Cryptography 10 Years Later, Boot Camp Foundations

Iftach Haitner

Stellar Development Foundation & Tel Aviv University

Talk roadmap

- Minicrypt
- Computational correlation/Public-key world/Cryptomania

Computational analogues of entropy

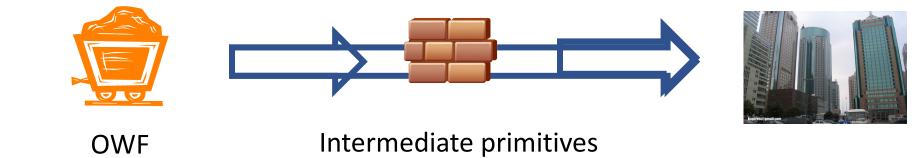
Minicrypt

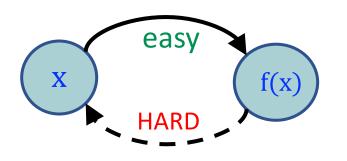
One-way functions (OWFs)

- Easy to compute
- Hard to invert (even on the average)
- Poly-time f: $\{0,1\}^n \mapsto \{0,1\}^n$ is one-way if $\forall PPT A$:

```
\Pr_{y \leftarrow f(U_n)}[A(y) \in f^{-1}(y))] \le \operatorname{negl}(n)
```

- Unstructured
- Implied by most crypto
- Much of crypto can be based on the existence of OWFs



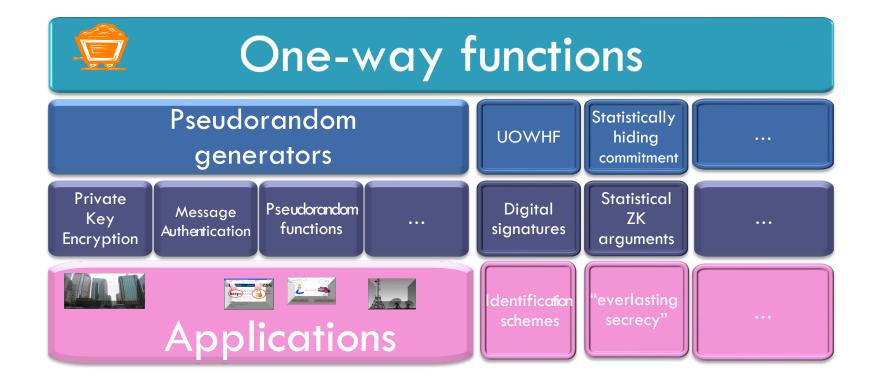


Pseudorandom generators [BM, Yao 82]

Poly-time function $G: \{0,1\}^s \mapsto \{0,1\}^m$

- Stretching (m > s)
- Output is computationally indistinguishable from uniform
 - No PPT distinguishes $G(U_S)$ from U_m (with more than negl(m) advantage)

OWF-based cryptography



$OWF \rightarrow PRG$

[BMY 82], [GKL 90], [HILL 91], [Hol 06], [HHR 06], [HRV 10], [VZ 11], [YLW 15], [MZ 22], [MP 22]

Key concepts:

- Leftover hash lemma
- Randomness extractors
- Pseudoentropy
- Next-block pseudoentropy
- KL hardness

Pseudoentropy generator [HILL 91] n+|h| bits of entropy |h| + 1 bits of pseudeeka with the pseudeek $g(x,h) \coloneqq$ f(x) h $f: \{0,1\}^n \mapsto \{0,1\}^n$ is OWF Goldreich-Levin h is $n \times n$ Boolean matrix, $h(x) \coloneqq h \times x \mod h$ hardcore bit The (Shannon) entropy of X is $d(x) \coloneqq \log|f^{1}(f(x))|$ $H(X) \coloneqq E_{x \leftarrow X} [\log(1/\Pr[X = x])]$ Might be inefficient $h,h(x)_{1..d(x)}$ is (almost) injective "Unpredictability of X" C What is the entropy of g'(x,h)? (over uniform inputs) X has pseudoentropy k if $\exists Y$ **Claim:** g' is one way 1. $X \approx_{C} Y$ **Pf:** Leftover Hash Lemma 2. H(Y) = kY is g(x,h) with $h(x)_{d(x)+1}$ replaced with a uniform bit

Pseudoentropy generator [HILL 91], cont.

