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Minimum Distance and Rate

An [𝑛,𝑘] linear code 𝐶 has two important parameters:
Angle-Right Minimum distance: For a linear code 𝐶, 𝑑𝐻(𝐶) ∶=min{𝑤(𝑦) ∶ 𝑦 ∈ 𝐶}.

Angle-Right Rate: 𝑅(𝐶) = 𝑘/𝑛.

Theorem (Singleton bound)

𝑑𝐻(𝐶) ≤ 𝑛−𝑘+1.

Angle-Right Optimal over sufficiently large fields.
Angle-Right Achieved by codes such as Reed–Solomon codes.
Angle-Right Codes attaining the Singleton bound are called MDS codes.



Ra
nd

om
G
ab

id
ul
in
Co

de
s

—
Ze

yu
G
uo

2/21

Minimum Distance and Rate

An [𝑛,𝑘] linear code 𝐶 has two important parameters:
Angle-Right Minimum distance: For a linear code 𝐶, 𝑑𝐻(𝐶) ∶=min{𝑤(𝑦) ∶ 𝑦 ∈ 𝐶}.
Angle-Right Rate: 𝑅(𝐶) = 𝑘/𝑛.

Theorem (Singleton bound)

𝑑𝐻(𝐶) ≤ 𝑛−𝑘+1.

Angle-Right Optimal over sufficiently large fields.
Angle-Right Achieved by codes such as Reed–Solomon codes.
Angle-Right Codes attaining the Singleton bound are called MDS codes.



Ra
nd

om
G
ab

id
ul
in
Co

de
s

—
Ze

yu
G
uo

2/21

Minimum Distance and Rate

An [𝑛,𝑘] linear code 𝐶 has two important parameters:
Angle-Right Minimum distance: For a linear code 𝐶, 𝑑𝐻(𝐶) ∶=min{𝑤(𝑦) ∶ 𝑦 ∈ 𝐶}.
Angle-Right Rate: 𝑅(𝐶) = 𝑘/𝑛.

Theorem (Singleton bound)

𝑑𝐻(𝐶) ≤ 𝑛−𝑘+1.

Angle-Right Optimal over sufficiently large fields.
Angle-Right Achieved by codes such as Reed–Solomon codes.
Angle-Right Codes attaining the Singleton bound are called MDS codes.



Ra
nd

om
G
ab

id
ul
in
Co

de
s

—
Ze

yu
G
uo

2/21

Minimum Distance and Rate

An [𝑛,𝑘] linear code 𝐶 has two important parameters:
Angle-Right Minimum distance: For a linear code 𝐶, 𝑑𝐻(𝐶) ∶=min{𝑤(𝑦) ∶ 𝑦 ∈ 𝐶}.
Angle-Right Rate: 𝑅(𝐶) = 𝑘/𝑛.

Theorem (Singleton bound)

𝑑𝐻(𝐶) ≤ 𝑛−𝑘+1.

Angle-Right Optimal over sufficiently large fields.

Angle-Right Achieved by codes such as Reed–Solomon codes.
Angle-Right Codes attaining the Singleton bound are called MDS codes.



Ra
nd

om
G
ab

id
ul
in
Co

de
s

—
Ze

yu
G
uo

2/21

Minimum Distance and Rate

An [𝑛,𝑘] linear code 𝐶 has two important parameters:
Angle-Right Minimum distance: For a linear code 𝐶, 𝑑𝐻(𝐶) ∶=min{𝑤(𝑦) ∶ 𝑦 ∈ 𝐶}.
Angle-Right Rate: 𝑅(𝐶) = 𝑘/𝑛.

Theorem (Singleton bound)

𝑑𝐻(𝐶) ≤ 𝑛−𝑘+1.

Angle-Right Optimal over sufficiently large fields.
Angle-Right Achieved by codes such as Reed–Solomon codes.

Angle-Right Codes attaining the Singleton bound are called MDS codes.



