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Reinforcement learning for autonomous behavior

Actions

Consequences:

Observations


Rewards

Agent
Environment
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• The success of Reinforcement Learning (RL) relies on 
designing good reward functions 

• Rewards should incentivize desirable behavior 
from our agents and discourage undesirable 
behavior


• However, “reward engineering” is…


• Tedious at best


• Difficult to impossible at worst


• The key question: how do we represent desirable 
behavior?

Reward design for reinforcement learning is hard

A classic example of a reward function leading to 
undesirable behavior
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• Formal methods has been asking (and answering) this question in a number 
of contexts


• To verify computational systems, FM has developed representations for 
desirable properties in the form of formal task specifications (formal specs or 

 for short)φ

How do we represent desirable behavior?

Do 🍳 and 📝 in 
any order

u1 u4

u3

u2

📝 🍳

📝🍳
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• A natural question emerges:


• Can we use formal specifications as objectives in RL?


• Yes! (Lots of prior work)


• The more salient question: When should we use formal specifications as 
objectives in RL?

Can we use formal specifications in RL?
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Pros and Cons of using  in RLφ
Pros Cons

- Difficult to optimize and 
provides sparse feedback


- Solution space for specs is 
non-continuous and difficult 

to search


- Difficult to construct by hand

★ Precise notion of satisfaction


★ Provides compositionality (can 
break down and build up 

separate specs)


★Easy to capture non-Markovian 
semantics e.g. temporally 

ordered tasks
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• In correctness-critical settings, we want to learn policies that certainly 
achieve the task at hand


• However, we may have optimality conditions alongside our task


• Example: A patrolling quadruped

Using  in RL: Differentiating “correct” and “optimal”φ

A

B
C

Correctness: Patrol 
the three regions 

consistently!


Optimality: Navigate 
the terrain safely 
(avoid collisions!) 
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• It’s difficult to express both the correctness condition and the optimality 
condition in a single expression.


• However, the precision and Boolean satisfaction of formal specifications 
allows us to define “correct” behavior


• And the expressivity of Markovian reward functions allow us to define 
“optimality” within correct behaviors.


•  Combining the two allows us to ask: which “correct” policy is the most 
“optimal”?

Defining “Correct and Optimal” using  and rφ
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Demonstrating Example: Correctness and Optimality

Task : Patrol red, green, and yellow, all while avoiding blue.


Optimality condition : +1 for each visit to a purple circle.


φ

r

“FlatWorld”

I must accomplish my task. Amongst all ways of 
accomplishing my task, choose the optimal one.
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How do we specify  and  in our setting? φ r
Task specification  φ Optimality Condition  r

Use the standard definition of MDP 
reward:





At each transition, receive a scalar 
reward.

r(s, a, s′￼) = {+1 if s' in purple
0 otherwise

Buchi Automata (Linear Temporal Logic)

Satisfaction condition: visit accepting 
states (green) infinitely often.
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Approach Outline

1. How do I combine  with r in a form that is readily 
optimized by (deep) RL?


2. Does the objective from (1) work in practice? If not, what 
can we do?


φ
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1. Compile  down to a proxy reward function that, when optimized, 
closely approximates satisfaction of the original property.

φ

LTL-constrained Policy Optimization: Step-by-Step
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get a reward every time I visit the accepting state!

rLTL

• There is no direct way to enforce satisfaction of LTL in RL due to the infinite 
acceptance condition.


• Instead, we use a proxy reward:

Step 1: Create a proxy reward for φ

A policy that maximizes  will be approximately optimal w.r.t 
the original LTL satisfaction condition.  

rφ
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1. Compile  down to a proxy reward function that, when optimized, closely 
approximates satisfaction of the original property. ✅


2. Add the -proxy reward and the optimality reward (MDP reward) 
together, and multiply the -proxy reward by a Lagrange multiplier : 




φ

φ
φ λ

rDUAL(s, b, a, s′￼, b′￼) = rMDP(s, a, s′￼) + λrLTL(b′￼)

LTL-constrained Policy Optimization: Step-by-Step

For large enough , the policy that optimizes this reward will 
satisfy  with maximum probability AND achieve optimal 

reward.

λ
φ
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1. Compile  down to a proxy reward function that, when optimized, closely 
approximates satisfaction of the original property. ✅


2. Add the -proxy reward and the optimality reward (MDP reward) together, 
and multiply the -proxy reward by a Lagrange multiplier : ✅





3.  Learn a policy that optimizes the combined reward above. 

φ

φ
φ λ

rDUAL(s, b, a, s′￼, b′￼) = rMDP(s, a, s′￼) + λrLTL(b′￼)

LTL-constrained Policy Optimization: Step-by-Step

We can just use our favorite RL algorithm for this!
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1. Compile  down to a proxy reward function that, when optimized, closely 
approximates satisfaction of the original property. ✅


2. Add the -proxy reward and the optimality reward (MDP reward) together, 
and multiply the -proxy reward by a Lagrange multiplier : ✅





3.  Learn a policy that optimizes the combined reward above. ✅


4.  Profit?

φ

φ
φ λ

rDUAL(s, b, a, s′￼, b′￼) = rMDP(s, a, s′￼) + λrLTL(b′￼)

LTL-constrained Policy Optimization: Step-by-Step
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Approach Outline
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Getting LTL-Constrained Deep RL to work in practice

Task : Patrol red, green, and yellow, all while avoiding 
blue.


Optimality condition : +1 for each visit to a purple circle.





Let’s train a policy on this reward and see 
what happens in this example.

