Polynomials, Divided Differences, and Codes

S. Venkitesh Tel Aviv University venkitesh.mail@gmail.com

Error-Correcting Codes: Theory and Practice Reunion Simons Institute for the Theory of Computing April 2025

Codes

$$\underbrace{(m_1,\ldots,m_k)}_{\text{message}}\longmapsto\underbrace{(c_1,\ldots,c_N)}_{\text{codeword}}, \text{ injective}$$

Code: $C \subseteq \Sigma^N$ (*N* is the length of *C*) Linear code: $\Sigma = \mathbb{F}_q^s$, and *C* is an \mathbb{F}_q -vector space In this case, message space \mathbb{F}_q^k Rate: $R \coloneqq \frac{\log_{|\Sigma|} |C|}{N} = \frac{k}{sN}$ Hamming distance: $d(x, y) \coloneqq \underset{i \sim [n]}{\mathbb{P}} [x_i \neq y_i]$, for $x, y \in \mathbb{F}_q^N$ Minimum distance: $\delta \coloneqq \min\{d(x, 0) : x \in C \setminus \{0\}\}$

Rate v/s distance tradeoff

$\delta \leq 1 - R$ (Singleton bound)

$\delta = 1 - R$ (Maximum Distance Separable (MDS) code)

List Decodable codes

C is (ρ, L) -list decodable:

"At most L codewords have agreement at least $(1 - \rho)N$ with w."

 $ho \leq rac{L}{L+1}(1-R)$ (List decoding Singleton bound [ST20]) ho = 1 - R - arepsilon, L \sim 1/arepsilon (List decoding capacity) (Explicit codes ?)

List Decodable codes

C is (ρ, L) -list decodable:

$$ig|\{c\in {\mathcal C}: d(w,c)\leq
ho\}ig|\leq L \quad ext{for all } w\in {\mathbb F}_q^N.$$

"At most L codewords have agreement at least $(1 - \rho)N$ with w."

 $\rho \leq \frac{L}{L+1}(1-R) \qquad \text{(List decoding Singleton bound [ST20])}$ $\rho = 1 - R - \varepsilon, \ L \sim 1/\varepsilon \qquad \text{(List decoding capacity)}$ $(\text{Explicit codes } \checkmark)$

Univariate polynomial codes

 $\begin{array}{rcl} \mbox{Reed-Solomon (RS) code :} \\ f(X) &\longmapsto & \left[f(a_1) & \cdots & f(a_n)\right], & & & & & & & & \\ \end{array}$

Folded Reed-Solomon (FRS) code ($\gamma \in \mathbb{F}_q^{ imes}$ generator) :

$$f(X) \longmapsto \begin{bmatrix} f(a_1) \\ f(\gamma a_1) \\ \vdots \\ f(\gamma^{s-1}a_1) \end{bmatrix} \cdots \begin{bmatrix} f(a_n) \\ f(\gamma a_n) \\ \vdots \\ f(\gamma^{s-1}a_n) \end{bmatrix}],$$

 $\deg(f) < k$

Multiplicity code :

$$(X) \longmapsto \left[\begin{bmatrix} f(a_1) \\ \frac{df}{dX}(a_1) \\ \vdots \\ \frac{d^{s-1}f}{dX^{s-1}}(a_1) \end{bmatrix} \cdots \begin{bmatrix} f(a_n) \\ \frac{df}{dX}(a_n) \\ \vdots \\ \frac{d^{s-1}f}{dX^{s-1}}(a_n) \end{bmatrix} \right]$$

 $\deg(f) < k$

List decoding univariate polynomial codes

For FRS and Multiplicity codes, $s = \Theta(1/\varepsilon^2)$.