 $g((x,h);) = f(f(), h,h(x))_{\mathcal{H}(k)+1}$

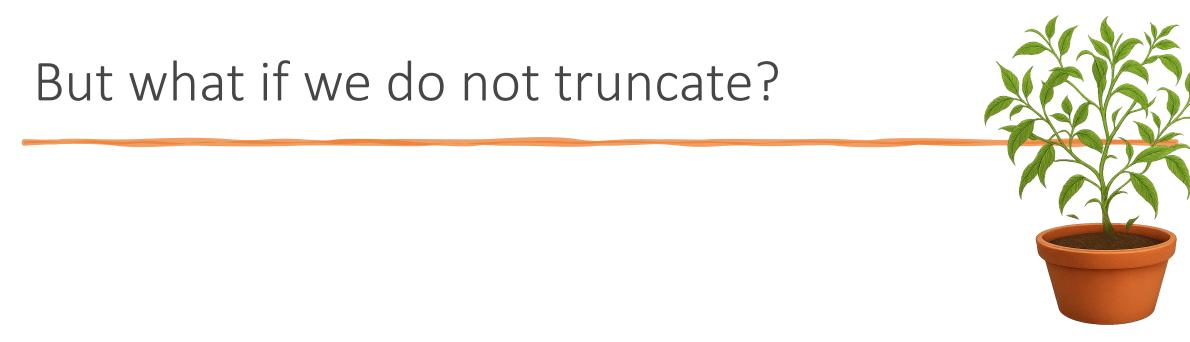
Pseudoentropy gap = (output) pseudoentropy – (output) entropy = 1/n

Disadvantages:

- 1. Pseudoentropy gap is small
- 2. Output pseudoentropy < input entropy
- 3. Value of output pseudoentropy is **unknown**

Yet, using information theoretic tools (repetitions and extractions) implies PRG, but rather complicated and inefficient

- # of f-calls: n^8
- Seed length: n^8



Nonsense: g is invertible and therefore has no pseudoentropy gap Well yes, but g does have pseudoentropy gap "in the eyes of an online observer"

Next-block pseudoentropy [HRV '10]

- $H(X) = k \iff \sum_{i} H(X_i | X_{< i}) = k$
 - $X_{<i} \coloneqq X_1, \dots, X_{i-1}$

$$H(A | B) \coloneqq E_{b \leftarrow B} \left[A \Big|_{B=b} \right]$$

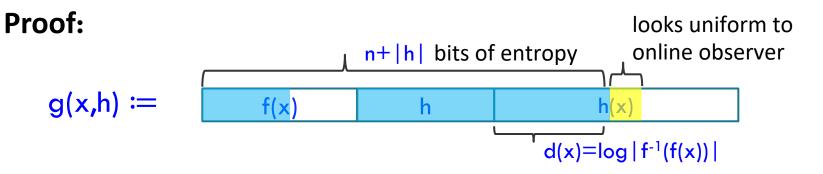
• X has "next-block entropy" k in the eyes of **online** (unbounded) observer

 $X = (X_1, ..., X_n)$ has next-block pseudoentropy k if \exists (jointly dis.) $Y = (Y_1, ..., Y_n)$ s.t:

- $(X_{\langle i}, X_i) \approx_c (X_{\langle i}, Y_i)$
- $\sum_{i} H(\mathbf{Y}_{i} | \mathbf{X}_{< i}) \ge k$
- I.e., X_i is somewhat hard to predict given $X_{< i}$
- Quantitative variant of Yao's unpredictability
- Might be larger than pseudoentropy!

