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Codes

(ml, a0 mk) = (C1> 8% o g CN), injective
N————’ N———’
message codeword

Code: CC XN (N is the length of C)
Linear code: ¥ =T, and C is an Fg-vector space

In this case, message space IF’;

logjs [C] &
Rate: R=— = —
e N N
Hamming distance: d(x,y) = P [xi#yi], forx,y € Fg
i~[n]

I~n

Minimum distance: § := min{d(x,0) : x € C\ {0}}



Rate v/s distance tradeoff

§<1-R (Singleton bound)

d=1-R (Maximum Distance Separable (MDS) code)



List Decodable codes
C is (p, L)-list decodable:
}{c € C:d(w,c) < p}} <L forallwe IFQ’.

“At most L codewords have agreement at least (1 — p)N with w.”

s

p < e 1(1 - R) (List decoding Singleton bound [ST20])

p=1—-R—¢, L~1/¢ (List decoding capacity)
(Explicit codes ?)
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Univariate polynomial codes

Reed-Solomon (RS) code :
f(X) +—  [f(a) - f(an)], deg(f) < k

Folded Reed-Solomon (FRS) code (v € ' generator) :

f(a1) f(an)
F(X) f(yzal) f(yza") deg(f) < k
F(r" 1) F(r"a)
Multiplicity code :
jf(al) ;;(a,,)
FX) —s W(:al) W(:a") : deg(F) < k




List decoding univariate polynomial codes

For FRS and Multiplicity codes, s = ©(1/¢2).

Code Johnson bound Capacity List size
(constant rate R) (1—-VR) (1—-—R—¢) O:(1)
RS code \/ NO v
[Guruswami, Sudan, 1999] [Ben-Sasson et al., 2006] O(\/1/R)
FRS code O (1)
[Guruswami, Rudra, 2008] \/ / 9
Multiplicity code O (1)
[Kopparty, 2013] \/ N
FRS and Multiplicity code 0:(1)
[Guruswami, Wang, 2013] \/ \/ 4
FRS and Multiplicity code v
[Kopparty et al., 2018] \/ \/ (1/5)0(1/5)
[Tamo, 2023]
FRS and Multiplicity code
[Srivastava, 2024] \/ \/ 0(1//5)
[Chen, Zhang, 2024]




Our interest.

For s = ©(1/€2), FRS codes and Multiplicity codes can be list
decoded up to radius 1 — R — €, where k is the degree, and
k = Rsn.

Important.
For Multiplicity codes, char(F,) > k (necessary),
but no such restriction for FRS codes.

List decodability of FRS codes is insensitive to field characteristic.



Multivariate polynomial codes

AT C Fg' is a finite grid.
Reed-Muller (RM) code :
f(X) +—  [f(a)],cpm> deg(f) < k

Multivariate multiplicity code :
7(X) H‘W @) | e <
(== a m 5 eg <
X" -+ 0Xm lo|<sJ 2 am

[Guruswami, Sudan, 1999] RM codes are list decodable up to
radius 1 — {/R with list size Og m(1).



[Bhandari, Harsha, Kumar, and Sudan, 2023]

For s = ©(1/£2™), m-variate multiplicity codes over a finite grid
A™ can be list decoded up to radius 6 — &, where k is the degree,
and k = (1 —0)s|A|,

as long as char(F;) > k (necessary).

Questions. |s there a characteristic insensitive variant with
similar list decodability?

Can we extend the univariate FRS codes to the multivariate
setting?



Questions. |s there a characteristic insensitive variant with
similar list decodability (algorithmic)?

Can we extend the univariate FRS codes to the multivariate
setting?

Answer. [V., 2025] YES.
The univariate FRS code is also a multiplicity code!

Simple multivariate extension gives a divided difference/folded RM
code.



Divided Difference (The Q-derivative)

We choose Q := v € F; multiplicative generator

For any f(X) € Fq[X], define the ~y-derivative

F(3X) — F(X)
D, f(X) =
g
Important.
g 1
For any monomial X¢, D, (X?) = [t] - Xt71, where [t] := T

So if 1 < deg(f) < g — 1, then deg(D,f) = deg(f) — 1,
i.e. DV(Iarge degree monomial) £ 0.




Divided Difference (The Q-derivative)

Until now™*. ..

— Q-combinatorics [Exton, 1983; Roman, 2005], quantum calculus
[Ernst, 2012], over fields of characteristic zero

— multiplicative rate of change; no previous explicit appearance in
the polynomial method literature

Now*. ..

e over fields of small characteristic

e within the polynomial method

*to my knowledge



Basic properties of y-derivative

Classical Taylor expansion. For any f(X) € Fq[X] and a € Fg,

if deg(f) = d < char(FFy).

v-Taylor expansion. For any f(X) € Fy[X] and a € F,

[t]l (X - a)”'(X_’Ytila)v

if deg(f) = d < g — 1 (insensitive to field characteristic).