Code (constant rate <i>R</i>)	Johnson bound $(1-\sqrt{R})$	$\begin{array}{c} Capacity \\ (1-\textit{R}-\varepsilon) \end{array}$	List size $O_arepsilon(1)$
RS code [Guruswami, Sudan, 1999]	\checkmark	NO [Ben-Sasson et al., 2006]	$O(\sqrt{1/R})$
FRS code [Guruswami, Rudra, 2008] 	\checkmark	\checkmark	$q^{O_{arepsilon}(1)}$
Multiplicity code [Kopparty, 2013]	\checkmark	\checkmark	$q^{O_{arepsilon}(1)}$
FRS and Multiplicity code [Guruswami, Wang, 2013]	\checkmark	\checkmark	$q^{O_{arepsilon}(1)}$
FRS and Multiplicity code [Kopparty et al., 2018] [Tamo, 2023]	\checkmark	\checkmark	$(1/arepsilon)^{O(1/arepsilon)}$
FRS and Multiplicity code [Srivastava, 2024] [Chen, Zhang, 2024]	\checkmark	\checkmark	$\stackrel{\checkmark}{O(1/arepsilon)}$

Our interest.

For $s = \Theta(1/\varepsilon^2)$, FRS codes and Multiplicity codes can be list decoded up to radius $1 - R - \varepsilon$, where k is the degree, and k = Rsn.

Important.

For Multiplicity codes, $char(\mathbb{F}_q) > k$ (necessary), but *no such restriction* for FRS codes. List decodability of FRS codes is *insensitive* to field characteristic.

Multivariate polynomial codes

 $A^m \subseteq \mathbb{F}_q^m$ is a finite grid.

 $\begin{array}{rcl} \mathsf{Reed-Muller}\;(\mathsf{RM})\;\mathsf{code}:\\ f(X) &\longmapsto & \left[f(a)\right]_{a\in A^m}, \end{array}$

 $\deg(f) < k$

 $\begin{array}{ccc} & \text{Multivariate multiplicity code :} \\ f(X) & \longmapsto & \left[\left[\frac{\partial^{\alpha} f}{\partial X_{1}^{\alpha_{1}} \cdots \partial X_{m}^{\alpha_{m}}}(a) \right]_{|\alpha| < s} \right]_{a \in \mathcal{A}^{m}}, & \deg(f) < k \end{array}$

[Guruswami, Sudan, 1999] RM codes are list decodable up to radius $1 - \sqrt[m]{R}$ with list size $O_{R,m}(1)$.

[Bhandari, Harsha, Kumar, and Sudan, 2023]

For $s = \Theta(1/\varepsilon^{2m})$, *m*-variate multiplicity codes over a finite grid A^m can be list decoded up to radius $\delta - \varepsilon$, where k is the degree, and $k = (1 - \delta)s|A|$,

as long as $char(\mathbb{F}_q) > k$ (necessary).

Questions. Is there a *characteristic insensitive* variant with similar list decodability?

Can we extend the univariate FRS codes to the multivariate setting?

Questions. Is there a *characteristic insensitive* variant with similar list decodability (algorithmic)?

Can we extend the univariate FRS codes to the multivariate setting?

Answer. [V., 2025] YES.

The univariate FRS code is also a multiplicity code!

Simple multivariate extension gives a *divided difference/folded RM* code.

Divided Difference (The Q-derivative)

We choose $\mathtt{Q}:=\gamma\in \mathbb{F}_{q}^{ imes}$ multiplicative generator

For any $f(X) \in \mathbb{F}_q[X]$, define the γ -derivative

$$D_{\gamma}f(X)=rac{f(\gamma X)-f(X)}{(\gamma-1)X}$$

Important.

For any monomial X^t , $D_{\gamma}(X^t) = [t] \cdot X^{t-1}$, where $[t] \coloneqq rac{\gamma^t - 1}{\gamma - 1}$.

So if $1 \leq \deg(f) < q - 1$, then $\deg(D_{\gamma}f) = \deg(f) - 1$, i.e. $D_{\gamma}(\text{large degree monomial}) \neq 0$.

Divided Difference (The Q-derivative)

Until now*...