Next-block pseudoentropy of g

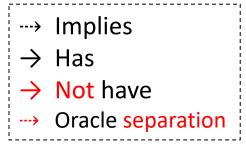
Claim: Output of g has next-block pseudoentropy n + |h|+1



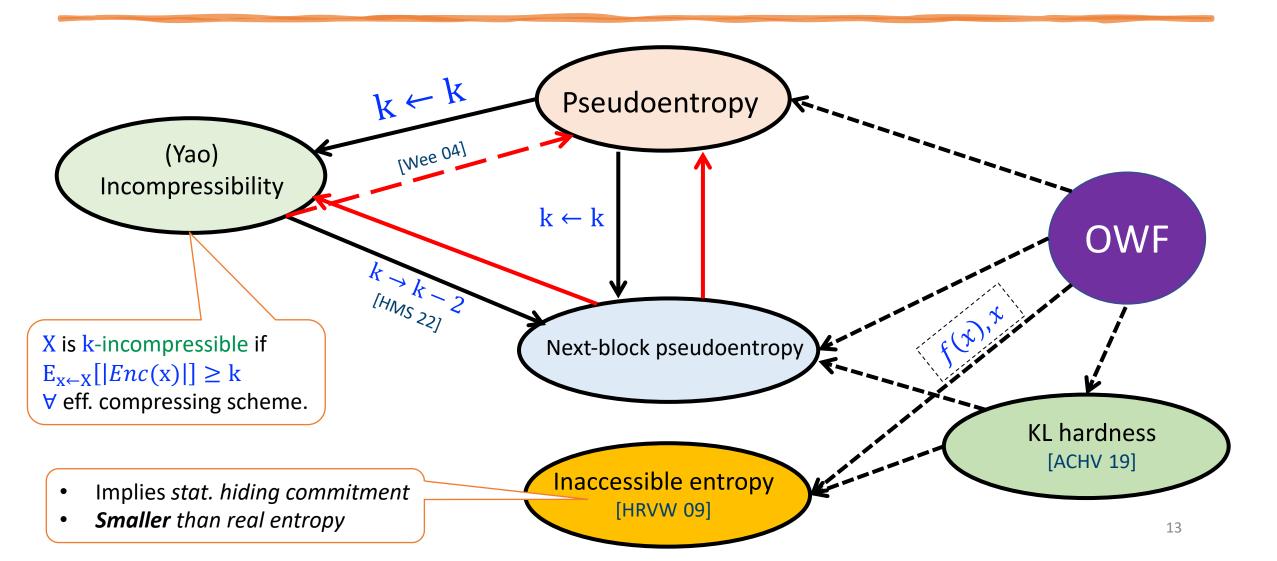
X has NB pseudoentropy k if $\exists Y$ s.t: • $(X_{\langle i}, X_i) \approx_c (X_{\langle i}, Y_i)$ • $\sum_i H(Y_i | X_{\langle i}) \ge k$

Y is set to g(x,h) with $h(x)_{d(x)+1}$ replaced by a uniform bit

- Jointly distributed with g(x,h)
- Leads to significantly more efficient PRG (seed length and # of f calls n^3)
- o [VZ 11]: (f(x),x)
- [MP 22]: Simpler, yet useful, notion of next-block pseudoentropy



Computational analogues of entropy



Efficiency lower bounds

The best OWF-based PRG

- Has seed length n^3
- Makes n^3 calls to f

Can we do better? What does it mean?