Ra
nd

om
G
ab

id
ul
in
Co

de
s

—
Ze

yu
G
uo

2/21

Minimum Distance and Rate

An [𝑛,𝑘] linear code 𝐶 has two important parameters:
Angle-Right Minimum distance: For a linear code 𝐶, 𝑑𝐻(𝐶) ∶=min{𝑤(𝑦) ∶ 𝑦 ∈ 𝐶}.
Angle-Right Rate: 𝑅(𝐶) = 𝑘/𝑛.

Theorem (Singleton bound)

𝑑𝐻(𝐶) ≤ 𝑛−𝑘+1.

Angle-Right Optimal over sufficiently large fields.
Angle-Right Achieved by codes such as Reed–Solomon codes.
Angle-Right Codes attaining the Singleton bound are called MDS codes.



Ra
nd

om
G
ab

id
ul
in
Co

de
s

—
Ze

yu
G
uo

3/21

Rank Codes: Matrix Formulation

Angle-Right A rank code is a finite set 𝐶 of 𝑠 ×𝑛 matrices over 𝔽𝑞.

Angle-Right It uses the rank distance 𝑑𝑅 instead of the Hamming distance 𝑑𝐻:

𝑑𝑅(𝑀1,𝑀2) ∶= rank(𝑀1−𝑀2).

Angle-Right The Singleton bound also holds with respect to the rank metric.
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Rank Codes: Vector Formulation

Fix a bijective 𝔽𝑞-linear map 𝔽𝑠
𝑞 →𝔽𝑞𝑠 .

∈ 𝔽𝑠
𝑞 ∈ 𝔽𝑞𝑠 ∈ 𝔽𝑠×𝑛

𝑞 ∈ 𝔽𝑛
𝑞𝑠

Remark

𝑑𝑅(𝑥,𝑦) ≤ 𝑑𝐻(𝑥,𝑦).
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Rank Codes: Vector Formulation

Remark

𝑑𝑅(𝑥,𝑦) ≤ 𝑑𝐻(𝑥,𝑦).

Corollary (Singleton bound)

𝑑𝑅(𝐶) ≤ 𝑛−𝑘+1 for an [𝑛,𝑘] linear rank code 𝐶 over 𝔽𝑞𝑠 .

Rank codes achieving this bound are called Maximum Rank Distance (MRD) codes.

Corollary

All MRD codes are MDS codes.
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Linearized Polynomials

Definition (Linearized polynomials)

Let 𝑞 be a prime power. We say 𝑓(𝑥) is 𝑞-linearized if it has the form

𝑓(𝑥) = 𝑎𝑑𝑥
𝑞𝑑 +𝑎𝑑−1𝑥

𝑞𝑑−1
+⋯+𝑎1𝑥

𝑞+𝑎0𝑥.

where deg𝑞(𝑓) ∶= 𝑑 is called the 𝑞-degree of 𝑓.

Angle-Right The composition of two 𝑞-linearized polynomial is again a 𝑞-linearized
polynomial.

Angle-Right Composition is generally noncommutative: (𝑐𝑋)∘(𝑋𝑞) = 𝑐𝑋𝑞 while
(𝑋𝑞)∘ (𝑐𝑋) = 𝑐𝑞𝑋𝑞.
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Gabidulin Codes

Definition (Gabidulin codes)

Given 𝛼1,𝛼2,…,𝛼𝑛 ∈ 𝔽𝑞𝑠 that are linearly independent over 𝔽𝑞, the corresponding
[𝑛,𝑘] Gabidulin code is

G𝑛,𝑘(𝛼1,…,𝛼𝑛) ∶={(𝑓(𝛼1),…,𝑓(𝛼𝑛)) |
𝑞-linearized 𝑓 ∈ 𝔽𝑞𝑠[𝑥],
deg𝑞(𝑓) < 𝑘 }⊆𝔽𝑛

𝑞𝑠 .