Q-combinatorics [Exton, 1983; Roman, 2005], quantum calculus [Ernst, 2012], over fields of characteristic zero

 multiplicative rate of change; no previous explicit appearance in the polynomial method literature

Now*...

- over fields of small characteristic
- within the polynomial method

*to my knowledge

Basic properties of γ -derivative

Classical Taylor expansion. For any $f(X) \in \mathbb{F}_q[X]$ and $a \in \mathbb{F}_q$,

$$f(X) = \sum_{t=0}^{d} \frac{\frac{d^t f}{dX^t}(a)}{t!} (X - a)^t,$$

 $\text{if } \deg(f) = d < \operatorname{char}(\mathbb{F}_q).$

 γ -Taylor expansion. For any $f(X) \in \mathbb{F}_q[X]$ and $a \in \mathbb{F}_q$,

$$f(X) = \sum_{t=0}^{d} rac{D_{\gamma}^{t} f(a)}{[t]!} (X-a) \cdots (X-\gamma^{t-1}a),$$

if $\deg(f) = d < q - 1$ (insensitive to field characteristic).

Basic properties of γ -derivative

Classical product rule. For any $f(X), g(X) \in \mathbb{F}_q[X]$,

$$\frac{d^r(fg)}{dX^r}(X) = \sum_{t=0}^r \frac{r!}{t!(r-t)!} \cdot \frac{d^t f}{dX^t}(X) \cdot \frac{d^{r-t}g}{dX^{r-t}}(X).$$

 γ -product rule. For any $f(X), g(X) \in \mathbb{F}_q[X]$,

$$D^{r}(fg)(X) = \sum_{t=0}^{r} \frac{[r]!}{[t]![r-t]!} \cdot D^{t}f(\gamma^{r-t}X) \cdot D^{r-t}g(X)$$
$$= \sum_{t=0}^{r} \frac{[r]!}{[t]![r-t]!} \cdot D^{t}f(X) \cdot D^{r-t}g(\gamma^{t}X).$$

Multivariate γ -derivative and γ -multiplicity code

Encoding. Denote $\mathbb{X} = (X_1, \dots, X_m), D_{\gamma}^{\alpha} = D_{\gamma, X_1}^{\alpha_1} \cdots D_{\gamma, X_m}^{\alpha_m}.$ $f(\mathbb{X}) \quad \longmapsto \quad \left[\left[D_{\gamma}^{\alpha} f(a) \right]_{|\alpha| < s} \right]_{a \in A^m}, \qquad \deg(f) < k$

Algorithmic list decoding

[Bhandari, Harsha, Kumar, and Sudan, 2023]

For $s = \Theta(1/\varepsilon^{2m})$, *m*-variate multiplicity codes over a finite grid A^m can be list decoded *efficiently* up to radius $\delta - \varepsilon$, where k is the degree, and $k = (1 - \delta)s|A|$,

as long as $k < char(\mathbb{F}_q)$ (necessary).

[V., 2025]

For $s = \Theta(1/\varepsilon^{2m})$, *m*-variate γ -multiplicity codes over a finite grid A^m can be list decoded *efficiently* up to radius $\delta - \varepsilon$, where k is the degree, and $k = (1 - \delta)s|A|$,

(unconditional on $char(\mathbb{F}_q)$)

"List decodability of multivariate γ -multiplicity codes is insensitive to field characteristic."

Another interpretation

[Easy] In the univariate case, there exists an invertible $U_a \in \mathbb{F}_q^{s \times s}$ such that

$$egin{array}{c} f(a) \ f(\gamma a) \ dots \ f(\gamma^{s-1}a) \end{bmatrix} = U_a \cdot egin{bmatrix} f(a) \ D_\gamma f(a) \ dots \ D_{\gamma}^{s-1}f(a) \end{bmatrix}.$$

"Distance preserving map between FRS and γ -multiplicity codes."

Analogous extension \longrightarrow Folded RM code

List decoding algorithm: Polynomial method

" γ -extension of [BHKS23], with simpler technical details." "Natural multivariate analogue of [GW13] algorithm."