Bounds on **black-box** reductions

"Reductions"

- Construction: for any eff. *f* exists eff. G
- Security proof: If G is broken then f is not one-way

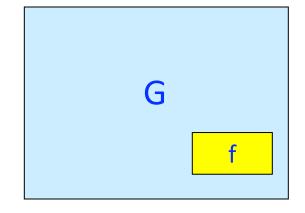
Too general to refute

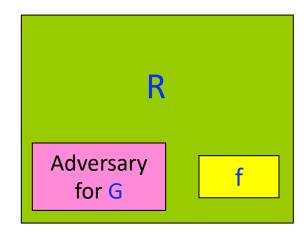
Black-box reductions

- Construction: G makes oracle use of f
- Security proof: Eff. R that makes oracle use of f and the adversary A
- G and R should work for any (even inefficient) f and A

[GT 01]: Length-doubling PRG makes $\Omega(n/\log n)$ f-calls

• Even if *f* is one-way permutation





Random permutations are exp. hard to invert [GT 01]

Thm. Whp over permutation $f: \{0,1\}^n \mapsto \{0,1\}^n$, a $2^{o(n)}$ -query A inverts f wp $2^{-\Omega(n)}$

Pf: Assume A makes no *f*-calls

- How many permutations A inverts w.p. 1?
 - One, since A determines f^{-1}
- How many f's algorithm A inverts w.p $\epsilon \gg 2^{-n}$?
 - A partially determines $f^{-1} \rightarrow$ cannot hold for many f's
- Slightly more complicated argument when A does make *f*-calls

Length-doubling PRG makes $\Omega(\frac{n}{\log n})$ *f*-calls [GT 01]

Let $g: \{0,1\}^n \mapsto \{0,1\}^n$ be a **concatenation** of

- Random permutation $f: \{0,1\}^{\omega(\log n)} \mapsto \{0,1\}^{\omega(\log n)}$
- The identity function $I: \{0,1\}^{n-\omega(\log n)} \mapsto \{0,1\}^{n-\omega(\log n)}$

Claim: g is one-way: whp over g, a poly(n)-query A inverts g wp negl(n).

- Let $G: \{0,1\}^n \mapsto \{0,1\}^{2n}$ be BB PRG that makes $O(\frac{n}{\log n}) f$ -calls
- Let $G': \{0,1\}^{s < 2n} \mapsto \{0,1\}^{2n}$ be variant of G^g that samples the answers of g-calls by **itself** (using randomness given as additional input)

 $g(x_1, x_2) = |f(x_1)|$

Claim: \exists (unbounded) *D* that tells $G'(U_s)$ from U_{2n}

- $\rightarrow D$ tells $G^g(U_n)$ from U_{2n}
- $\rightarrow R^{g,D}$ inverts g
- But $R^{g,D}$ makes poly(n) # of g-calls

 $I(x_2)$

Lower bounds on black-box reductions cont.

- [HS 12]: **Any** PRG makes $\Omega(n/\log n)$ calls
 - Even if *f* is unknown regular
- [CGVZ 18]: Seed length $\Omega(n^3)$ for certain PRG constructions
- Many other lower bounds on the (BB) complexity OWF-based UOWHF, commitments schemes, and more
- Many open questions

Missing lower bound: Weak-OWF amplification

Weak OWF: \forall PPT A

$$\Pr_{y \leftarrow f(U_n)}[A(y) \in f^{-1}(y))] \le 1 - \delta$$

- Can we construct OWF out of f?
- [Yao82]: Yes, $g(x_1, \dots, x_\ell) \coloneqq f(x_1) \dots, f(x_\ell)$ for $\ell = \omega(\log n)/\delta$
- If $f: \{0,1\}^{100} \mapsto \{0,1\}^{100}$ and $\delta = 2^{-10}$, input length of g is about 10^5
- [GILVZ 90, HHR 06]: Input length O(n) for unknown regular f
- [LTW 05]: ℓ-queries is needed for BB reductions
- [BCKR 22]: Seed length ℓ needed for non-adaptive, non-post-processing, BB reductions