Theorem
Gabidulin codes are MRD codes.
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Why Care About Rank Codes and Gabidulin Codes?

Angle-Right Useful for error and erasure correction in network coding (e.g.,
[Koetter–Kschischang ’08], [Silva–Koetter–Kschischang ’08]).

Angle-Right Applied in constructing public-key cryptosystems (e.g., [Chabaud–Stern ’96],
[Loidreau ’10]).

Angle-Right Connected with two-source rank condensers [Forbes–Guruswami ’14], dimension
expanders [Guruswami–Resch–Xing ’18], and deterministic extractors
[Guo–Volk–Jalan–Zuckerman ’23].
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Combinatorial List Decodability

Definition (Combinatorial list decodability)

For 𝜌 ∈ [0,1] and 𝐿 ≥ 1, a code 𝐶 ⊆ 𝔽𝑛
𝑞 is (𝜌,𝐿) list decodable if for all 𝑦 ∈ 𝔽𝑛

𝑞 and 𝐿+1
distinct codewords 𝑐0, 𝑐1,…,𝑐𝐿 ∈ 𝐶,

max
0≤𝑖≤𝐿

𝑑(𝑦,𝑐𝑖) > 𝜌𝑛.

Definition (Average-radius combinatorial list decodability)

For 𝜌 ∈ [0,1] and 𝐿 ≥ 1, a code 𝐶 ⊆ 𝔽𝑛
𝑞 is (𝜌,𝐿) average-radius list decodable if for all

𝑦 ∈ 𝔽𝑛
𝑞 and 𝐿 +1 distinct codewords 𝑐0, 𝑐1,…,𝑐𝐿 ∈ 𝐶,

1
𝐿 +1

𝐿
∑
𝑖=0

𝑑(𝑦,𝑐𝑖) > 𝜌𝑛.
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𝑦 ∈ 𝔽𝑛
𝑞 and 𝐿 +1 distinct codewords 𝑐0, 𝑐1,…,𝑐𝐿 ∈ 𝐶,

1
𝐿 +1

𝐿
∑
𝑖=0

𝑑(𝑦,𝑐𝑖) > 𝜌𝑛.
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Combinatorial List Decodability of RS Codes in Hamming
Metric

Theorem (Johnson Bound)

Any [𝑛,𝑘] code 𝐶 with distance 𝑑(𝐶) is (1−√1− 𝑑(𝐶)
𝑛 ,𝑞𝑛𝑑(𝐶)) list decodable in the

Hamming metric.

Corollary

Any [𝑛,𝑘] RS code 𝐶 of rate 𝑅 over 𝔽𝑞 is (1−√𝑅,𝐿) list decodable in the Hamming
metric, where 𝐿 = 𝑞𝑛𝑑(𝐶).
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Combinatorial List Decodability of Gabidulin Codes in Rank
Metric

List decoding Gabidulin codes in the rank metric is more challenging:
Angle-Right There is no Johnson bound in the rank metric [Wachter-Zeh ’13].

Angle-Right There exist Gabidulin codes that are not list decodable beyond the unique
decoding radius [Raviv–Wachter-Zeh ’15].

What about a random Gabidulin code G𝑛,𝑘(𝛼1,…,𝛼𝑛)?
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Generalized Singleton Bound

Theorem (Generalized Singleton Bound [Shangguan–Tamo ’20])

If a linear code 𝐶 of rate 𝑅 is (𝜌,𝐿) list decodable in the Hamming metric, then

𝜌 ≤
𝐿

𝐿+1
(1−𝑅).

Theorem ([Brakensiek–Gopi–Makam ’23])

For any 𝐿, a random Reed–Solomon code of rate 𝑅 over a sufficiently large field is, w.h.p,
( 𝐿
𝐿+1(1−𝑅),𝐿) average-radius list decodable in the Hamming metric.