φ

r

rDUAL(s, b, a, s′￼, b′￼) = rMDP(s, a, s′￼) + λrLTL(b′￼)
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Getting LTL-Constrained Deep RL to work in practice

 Why does this happen?


 is sparse.


if  is dense, a policy can get 
‘distracted’ during learning, and ignore . 

rLTL

rMDP
rLTL
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Addressing the sparsity issue of reward proxies
Can we shape  to make it more dense?rLTL
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Addressing the sparsity issue of reward proxies
Key idea: every visit to an accepting state must traverse an 

“accepting cycle” within our BA.

An accepting trajectory for our example.
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Addressing the sparsity issue of reward proxies
So, why not give a reward every time we progress along an 

accepting cycle?

Reward becomes denser!

+reward

+reward

+reward

+reward
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Reward Shaping with Cycle Experience Replay (CyclER)

• Counterfactually reason over all possible accepting cycles at the 
end of each trajectory to find the accepting cycle that provides 
the most dense reward


• Retroactively update the rewards from this trajectory based on 
the most dense accepting cycle


• Notably: we can incorporate Quantitative Semantics (QS) into 
CyclER and densify reward even further!
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CyclER: Example

t=0

t=1

t=3

t=0 t=1

t=3

t=2

t=2
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CyclER: Experimental Evaluation

• Evaluated in environments with both discrete and continuous state/action 
spaces


• Tasks: Navigation tasks of varying complexity


• Baselines: Existing reward shaping methods for LTL-guided RL

Example MuJoCo Safety-Gymnasium Environments
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CyclER: Experimental Evaluation

CyclER succeeds where other baselines cannot accomplish the LTL task!


Even a baseline (blue) that completely ignores MDP reward cannot 
accomplish the LTL task, which means that sparsity is an issue even in 

the absence of .rMDP
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Pros and Cons of using  in RLφ
Pros Cons

- Difficult to optimize and 
provides sparse feedback ✅ 


- Solution space for specs is 
non-continuous and difficult 

to search 

- Difficult to construct by hand

★Precise notion of satisfaction ✅


★ Provides compositionality 
(can break down and build up 

separate specs) 

★Easy to capture non-Markovian 
semantics e.g. temporally 

ordered tasks
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The “Group Project” Problem in Multi-Agent RL
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Does all of the work

Receives the same reward

Incentivized to do nothing

Team begins next episode

When a team of agents share reward in a cooperative setting, issues may arise:

Learning Symbolic Task Decompositions for Multi-Agent 
Teams. Shah, Lauffer, Chen, Pitta, Seshia. AAMAS, 2025.




Using  in MARL can resolve credit assignment issuesφ
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Team begins next episode

By representing the task symbolically, we can decompose it into individual sub-tasks.

1 8

4

2

3

7

5

6
B

C
A

B
A

B

C

C

A

C

B

A

Incentivized to do something useful!

Receive separate rewards for 
accomplishing their own tasks 

We can verify that a decomposition is valid: 
completing each sub-task will complete the 

overall task.

1 2

1 2

1 2

Decompose the task and assign each agent 
their own sub-task

A

C

B

Learning Symbolic Task Decompositions for Multi-Agent 
Teams. Shah, Lauffer, Chen, Pitta, Seshia. AAMAS, 2025.




Problem: many possible valid decompositions exist
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1 8
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A

C

B
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1 2

1 2

1 2

A

B

C

1 2

1 2

1 2

A

C

1 2

1 2

1 2
A

B

C

B

How do we know which 
decomposition to choose?

Learning Symbolic Task Decompositions for Multi-Agent 
Teams. Shah, Lauffer, Chen, Pitta, Seshia. AAMAS, 2025.




Summary of our problem
• Decomposing symbolic task representations enables assigning sub-tasks to 

individual agents with the guarantee that completing all sub-tasks will 
complete the overall task


• This allows for learning more efficient strategies for completing cooperative 
tasks.


• The problem: many valid decompositions may exist. We don’t know which 
one solves the task most efficiently (optimally)


• because we don’t have a-priori knowledge of the environment.
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Our work: Learning Task Decompositions On-The-Fly
As we collect experience, use it to inform which decomposition is the best!
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Many possible 
decompositions

selected

decomposition

Learning Symbolic Task Decompositions for Multi-Agent 
Teams. Shah, Lauffer, Chen, Pitta, Seshia. AAMAS, 2025.




Overview of our procedure

1. Generate a set of candidate decompositions.


2. Use a task-conditioned policy to accelerate learning across different 
candidates.


3. Use the Upper Confidence Bound (UCB) algorithm to balance exploring and 
exploiting different candidates.
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Experiments: Evaluating LOTaD 

• Baselines:


• ATAD: Prior work on generating task decompositions that uses heuristics to 
select and fix a single decomposition for use during MARL


• Monolithic: All agents are given the original symbolic task as their task


• Example environments:
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Experiments: Evaluating LOTaD 
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LOTaD strongly outperforms existing baselines!
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Conclusions and Next Steps
• Formal task specifications, such as automata, can act as a precise and 

composable means of identifying objectives in RL


• When should you use formal specs?


• When you have a precise satisfaction condition in correctness-critical 
settings


• When your task is a composition of separable sub-tasks


• Next steps: exploring how formal structure can augment foundation model 
capabilities

37



Thanks!
• Papers discussed today:


• LTL-Constrained Policy Optimization With Cycle Experience Replay. Shah, 
Voloshin, Yang, Verma, Chaudhuri, Seshia. TMLR, 2025.


• Learning Symbolic Task Decompositions for Multi-Agent Teams. Shah, Lauffer, 
Chen, Pitta, Seshia. AAMAS, 2025. 

• reach out to me: ameesh@berkeley.edu


• Thanks to my collaborators!


• Berkeley: Niklas Lauffer, Thomas Chen, Nikhil Pitta, Sanjit A. Seshia


• Non-Berkeley: Cameron Voloshin, Chenxi Yang, Abhinav Verma, Swarat 
Chaudhuri
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