
Simons Institute, 5.01

Leveraging Formal Task Structure in
Reinforcement Learning
Ameesh Shah, UC Berkeley

1

Reinforcement learning for autonomous behavior

Actions

Consequences:

Observations

Rewards

Agent
Environment

2

• The success of Reinforcement Learning (RL) relies on
designing good reward functions

• Rewards should incentivize desirable behavior
from our agents and discourage undesirable
behavior

• However, “reward engineering” is…

• Tedious at best

• Difficult to impossible at worst

• The key question: how do we represent desirable
behavior?

Reward design for reinforcement learning is hard

A classic example of a reward function leading to
undesirable behavior

3

• Formal methods has been asking (and answering) this question in a number
of contexts

• To verify computational systems, FM has developed representations for
desirable properties in the form of formal task specifications (formal specs or

 for short)φ

How do we represent desirable behavior?

Do 🍳 and 📝 in
any order

u1 u4

u3

u2

📝 🍳

📝🍳

4

• A natural question emerges:

• Can we use formal specifications as objectives in RL?

• Yes! (Lots of prior work)

• The more salient question: When should we use formal specifications as
objectives in RL?

Can we use formal specifications in RL?

5

Pros and Cons of using in RLφ
Pros Cons

- Difficult to optimize and
provides sparse feedback

- Solution space for specs is
non-continuous and difficult

to search

- Difficult to construct by hand

★ Precise notion of satisfaction

★ Provides compositionality (can
break down and build up

separate specs)

★Easy to capture non-Markovian
semantics e.g. temporally

ordered tasks

6

Pros and Cons of using in RLφ
Pros Cons

- Difficult to optimize and
provides sparse feedback

- Solution space for specs is
non-continuous and difficult

to search

- Difficult to construct by hand

★ Precise notion of satisfaction

★ Provides compositionality (can
break down and build up

separate specs)

★Easy to capture non-Markovian
semantics e.g. temporally

ordered tasks

7

• In correctness-critical settings, we want to learn policies that certainly
achieve the task at hand

• However, we may have optimality conditions alongside our task

• Example: A patrolling quadruped

Using in RL: Differentiating “correct” and “optimal”φ

A

B
C

Correctness: Patrol
the three regions

consistently!

Optimality: Navigate
the terrain safely
(avoid collisions!)

8
LTL-Constrained Policy Optimization With Cycle Experience Replay. Shah,
Voloshin, Yang, Verma, Chaudhuri, Seshia. TMLR, 2025.

• It’s difficult to express both the correctness condition and the optimality
condition in a single expression.

• However, the precision and Boolean satisfaction of formal specifications
allows us to define “correct” behavior

• And the expressivity of Markovian reward functions allow us to define
“optimality” within correct behaviors.

• Combining the two allows us to ask: which “correct” policy is the most
“optimal”?

Defining “Correct and Optimal” using and rφ

9
LTL-Constrained Policy Optimization With Cycle Experience Replay. Shah,
Voloshin, Yang, Verma, Chaudhuri, Seshia. TMLR, 2025.

Demonstrating Example: Correctness and Optimality

Task : Patrol red, green, and yellow, all while avoiding blue.

Optimality condition : +1 for each visit to a purple circle.

φ

r

“FlatWorld”

I must accomplish my task. Amongst all ways of
accomplishing my task, choose the optimal one.

10
LTL-Constrained Policy Optimization With Cycle Experience Replay. Shah,
Voloshin, Yang, Verma, Chaudhuri, Seshia. TMLR, 2025.

How do we specify and in our setting? φ r
Task specification φ Optimality Condition r

Use the standard definition of MDP
reward:

At each transition, receive a scalar
reward.

r(s, a, s′￼) = {+1 if s' in purple
0 otherwise

Buchi Automata (Linear Temporal Logic)

Satisfaction condition: visit accepting
states (green) infinitely often.

11
LTL-Constrained Policy Optimization With Cycle Experience Replay. Shah,
Voloshin, Yang, Verma, Chaudhuri, Seshia. TMLR, 2025.

