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Codes

(m1, . . . ,mk)︸ ︷︷ ︸
message

7−→ (c1, . . . , cN)︸ ︷︷ ︸
codeword

, injective

Code: C ⊆ ΣN (N is the length of C )

Linear code: Σ = Fs
q, and C is an Fq-vector space

In this case, message space Fk
q

Rate: R :=
log|Σ| |C |

N
=

k

sN

Hamming distance: d(x , y) := P
i∼[n]

[xi 6= yi ], for x , y ∈ FN
q

Minimum distance: δ := min{d(x , 0) : x ∈ C \ {0}}



Rate v/s distance tradeoff

δ ≤ 1− R (Singleton bound)

δ = 1− R (Maximum Distance Separable (MDS) code)



List Decodable codes

C is (ρ, L)-list decodable:∣∣{c ∈ C : d(w , c) ≤ ρ}
∣∣ ≤ L for all w ∈ FN

q .

“At most L codewords have agreement at least (1− ρ)N with w .”

ρ ≤ L

L + 1
(1− R) (List decoding Singleton bound [ST20])

ρ = 1− R − ε, L ∼ 1/ε (List decoding capacity)

(Explicit codes ?)
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Univariate polynomial codes

Reed-Solomon (RS) code :

f (X ) 7−→
[
f (a1) · · · f (an)

]
, deg(f ) < k

Folded Reed-Solomon (FRS) code (γ ∈ F×
q generator) :

f (X ) 7−→




f (a1)
f (γa1)

...
f (γs−1a1)

 . . .


f (an)
f (γan)

...
f (γs−1an)


 , deg(f ) < k

Multiplicity code :

f (X ) 7−→




f (a1)
df
dX (a1)

...
d s−1f
dX s−1 (a1)

 . . .


f (an)
df
dX (an)

...
d s−1f
dX s−1 (an)


 , deg(f ) < k



List decoding univariate polynomial codes

For FRS and Multiplicity codes, s = Θ(1/ε2).

Code
(constant rate R)

Johnson bound

(1−
√
R)

Capacity
(1− R − ε)

List size
Oε(1)

RS code
[Guruswami, Sudan, 1999]

X NO
[Ben-Sasson et al., 2006]

X
O(

√
1/R)

FRS code
[Guruswami, Rudra, 2008]

X X qOε(1)

Multiplicity code
[Kopparty, 2013]

X X qOε(1)

FRS and Multiplicity code
[Guruswami, Wang, 2013]

X X qOε(1)

FRS and Multiplicity code
[Kopparty et al., 2018]

[Tamo, 2023]
X X X

(1/ε)O(1/ε)

FRS and Multiplicity code
[Srivastava, 2024]

[Chen, Zhang, 2024]
X X X

O(1/ε)



Our interest.

For s = Θ(1/ε2), FRS codes and Multiplicity codes can be list
decoded up to radius 1− R − ε, where k is the degree, and
k = Rsn.

Important.

For Multiplicity codes, char(Fq) > k (necessary),

but no such restriction for FRS codes.

List decodability of FRS codes is insensitive to field characteristic.



Multivariate polynomial codes

Am ⊆ Fm
q is a finite grid.

Reed-Muller (RM) code :

f (X ) 7−→
[
f (a)

]
a∈Am , deg(f ) < k

Multivariate multiplicity code :

f (X ) 7−→
[[

∂αf

∂Xα1
1 · · · ∂X

αm
m

(a)

]
|α|<s

]
a∈Am

, deg(f ) < k

[Guruswami, Sudan, 1999] RM codes are list decodable up to
radius 1− m

√
R with list size OR,m(1).



[Bhandari, Harsha, Kumar, and Sudan, 2023]

For s = Θ(1/ε2m), m-variate multiplicity codes over a finite grid
Am can be list decoded up to radius δ − ε, where k is the degree,
and k = (1− δ)s|A|,

as long as char(Fq) > k (necessary).

Questions. Is there a characteristic insensitive variant with
similar list decodability?

Can we extend the univariate FRS codes to the multivariate
setting?



Questions. Is there a characteristic insensitive variant with
similar list decodability (algorithmic)?

Can we extend the univariate FRS codes to the multivariate
setting?

Answer. [V., 2025] YES.

The univariate FRS code is also a multiplicity code!

Simple multivariate extension gives a divided difference/folded RM
code.



Divided Difference (The Q-derivative)

We choose Q := γ ∈ F×q multiplicative generator

For any f (X ) ∈ Fq[X ], define the γ-derivative

Dγf (X ) =
f (γX )− f (X )

(γ − 1)X

Important.

For any monomial X t , Dγ(X t) = [t] · X t−1, where [t] :=
γt − 1

γ − 1
.

So if 1 ≤ deg(f ) < q − 1, then deg(Dγf ) = deg(f )− 1,

i.e. Dγ
(
large degree monomial

)
6= 0.



Divided Difference (The Q-derivative)

Until now∗. . .

– Q-combinatorics [Exton, 1983; Roman, 2005], quantum calculus
[Ernst, 2012], over fields of characteristic zero

– multiplicative rate of change; no previous explicit appearance in
the polynomial method literature

Now∗. . .

• over fields of small characteristic

• within the polynomial method

∗to my knowledge



Basic properties of γ-derivative

Classical Taylor expansion. For any f (X ) ∈ Fq[X ] and a ∈ Fq,

f (X ) =
d∑

t=0

d t f
dX t (a)

t!
(X − a)t ,

if deg(f ) = d < char(Fq).