We show that random Gabidulin codes (over sufficiently large fields) achieve the
generalized Singleton bound, even in the rank metric.
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Higher Order MDS Codes

Theorem ([Brakensiek–Gopi–Makam ’23])

For any 𝐿, a random Reed–Solomon code of rate 𝑅 over a sufficiently large field is, w.h.p,
( 𝐿
𝐿+1(1−𝑅),𝐿) average-radius list decodable.

Angle-Right Brakensiek–Gopi–Makam ’23 introduced three notions of “higher order MDS
codes”: MDS(𝐿), GZP(𝐿), and LD-MDS(𝐿) for each 𝐿 ≥ 1.

Angle-Right 𝐶 is LD-MDS(𝐿) if it is ( 𝐿
𝐿+1(1−𝑅),𝐿) average-radius list decodable.

Angle-Right Brakensiek et al. proved that these notions are equivalent up to duality.

𝐶 is MDS(𝐿 +1)

𝐶 is GZP(𝐿 +1) 𝐶⟂ is LD-MDS(𝐿 ′)
for all 𝐿 ′ ≤ 𝐿
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GM-MDS Theorem

Theorem (GM-MDS Theorem [Lovett ’18, Yildiz–Hassibi ’18])

Random RS codes over large enough fields are w.h.p. GZP(𝐿) for all 𝐿 ≥ 1.

Angle-Right Combining this with
Angle-Double-Right the equivalence among higher order MDS codes (up to duality), and
Angle-Double-Right the fact that the dual code of an RS code is also an RS code up to scaling of

coordinates
proves the main result of [Brakensiek–Gopi–Makam ’23].
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Combinatorial List Decodability of Random Gabidulin Codes

Theorem (Guo–Xing–Yuan–Zhang ’24)

For any 𝐿 ≥ 1, a random Gabidulin code of rate 𝑅 over a sufficiently large field is, w.h.p,
( 𝐿
𝐿+1(1−𝑅),𝐿) average-radius list decodable in the rank metric.

To prove the theorem, we develop a theory of “higher-order MRD codes” for rank
codes, analogous to the theory of higher-order MDS codes developed by Brakensiek,
Gopi, and Makam.
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Higher Order MRD Codes

Angle-Right We introduce an analogous theory by introducing three notions of “higher order
MRD codes”: MRD(𝐿), GKP(𝐿), and LD-MRD(𝐿).

Angle-Right 𝐶 is LD-MRD(𝐿) if it is ( 𝐿
𝐿+1(1−𝑅),𝐿) average-radius list decodable in the rank

metric.
Angle-Right We further proved that these notions are equivalent up to duality.

𝐶 is MRD(𝐿 +1)

𝐶 is GKP(𝐿 +1) 𝐶⟂ is LD-MRD(𝐿 ′)
for all 𝐿 ′ ≤ 𝐿
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GM-MRD Theorem

Furthermore, we prove an analogy of the GM-MDS Theorem.

Theorem (GM-MRD Theorem [Guo–Xing–Yuan–Zhang ’24])

Random Gabilidulin codes over large enough fields are w.h.p. GKP(𝐿) for all 𝐿 ≥ 1.

Fact
The dual of a Gabidulin code is also a Gabidulin code.

Combining the GM-MRD theorem, the equivalence among higher order MRD codes,
and the fact that Gabidulin codes are self-dual, we obtain:

Corollary ([Guo–Xing–Yuan–Zhang ’24])

For all 𝐿 ≥ 1, random Gabidulin codes of rate 𝑅 over large enough fields are w.h.p.
( 𝐿
𝐿+1(1−𝑅),𝐿) average-radius list decodable in the rank metric.
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Generic Intersection Formula

Definition
For symbolic (generic) matrix 𝑊 =(𝑋𝑖𝑗) ∈ 𝔽𝑞(𝑋11,⋯,𝑋𝑘𝑛)

𝑘×𝑛 and a set 𝐴 ⊆ [𝑛],
define the subspace

𝑊𝐴 ∶= span𝔽𝑞(𝑋11,⋯,𝑋𝑘𝑛)
{𝑖-th column vector of 𝑊 ∶ 𝑖 ∈ 𝐴} ⊆ 𝔽𝑞(𝑋11,⋯,𝑋𝑘𝑛)

𝑘.