Approach Outline

1. How do I combine with r in a form that is readily
optimized by (deep) RL?

2. Does the objective from (1) work in practice? If not, what
can we do?

φ

12
LTL-Constrained Policy Optimization With Cycle Experience Replay. Shah,
Voloshin, Yang, Verma, Chaudhuri, Seshia. TMLR, 2025.

1. Compile down to a proxy reward function that, when optimized,
closely approximates satisfaction of the original property.

φ

LTL-constrained Policy Optimization: Step-by-Step

13
LTL-Constrained Policy Optimization With Cycle Experience Replay. Shah,
Voloshin, Yang, Verma, Chaudhuri, Seshia. TMLR, 2025.

get a reward every time I visit the accepting state!

rLTL

• There is no direct way to enforce satisfaction of LTL in RL due to the infinite
acceptance condition.

• Instead, we use a proxy reward:

Step 1: Create a proxy reward for φ

A policy that maximizes will be approximately optimal w.r.t
the original LTL satisfaction condition.

rφ

14
LTL-Constrained Policy Optimization With Cycle Experience Replay. Shah,
Voloshin, Yang, Verma, Chaudhuri, Seshia. TMLR, 2025.

1. Compile down to a proxy reward function that, when optimized, closely
approximates satisfaction of the original property. ✅

2. Add the -proxy reward and the optimality reward (MDP reward)
together, and multiply the -proxy reward by a Lagrange multiplier :

φ

φ
φ λ

rDUAL(s, b, a, s′￼, b′￼) = rMDP(s, a, s′￼) + λrLTL(b′￼)

LTL-constrained Policy Optimization: Step-by-Step

For large enough , the policy that optimizes this reward will
satisfy with maximum probability AND achieve optimal

reward.

λ
φ

15
LTL-Constrained Policy Optimization With Cycle Experience Replay. Shah,
Voloshin, Yang, Verma, Chaudhuri, Seshia. TMLR, 2025.

1. Compile down to a proxy reward function that, when optimized, closely
approximates satisfaction of the original property. ✅

2. Add the -proxy reward and the optimality reward (MDP reward) together,
and multiply the -proxy reward by a Lagrange multiplier : ✅

3. Learn a policy that optimizes the combined reward above.

φ

φ
φ λ

rDUAL(s, b, a, s′￼, b′￼) = rMDP(s, a, s′￼) + λrLTL(b′￼)

LTL-constrained Policy Optimization: Step-by-Step

We can just use our favorite RL algorithm for this!

16
LTL-Constrained Policy Optimization With Cycle Experience Replay. Shah,
Voloshin, Yang, Verma, Chaudhuri, Seshia. TMLR, 2025.

1. Compile down to a proxy reward function that, when optimized, closely
approximates satisfaction of the original property. ✅

2. Add the -proxy reward and the optimality reward (MDP reward) together,
and multiply the -proxy reward by a Lagrange multiplier : ✅

3. Learn a policy that optimizes the combined reward above. ✅

4. Profit?

φ

φ
φ λ

rDUAL(s, b, a, s′￼, b′￼) = rMDP(s, a, s′￼) + λrLTL(b′￼)

LTL-constrained Policy Optimization: Step-by-Step

17
LTL-Constrained Policy Optimization With Cycle Experience Replay. Shah,
Voloshin, Yang, Verma, Chaudhuri, Seshia. TMLR, 2025.

Approach Outline

1. How do I combine with r in a form that is readily
optimized by (deep) RL?

2. Does the objective from (1) work in practice? If not,
what can we do?

φ

18
LTL-Constrained Policy Optimization With Cycle Experience Replay. Shah,
Voloshin, Yang, Verma, Chaudhuri, Seshia. TMLR, 2025.

Getting LTL-Constrained Deep RL to work in practice

Task : Patrol red, green, and yellow, all while avoiding
blue.

Optimality condition : +1 for each visit to a purple circle.

Let’s train a policy on this reward and see
what happens in this example.

φ

r

rDUAL(s, b, a, s′￼, b′￼) = rMDP(s, a, s′￼) + λrLTL(b′￼)

19
LTL-Constrained Policy Optimization With Cycle Experience Replay. Shah,
Voloshin, Yang, Verma, Chaudhuri, Seshia. TMLR, 2025.