Main takeaway.

multivariate analysis = *folding trick* [BHKS23] + univariate [GW13] analysis

List decoding algorithm: Polynomial method

Consider *m*-variate γ -multiplicity code over finite grid $A^m \subseteq \mathbb{F}_q^m$, with multiplicity *s*.

Received word $w = \left[\begin{bmatrix} w_{a,\alpha} \end{bmatrix}_{|\alpha| < s} \right]_{a \in A^m}$. Folding trick. Auxiliary variables $\mathbf{Z} = (Z_1, \dots, Z_m)$. Capture the received word. Interpolate

$$Qig(\mathbb{X},ig(Y_lphaig)_{|lpha|< r},\mathsf{Z}ig) = \widetilde{Q}(\mathbb{X}) + \sum_{j=0}^{r-1} Q_j(\mathbb{X})ig(\sum_{|lpha|=j} Y_lpha \mathsf{Z}^lphaig)$$

such that Q vanishes with **high** γ -multiplicity at all points $(a, [w_{a,\alpha}]_{|\alpha| < s}, \mathsf{Z})$. $(r \ll s, r \sim 1/\varepsilon^m)$

List decoding algorithm: Polynomial method

Vanishing conditions imply:

If $f(\mathbb{X})$ is "close" to w, then

must be the **zero** polynomial.

Due to the affine-linear structure of $Q(\mathbb{X}, (Y_{\alpha})_{|\alpha| < r}, \mathbb{Z})$, solution space of " $Q_f(\mathbb{X}) = 0$ " is an *r*-dim affine linear subspace.

$3 \times \text{trick} = \text{technique}$

So far... 1. √

Bounded distance decoding (BDD). Given a code *C*, a word *w*, and radius $\rho > 0$, return YES/NO if there exists/not exists $c \in C$ with disagreement at most ρ .

[Guruswami, Vardy, 2005] NP-hard for RS codes at radius $1 - R - \frac{1}{n}$.

[Gandikota, Ghazi, Grigorescu, 2018] NP-hard for RS codes at radius $1 - R - \varepsilon$, for some $\varepsilon \gg \frac{1}{n}, \varepsilon \to 0$.

FRS codes and univariate multiplicity codes with folding $s \ge 1$:

Assume some $\varepsilon \gg \frac{1}{n}, \varepsilon \to 0$.

[GGG, 2018] For s = 1, NP-hard at radius $1 - R - \varepsilon$.

We have efficient algorithms for $s \sim 1/\varepsilon^2$. (Runtime not yet 'poly' in $1/\varepsilon$, but still $\widetilde{\mathsf{EASY}}$.)

Question. Is there a threshold s_0 such that HARD for $s < s_0$, and EASY for $s > s_0$?

Assume some $\varepsilon \gg \frac{1}{n}, \varepsilon \to 0$.

[GGG18] BDD is NP-hard for s = 1. We know: List decoding is EASY for $s \sim 1/\varepsilon^2$.

[Gandikota, Grigorescu, V., 2025] BDD is NP-hard for $s \sim (\log(1/\varepsilon))^{\frac{1}{2}-o(1)}$.

For multiplicity codes,

[GGG18] + polynomial method *extended to multiplicities*. For FRS codes, with γ -derivatives \checkmark , without γ -derivatives ?

Assume some $\varepsilon \gg \frac{1}{n}, \varepsilon \to 0$.

[GGG18] BDD is NP-hard for s = 1. We know: List decoding is EASY for $s \sim 1/\varepsilon^2$.

[Gandikota, Grigorescu, V., 2025] BDD is NP-hard for $s \sim (\log(1/\varepsilon))^{\frac{1}{2}-o(1)}$.

Question. What happens at $s \sim 1/\varepsilon$?

$3 \times \text{trick} = \text{technique}$

So far... 1. √ 2. √ 3. ?

Thank You