Basic properties of y-derivative

Classical product rule. For any f(X), g(X) € Fq[X],

d'(fg) v\~ r! dtf dtg
axr %)= tz_; t(r— o) axt ) gxre

(X).

v-product rule. For any f(X), g(X) € Fq[X],

PRI =3 e D07 X) - D ()

R e (1 X).
t=0 '



Multivariate y-derivative and y-multiplicity code

Encoding. Denote X = (X1,...,Xp), DY = D'Cyu)ﬁ e ny)"}m.

10 [[Dﬁf(a)]MKS}aeAm, deg(f) < k



Algorithmic list decoding

[Bhandari, Harsha, Kumar, and Sudan, 2023]

For s = ©(1/£2™), m-variate multiplicity codes over a finite grid
A™ can be list decoded efficiently up to radius § — &, where k is
the degree, and k = (1 — §)s|A|,

as long as k < char(F,) (necessary).

[V., 2025]

For s = ©(1/£%2™), m-variate y-multiplicity codes over a finite grid
A™ can be list decoded efficiently up to radius § — &, where k is
the degree, and k = (1 — §)s|A|,

(unconditional on char(Fg))

“List decodability of multivariate v-multiplicity codes is insensitive
to field characteristic.”



Another interpretation

[Easy] In the univariate case, there exists an invertible U, € F;*¢

such that
€) f(a)
263 il L)
F(751a) DE1f(a)

“Distance preserving map between FRS and y-multiplicity codes.”

Analogous extension — Folded RM code



List decoding algorithm: Polynomial method

“~v-extension of [BHKS23], with simpler technical details.”
“Natural multivariate analogue of [GW13] algorithm.”

Main takeaway.

multivariate analysis =
folding trick [BHKS23] + univariate [GW13] analysis



List decoding algorithm: Polynomial method

Consider m-variate y-multiplicity code over finite grid A™ C F',
with multiplicity s.

Received word w = [[Wa,a] |a|<s}

acAm’
Folding trick. Auxiliary variables Z = (Zy,.... Z,,).

Capture the received word. Interpolate
i r—1
QX (Ya) pyonZ) = Q) + 3 Q-(X)( > yaz(\)
j=0 o=

such that @ vanishes with high v-multiplicity at all points
(3, Woo) s 2)- (s, 1~ 1/em)



List decoding algorithm: Polynomial method

Vanishing conditions imply:

If f(X) is “close” to w, then

Qr(X) = Q(X, [D2F(X)] .. 2)

r—1
A +Y oj(X)( 3 D;“f(X)za)

U= laf=j

must be the zero polynomial.

Due to the affine-linear structure of Q(X, (Ya>\a|<r’ Z),

solution space of “Qf(X) = 0" is an r-dim affine linear subspace.



3 X trick = technique

Sofar... 1. v



Hardness of decoding

Bounded distance decoding (BDD).
Given a code C, a word w, and radius p > 0,

return YES/NO if there exists/not exists ¢ € C with disagreement
at most p.

[Guruswami, Vardy, 2005]
NP-hard for RS codes at radius 1 — R — 1.

n

[Gandikota, Ghazi, Grigorescu, 2018]
NP-hard for RS codes at radius 1 — R — g, for some € > %, g — 0.



Hardness of decoding

FRS codes and univariate multiplicity codes with folding s > 1:
Assume some € > %, e — 0.

[GGG, 2018] For s =1, NP-hard at radius 1 — R —¢.

We have efficient algorithms for s ~ 1/£2.

(Runtime not yet ‘poly’ in 1/, but still EA\ST()

Question. Is there a threshold sy such that

HARD for s < sg, and EASY for s > s 7



Hardness of decoding

Assume some € > %, e — 0.

[GGG18] BDD is NP-hard for s = 1.
We know: List decoding is EASY for s ~ 1/&2.

[Gandikota, Grigorescu, V., 2025]
BDD is NP-hard for s ~ (Iog(l/e))%fo(l).
For multiplicity codes,
[GGG18] + polynomial method extended to multiplicities.

For FRS codes,

with ~-derivatives v/, without -derivatives ?



Hardness of decoding

Assume some € > %, e — 0.

[GGG18] BDD is NP-hard for s = 1.
We know: List decoding is EASY for s ~ 1/¢2.

[Gandikota, Grigorescu, V., 2025]
BDD is NP-hard for s ~ (log(1/))z°®.

Question. What happens at s ~1/e ?



3 X trick = technique

So far. ..

SESES
Y



Thank You