Getting LTL-Constrained Deep RL to work in practice

 Why does this happen?

 is sparse.

if is dense, a policy can get
‘distracted’ during learning, and ignore .

rLTL

rMDP
rLTL

20
LTL-Constrained Policy Optimization With Cycle Experience Replay. Shah,
Voloshin, Yang, Verma, Chaudhuri, Seshia. TMLR, 2025.

Addressing the sparsity issue of reward proxies
Can we shape to make it more dense?rLTL

21

+reward

LTL-Constrained Policy Optimization With Cycle Experience Replay. Shah,
Voloshin, Yang, Verma, Chaudhuri, Seshia. TMLR, 2025.

Addressing the sparsity issue of reward proxies
Key idea: every visit to an accepting state must traverse an

“accepting cycle” within our BA.

An accepting trajectory for our example.

22
LTL-Constrained Policy Optimization With Cycle Experience Replay. Shah,
Voloshin, Yang, Verma, Chaudhuri, Seshia. TMLR, 2025.

Addressing the sparsity issue of reward proxies
So, why not give a reward every time we progress along an

accepting cycle?

Reward becomes denser!

+reward

+reward

+reward

+reward

23
LTL-Constrained Policy Optimization With Cycle Experience Replay. Shah,
Voloshin, Yang, Verma, Chaudhuri, Seshia. TMLR, 2025.

Reward Shaping with Cycle Experience Replay (CyclER)

• Counterfactually reason over all possible accepting cycles at the
end of each trajectory to find the accepting cycle that provides
the most dense reward

• Retroactively update the rewards from this trajectory based on
the most dense accepting cycle

• Notably: we can incorporate Quantitative Semantics (QS) into
CyclER and densify reward even further!

24
LTL-Constrained Policy Optimization With Cycle Experience Replay. Shah,
Voloshin, Yang, Verma, Chaudhuri, Seshia. TMLR, 2025.

CyclER: Example

t=0

t=1

t=3

t=0 t=1

t=3

t=2

t=2

25
LTL-Constrained Policy Optimization With Cycle Experience Replay. Shah,
Voloshin, Yang, Verma, Chaudhuri, Seshia. TMLR, 2025.

CyclER: Experimental Evaluation

• Evaluated in environments with both discrete and continuous state/action
spaces

• Tasks: Navigation tasks of varying complexity

• Baselines: Existing reward shaping methods for LTL-guided RL

Example MuJoCo Safety-Gymnasium Environments

26
LTL-Constrained Policy Optimization With Cycle Experience Replay. Shah,
Voloshin, Yang, Verma, Chaudhuri, Seshia. TMLR, 2025.

CyclER: Experimental Evaluation

CyclER succeeds where other baselines cannot accomplish the LTL task!

Even a baseline (blue) that completely ignores MDP reward cannot
accomplish the LTL task, which means that sparsity is an issue even in

the absence of .rMDP

27
LTL-Constrained Policy Optimization With Cycle Experience Replay. Shah,
Voloshin, Yang, Verma, Chaudhuri, Seshia. TMLR, 2025.

Pros and Cons of using in RLφ
Pros Cons

- Difficult to optimize and
provides sparse feedback ✅

- Solution space for specs is
non-continuous and difficult

to search

- Difficult to construct by hand

★Precise notion of satisfaction ✅

★ Provides compositionality
(can break down and build up

separate specs)

★Easy to capture non-Markovian
semantics e.g. temporally

ordered tasks

28

The “Group Project” Problem in Multi-Agent RL

29

Does all of the work

Receives the same reward

Incentivized to do nothing

Team begins next episode

When a team of agents share reward in a cooperative setting, issues may arise:

Learning Symbolic Task Decompositions for Multi-Agent
Teams. Shah, Lauffer, Chen, Pitta, Seshia. AAMAS, 2025.

Using in MARL can resolve credit assignment issuesφ

30

Team begins next episode

By representing the task symbolically, we can decompose it into individual sub-tasks.

