
{x = 𝖬𝖳(C(a, b, c)) ∧ a + b − c = 0}

(x, w) ∈ R, (x, w′ ) ∈ R ⇒ (x, w)+Y ⋅ (x′ , w′ ) ∈ R

(x′ ′ , w′ ′ ) ← (x, w)+α ⋅ (x′ , w′ )
Use linear code C 

Check homomorphism at 
Random spots 



Soundness analysis
w′ w z

a b c
• Decider guarantees: 


• Verifier guarantees:  is -close to 


•  are  are -close to  (by proximity gap for : BCIKS23, RVW13, AHIV17, DP23a)


• 


• "Proof": Encode both sides, they are 3 -close → equal (assuming )

a ∈ C

Δ(a, b + αc) < δ ⟹ b + αc δ C

b c δ C C

⟹ 𝖣𝖾𝖼(a) = 𝖣𝖾𝖼(b) + α ⋅ 𝖣𝖾𝖼(c)

δ 3δ < distance

?= + α ⋅
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• To support  accumulations:


• Spot check parameter 


• unique decoding radius


• Matching attack

d

δ

dδ <

Accumulating multiple times

-far from δ C

2 -far from δ C

3 -far from δ C

codeword



Solution: Use constrained codes [BMNW24,KNS24,Szep24,BCFW25]

Any linear code 


Any "low-degree polynomial" 
constraint 


Constrained code 

C : 𝔽k → 𝔽n

Φ : 𝔽k → 𝔽

CΦ := {C(v) : Φ(v) = 0}P V

Φ1, Φ2

Φ

f1 ∈? CΦ1
∧ f2 ∈? CΦ2

f ∈? CΦ

f

f1, f2



Accumulation from constrained codes

• Prover sends new claimed codeword 


• Verifier queries  at random locations


• Constrain  given the query responses from 


• More details: William’s talk

f

f1, f2

f f1, f2

Lemma: If Δ( f1, Cϕ) > δ ∨ Δ( f2, Cϕ) > δ ⟹
w.h.p

Δ( f, Cϕ) > δ



Accumulation for linear codes[BCPFW25,BMMS25]

• Accumulation for any linear code with essentially optimal parameters


• Accumulation verifier does O( ) oracle queries (MT paths after compilation)


• Not known for SNARKs


• Linear time prover (for large fields)


• Up to list-decoding radius


• Straightline extraction without efficient decoding


• Direct accumulation for NP


• No need to go through PIOPs

λ



Constructions open questions
• Linear time accumulation for small fields (binary even)


• Easier than the related SNARK question


• Linear time accumulation from lattices


• Smaller acc verifier than hash-based schemes


• Accumulation without random oracles


• Would yield PCD and SNARK in the standard model


• Minimal assumptions needed?


• Smaller accumulator size


•  needs to be forwarded as part of the PCD


• For all post-quantum constructions . High communication


• Can we do better?

𝚊𝚌𝚌 . w

|𝚊𝚌𝚌 | = Θ( |F | )



Recursive proofs are powerful but can 
be built from simple assumptions*

* with security jumps



Thank you
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