Necessity of one-way functions

In "most" cryptographic primitives there is a hidden OWF

- What is the OWF in PRG G: $\{0,1\}^s \mapsto \{0,1\}^m$?
- In commitment schemes, key-agreement, oblivious transfer?
 - In $G_1, G_2: \{0,1\}^m \mapsto \{0,1\}^{m'}$ s.t $G_1(U_m)$ and $G_2(U_m)$ are statistically far but comp. indiguishable?
 - Is it $G(x, b) \coloneqq G_b(x)$?
 - What if G_1 and G_2 have the same support?
 - [IL '89]: $\forall f \exists f'$ such that: f' is not one-way $\rightarrow f$ is distributional invertable
- In coin-flipping protocols?
 - No single-attacking-point
 - Attack changes the object

Sampling random preimage is easy

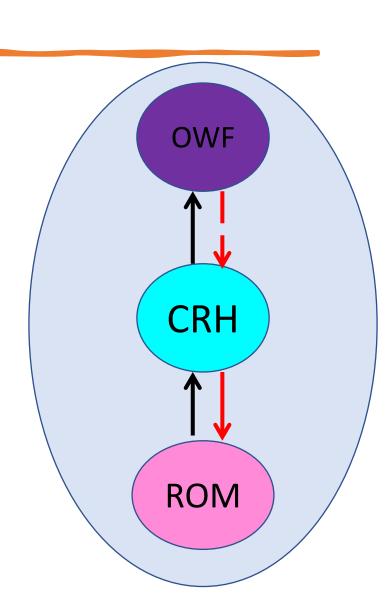
Additional open questions (for OWFs)

- Simpler constructions
- Matching BB lower bound for PRG, UOWHF, ...

Many other gaps...

Minicrypt beyond OWFs

- One-way permutations
 - Injective OWF
- Collision resistant hash
 - Assumption of different nature
 - Implies OWF
 - [Simons 98]: Not implied by OWF in a black-box way
- Random Oracle Model (ROM)
 - Parties have oracle access to a random function, adversaries are computationally unbounded
 - Extremely popular (random oracle heuristic)
 - Is it in minicrypt?

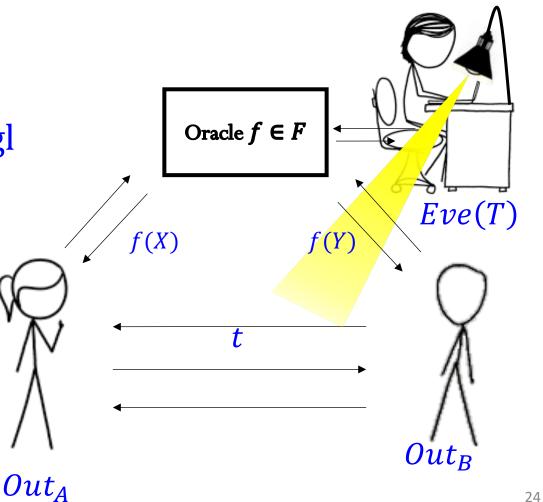


Beyond minicrypt

Key agreement is not in minicrypt

Key agreement

- $\Pr[Out_A = Out_B] \approx 1$
- For any PPT E: $\Pr[E(t) = Out_A] \le \frac{1}{2} + negl$
- Can we construct KA from a minicrypt primitive?
- [IR 89, BM 09]: No KA in the ROM
- → No black-box reduction from OWF/CRH to KA



Key agreement is not in minicrypt?

Merkle-puzzle: ℓ -query ROM KA that takes ℓ^2 queries to break Using specialized hardware for computing SHA-256

- 10¹³-query to SHA-256 takes one second!
- Eve needs 1,000,000 years to break 1-sec Merkle-puzzle

Seems suffice, but Alice needs to send 100 TB

[HMORY 19]: Communication of Merkle's Puzzle is **optimal** for limited family of protocols: two-message non-adaptive KA [HMYZ 23]: For non-adaptive perfect KA Question is still wide open

ANTMINER S9i 14TH/S WITH PSU
★★★★★ 167 reviews 🖋 Write a review
PRODUCT CODE: ANTMINER S9 14TH
AVAILABILITY: In Stock

\$720.00

Characterizing not-minicrypt

- *"Cannot be implemented in the ROM"* is not very useful...
- "Public-key world" is not the right definition either, does not include many important protocols, e.g., key agreement.