1 8

4

2

3

7

5

6
B

C
A

B
A

B

C

C

A

C

B

A

Incentivized to do something useful!

Receive separate rewards for
accomplishing their own tasks

We can verify that a decomposition is valid:
completing each sub-task will complete the

overall task.

1 2

1 2

1 2

Decompose the task and assign each agent
their own sub-task

A

C

B

Learning Symbolic Task Decompositions for Multi-Agent
Teams. Shah, Lauffer, Chen, Pitta, Seshia. AAMAS, 2025.

Problem: many possible valid decompositions exist

31

1 8

4

2

3

7

5

6

A

B

C

A

B

A

B

C

C

A

C

B

31

1 2

1 2

1 2

A

B

C

1 2

1 2

1 2

A

C

1 2

1 2

1 2
A

B

C

B

How do we know which
decomposition to choose?

Learning Symbolic Task Decompositions for Multi-Agent
Teams. Shah, Lauffer, Chen, Pitta, Seshia. AAMAS, 2025.

Summary of our problem
• Decomposing symbolic task representations enables assigning sub-tasks to

individual agents with the guarantee that completing all sub-tasks will
complete the overall task

• This allows for learning more efficient strategies for completing cooperative
tasks.

• The problem: many valid decompositions may exist. We don’t know which
one solves the task most efficiently (optimally)

• because we don’t have a-priori knowledge of the environment.

32
Learning Symbolic Task Decompositions for Multi-Agent
Teams. Shah, Lauffer, Chen, Pitta, Seshia. AAMAS, 2025.

Our work: Learning Task Decompositions On-The-Fly
As we collect experience, use it to inform which decomposition is the best!

33

Many possible
decompositions

selected

decomposition

Learning Symbolic Task Decompositions for Multi-Agent
Teams. Shah, Lauffer, Chen, Pitta, Seshia. AAMAS, 2025.

Overview of our procedure

1. Generate a set of candidate decompositions.

2. Use a task-conditioned policy to accelerate learning across different
candidates.

3. Use the Upper Confidence Bound (UCB) algorithm to balance exploring and
exploiting different candidates.

34

Learning Optimal Task Decompositions (LOTaD)

Learning Symbolic Task Decompositions for Multi-Agent
Teams. Shah, Lauffer, Chen, Pitta, Seshia. AAMAS, 2025.

Experiments: Evaluating LOTaD

• Baselines:

• ATAD: Prior work on generating task decompositions that uses heuristics to
select and fix a single decomposition for use during MARL

• Monolithic: All agents are given the original symbolic task as their task

• Example environments:

35
Learning Symbolic Task Decompositions for Multi-Agent
Teams. Shah, Lauffer, Chen, Pitta, Seshia. AAMAS, 2025.

Experiments: Evaluating LOTaD

36

LOTaD strongly outperforms existing baselines!
Learning Symbolic Task Decompositions for Multi-Agent
Teams. Shah, Lauffer, Chen, Pitta, Seshia. AAMAS, 2025.

Conclusions and Next Steps
• Formal task specifications, such as automata, can act as a precise and

composable means of identifying objectives in RL

• When should you use formal specs?

• When you have a precise satisfaction condition in correctness-critical
settings

• When your task is a composition of separable sub-tasks

• Next steps: exploring how formal structure can augment foundation model
capabilities

37

Thanks!
• Papers discussed today:

• LTL-Constrained Policy Optimization With Cycle Experience Replay. Shah,
Voloshin, Yang, Verma, Chaudhuri, Seshia. TMLR, 2025.

• Learning Symbolic Task Decompositions for Multi-Agent Teams. Shah, Lauffer,
Chen, Pitta, Seshia. AAMAS, 2025.

• reach out to me: ameesh@berkeley.edu

• Thanks to my collaborators!

• Berkeley: Niklas Lauffer, Thomas Chen, Nikhil Pitta, Sanjit A. Seshia

• Non-Berkeley: Cameron Voloshin, Chenxi Yang, Abhinav Verma, Swarat
Chaudhuri

38

mailto:ameesh@berkeley.edu