γ-Taylor expansion. For any f (X ) ∈ Fq[X ] and a ∈ Fq,

f (X ) =
d∑

t=0

Dt
γf (a)

[t]!
(X − a) · · · (X − γt−1a),

if deg(f ) = d < q − 1 (insensitive to field characteristic).



Basic properties of γ-derivative

Classical product rule. For any f (X ), g(X ) ∈ Fq[X ],

d r (fg)

dX r
(X ) =

r∑
t=0

r !

t!(r − t)!
· d

t f

dX t
(X ) · d

r−tg

dX r−t (X ).

γ-product rule. For any f (X ), g(X ) ∈ Fq[X ],

Dr (fg)(X ) =
r∑

t=0

[r ]!

[t]![r − t]!
· Dt f (γr−tX ) · Dr−tg(X )

=
r∑

t=0

[r ]!

[t]![r − t]!
· Dt f (X ) · Dr−tg(γtX ).



Multivariate γ-derivative and γ-multiplicity code

Encoding. Denote X = (X1, . . . ,Xm), Dα
γ = Dα1

γ,X1
· · ·Dαm

γ,Xm
.

f (X) 7−→
[[
Dα
γ f (a)

]
|α|<s

]
a∈Am

, deg(f ) < k



Algorithmic list decoding

[Bhandari, Harsha, Kumar, and Sudan, 2023]

For s = Θ(1/ε2m), m-variate multiplicity codes over a finite grid
Am can be list decoded efficiently up to radius δ − ε, where k is
the degree, and k = (1− δ)s|A|,

as long as k < char(Fq) (necessary).

[V., 2025]

For s = Θ(1/ε2m), m-variate γ-multiplicity codes over a finite grid
Am can be list decoded efficiently up to radius δ − ε, where k is
the degree, and k = (1− δ)s|A|,

(unconditional on char(Fq))

“List decodability of multivariate γ-multiplicity codes is insensitive
to field characteristic.”



Another interpretation

[Easy] In the univariate case, there exists an invertible Ua ∈ Fs×s
q

such that 
f (a)
f (γa)

...
f (γs−1a)

 = Ua ·


f (a)

Dγf (a)
...

Ds−1
γ f (a)

 .
“Distance preserving map between FRS and γ-multiplicity codes.”

Analogous extension −→ Folded RM code



List decoding algorithm: Polynomial method

“γ-extension of [BHKS23], with simpler technical details.”

“Natural multivariate analogue of [GW13] algorithm.”

Main takeaway.

multivariate analysis =

folding trick [BHKS23] + univariate [GW13] analysis



List decoding algorithm: Polynomial method

Consider m-variate γ-multiplicity code over finite grid Am ⊆ Fm
q ,

with multiplicity s.

Received word w =
[[
wa,α

]
|α|<s

]
a∈Am

.

Folding trick. Auxiliary variables Z = (Z1, . . . ,Zm).

Capture the received word. Interpolate

Q
(
X,
(
Yα
)
|α|<r

,Z
)

= Q̃(X) +
r−1∑
j=0

Qj(X)

( ∑
|α|=j

YαZ
α

)

such that Q vanishes with high γ-multiplicity at all points(
a,
[
wa,α

]
|α|<s

,Z
)
. (r � s, r ∼ 1/εm)



List decoding algorithm: Polynomial method

Vanishing conditions imply:

If f (X) is “close” to w , then

Qf (X) := Q
(
X,
[
Dα
γ f (X)

]
|α|<s

,Z
)

Q̃(X) +
r−1∑
j=0

Qj(X)

( ∑
|α|=j

Dα
γ f (X)Zα

)

must be the zero polynomial.

Due to the affine-linear structure of Q
(
X,
(
Yα
)
|α|<r

,Z
)
,

solution space of “Qf (X) = 0” is an r -dim affine linear subspace.



3 × trick = technique

So far. . . 1. X



Hardness of decoding

Bounded distance decoding (BDD).

Given a code C , a word w , and radius ρ > 0,

return YES/NO if there exists/not exists c ∈ C with disagreement
at most ρ.

[Guruswami, Vardy, 2005]

NP-hard for RS codes at radius 1− R − 1
n .

[Gandikota, Ghazi, Grigorescu, 2018]

NP-hard for RS codes at radius 1− R − ε, for some ε� 1
n , ε→ 0.



Hardness of decoding

FRS codes and univariate multiplicity codes with folding s ≥ 1:

Assume some ε� 1
n , ε→ 0.

[GGG, 2018] For s = 1, NP-hard at radius 1− R − ε.

We have ˜efficient algorithms for s ∼ 1/ε2.

(Runtime not yet ‘poly’ in 1/ε, but still ẼASY.)

Question. Is there a threshold s0 such that

HARD for s < s0, and EASY for s > s0 ?



Hardness of decoding

Assume some ε� 1
n , ε→ 0.

[GGG18] BDD is NP-hard for s = 1.

We know: List decoding is EASY for s ∼ 1/ε2.

[Gandikota, Grigorescu, V., 2025]

BDD is NP-hard for s ∼ (log(1/ε))
1
2
−o(1).

For multiplicity codes,

[GGG18] + polynomial method extended to multiplicities.

For FRS codes,

with γ-derivatives X, without γ-derivatives ?



Hardness of decoding

Assume some ε� 1
n , ε→ 0.

[GGG18] BDD is NP-hard for s = 1.

We know: List decoding is EASY for s ∼ 1/ε2.

[Gandikota, Grigorescu, V., 2025]

BDD is NP-hard for s ∼ (log(1/ε))
1
2
−o(1).

Question. What happens at s ∼ 1/ε ?



3 × trick = technique

So far. . . 1. X
2. X
3. ?



Thank You