Theorem (Generic Intersection Formula [Brakensiek–Gopi–Makam ’23])

Given 𝐴1,…,𝐴ℓ ⊆ [𝑛] of size at most 𝑘, for a 𝑘×𝑛 generic matrix 𝑊,

dim(𝑊𝐴1
∩⋯∩𝑊𝐴ℓ

)= max
𝑃1⊔𝑃2⊔⋯⊔𝑃𝑠=[ℓ]

(∑
𝑖∈[𝑠]

|⋂
𝑗∈𝑃𝑖

𝐴𝑗|−(𝑠 −1)𝑘).
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Generic Intersection Formula: A Generalization

Definition
For symbolic (generic) matrix 𝑊 =(𝑋𝑖𝑗) ∈ 𝔽𝑞(𝑋11,⋯,𝑋𝑘𝑛)

𝑘×𝑛 and a subspace 𝑉 ⊆𝔽𝑛
𝑞 ,

define the subspace

𝑊𝑉 ∶= span𝔽𝑞(𝑋11,⋯,𝑋𝑘𝑛)
{𝑊 ⋅ ⃗𝑣 for ⃗𝑣 ∈ 𝑉} ⊆ 𝔽𝑞(𝑋11,⋯,𝑋𝑘𝑛)

𝑘.

Theorem ([Guo–Xing–Yuan–Zhang ’24])

Given 𝑉1,…,𝑉ℓ ⊆𝔽𝑛
𝑞 of dimension at most 𝑘, for a 𝑘×𝑛 generic matrix 𝑊,

dim(𝑊𝑉1
∩⋯∩𝑊𝑉ℓ

)= max
𝑃1⊔𝑃2⊔⋯⊔𝑃𝑠=[ℓ]

(∑
𝑖∈[𝑠]

dim𝔽𝑞
(⋂
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Reducing the Alphabet Size

Theorem (Guo–Xing–Yuan–Zhang ’24)

For any 𝐿 ≥ 1, a random Gabidulin code of rate 𝑅 over a sufficiently large field is, w.h.p,
( 𝐿
𝐿+1(1−𝑅),𝐿) average-radius list decodable in the rank metric.

Angle-Right It suffices to choose the alphabet size 𝑞𝑠 with 𝑠 = 𝑂𝐿(𝑛𝑘).
Angle-Right In a follow-up paper, we reduce the alphabet size.

Theorem (Guo–Xing–Yuan–Zhang)

For any 𝐿 ≥ 1, a random Gabidulin code of rate 𝑅 over a field of size 𝑞𝑠 = 𝑞𝑂𝐿,𝜀(𝑛) is,
w.h.p, ( 𝐿

𝐿+1(1−𝑅 −𝜀),𝐿) average-radius list decodable in the rank metric.

Angle-Right Analogous to [Guo–Zhang ’23] and [Alrabiah–Guruswami–Li ’23].
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Explicit Rank Codes Achieving Singleton Bound

Angle-Right [Mahdavifar–Vardy ’12] defined folded Gabidulin codes and showed that they
achieve the Singleton bound 1−𝑅 −𝜀 in the rank metric. However, the rate 𝑅 in
their result approaches zero.

Angle-Right [Guruswami–Xing ’12] gave a Monte-Carlo construction of subcodes of folded
Gabidulin codes that are (1−𝑅 −𝜀,𝑂(1/𝜀)) list decodable in the rank metric.

Angle-Right [Guruswami–Wang–Xing ’16] gave an explicit construction of subcodes of folded
Gabidulin codes that are (1−𝑅 −𝜀,(1/𝜀)𝑂(1/𝜀)) list decodable in the rank metric.
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