In minicrypt [IL 89]: A poly-time f

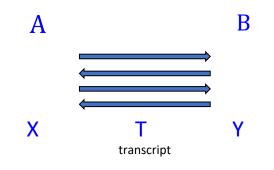
- Is distributionally invertible
- Or can be transformed into OWF

So, either **f** is useless from cryptographic point of view, or it is as strong as OWF.

Goal: win-win dichotomy for not-minicrypt

Two-party protocols w/ single-bit output

- Two-party protocol (A, B)
- Parties interact
- Each party outputs a value
- Can X and Y be correlated given T?
 - I(X;Y|T)> 0; X and Y are dependent given T
- No
- But can they be computationally corrlated?
- What does that mean?



Key-agreement, revisited

- Eff. two-party protocol (A, B)
- Parties interact
- Each party outputs a single bit

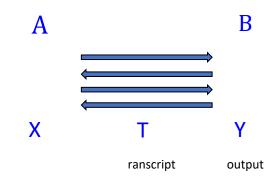
Agreement: X = Y

Since I(X;Y|T)= 0, T determines X and Y

Secrecy: \forall ppt E: $\Pr[E(T) = X] \leq \frac{1}{2} + \text{negl}$

• X and Y, given T, are highly correlated in the eyes of efficient observer

Can we generalize this phenomena?

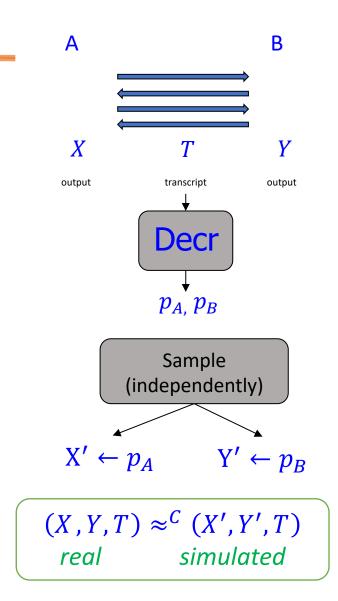


Uncorrelated protocols

Dfn: protocol $\Pi = (A, B)$ is uncorrelated if \exists eff. Decr (decorlator) s.t: 1. $(X, Y, T) \leftarrow \Pi$ 2. $(p_A, p_B) \leftarrow Decr(T)$ 3. $X'_k \leftarrow p_A$ and $Y'_k \leftarrow p_B$ Then $(X, Y, T) \approx^C (X', Y', T)$

Uncorrelated protocols can be simulated

- (cryptographically) useless
- Key agreement is "highly correlated"
- Are there protocols in between?



key-agreement dichotomy

[HNOSS 18]: Every efficient (single-bit) two-party protocol is either uncorrelated or can be transformed into key-agreement

No intermediate concept!



1 Only holds for (any) constant distinguishing gap

😢 Only for single-bit output protocols

Oblivious transfer dichotomy?

Oblivious transfer (OT): *receiver* learns **one** of two strings held by sender, w/o revealing which

- **Complete** functionality for MPC [GMW 87]
- Rich set of theoretic and practical applications
- Can we find dichotomy for OT?
 - Trivial from insider point-of-view: can be simulated using KA
 - Or implies OT
- Barrier: OT is rather **poorly understood** even information theoretically
 - Specifically, **0/1 rule** is proved using the parties' view

Summary

Foundation of cryptography is about

Deeply understanding the fundamental primitives and concepts

Many exciting questions are still open

