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Problem Definitions

* Nearest Codeword Problem

* Input: a linear code C € g, and a vector b € Fg.

* Output: the minimum distance from b to any codeword in C, i.e., melgl b —clp.
c
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Problem Definitions

\

Nearest Codeword Problem (An Equivalent View)

* Input: an affine subspace V < TFg.

* Output: the minimum Hamming weight of a vector x € V.




Problem Definitions

* Nearest Codeword Problem (An Equivalent View)

* Input: an affine subspace V € [Fy.

* Output: the minimum Hamming weight of a vector x € V.
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% Minimum Distance Problem

* Input: alinear code (a.k.a. subspace) C € [F.

e Output: the minimum Hamming weight of a non-zero codeword in C.
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Hardness of NCP and MDP

NP-hardness of NCP:

* reducing from ExactCover.

NP-hardness of MDP:

e [Vardy’97], using as a gadget a Reed-Solomon code concatenated with Hadamard code.

NP-hardness of approximating NCP: \ 5d
t € Fg

« still from ExactCover, a direct corollary of PCP theorem

NP-hardness of approximating MDP:
e [Dumer-Micciancio-Sudan’03], a randomized reduction, using locally dense code as a gadget

* derandomized by [Cheng-Wan’12, Austrin-Khot'14, Micciancio’'14]



Our Results

A simple deterministic reduction showing the inapproximability of NCP/MDP within any
constant factors assuming NP+P

PCP-free

Deterministic

Homogenization in a reverse way - MDP -> NCP



Proof Overview

 Starting Point:

« satisfiability of a system of homogeneous quadratic equations

* Key tools:
* bound on the 2nd generalized Hamming weight of any code
* rank-1 testing of a matrix in a tensor code, via Hamming weight

e an &-balanced code

 Idea:
* rewrite QuadEQ as rank-1 testing
* use e-balanced code to ensure in the (YES) case we have low weight

 use the bound on 2"d generalized Hamming weight to argue in the (NO) case, every solution has high
weight



2"d Generalized Hamming Weight

~

* For any linear code C < Fy with distance d(C), the 2" generalized Hamming weight, written as d, (C),
is defined as the minimum of

[supp(w) U supp(v)|,
\_ for any linearly independent codewords u, v € C. Y,




2"d Generalized Hamming Weight

~

* For any linear code € € F with distance d(C), the 2" generalized Hamming weight, written as d,(C),
is defined as the minimum of

[supp(w) U supp(v)|,
for any linearly independent codewords u, v € C.

J
1
* Fact:d,(C) = (1+—)d C).
-+ Facudy(0) 2 (1+)dO). | S y
* Proof:
supp(v) v
* Since C is a linear code, VA € F, u + Av also belongs to C
* The sparsest vector u + Av among all choices of A has weight < u+ Av
1
ulo +1vlo — (1 + =) Isupp(w) 0 supp(v) o
by pigeonhole, but this should be = d(C) = =7 [supp(w) N supp(v)|

* Rearranging gives desired bound



Rank-1 Testing via Hamming Weights

* For any linear code C € Fj; with distance d(C), consider the tensor code C®C, we have:
(1) Some rank-1 matrix M € CQC achieves |M|, = d(C)?.

S * (2) Every rank-(=2) matrix M € CQC has |[M|, = (1 + %) d(C)%.

* Proof of (2): r

* Any matrix M of rank = 2 has two linearly independent rows 7y, 1,




Rank-1 Testing via Hamming Weights

* For any linear code C € Fj; with distance d(C), consider the tensor code C®C, we have:

(1) Some rank-1 matrix M € CQC achieves |M|, = d(C)?.

S * (2) Every rank-(=2) matrix M € CQC has |[M|, = (1 + %) d(C)%.

vy

joint support size
* Proof of (2): 2 1 >(1+2)d(©)

\A /4

* Any matrix M of rank = 2 has two linearly independent rows 7y, 1,

* By the bound on 2" generalized Hamming weight, r;, r, have joint support size > (1 + 2) d(C)



Rank-1 Testing via Hamming Weights

"

For any linear code C € [F; with distance d(C), consider the tensor code C®C, we have:

(1) Some rank-1 matrix M € CQC achieves |M|, = d(C)?.

* (2) Every rank-(=2) matrix M € CQC has |[M|, = (1 + %) d(C)>. y

-

every column
also belongs to C

Proof of (2):

* Any matrix M of rank = 2 has two linearly independent rows 7y, 1,

* By the bound on 2" generalized Hamming weight, r;, r, have joint support size > (1 + 2) d(C)

 For each column c in their joint support, ¢ has weight > d(C) since M € CQC



c=-Balanced Codes

* Alinear code C € Fj with distance d(C) is said to be e-balanced if the Hamming weight of any
non-zero codeword is in [d(C), (1 + £)d(C)].

* A construction of e-balanced code over IFq:

» Take Reed-Solomon code with degree en (it has distance (1 — €)n and is thus e-balanced)

* (Concatenate it with Hadamard code over F,



NP-hardness of QuadEQ

(o (Non-homogeneous) QuadEQ: N\

* Input: a system of m quadratic equations on n variables {x;, ..., x, } over F:

(t) _
{ z Ai,j Xl'Xj = b(t)}

Lj€n] te[m]

\. Output: whether there is a solution {x, ..., x,, } /

 NP-hardness:

* Reduce from Circuit Satisfiability
* Add an equation x;(x; — 1) = 0 for each variable to ensure it takes Boolean value

* Add an equation constraining each gate’s computation (e.g. for an AND gate y;, = y; A y;, add an

equation xj; = x;x;)




NP-hardness of QuadEQ

( (Homogeneous) QuadEQ:

* Input: a system of m quadratic equations on n variables {x;, ..., x, } over F:

() _
{ z Ai,j xl-xj = O}

Lj€lnl te[m]

k° Output: whether there is a non-zero solution {x4, ..., x,;}

* NP-hardness:
* Reduce from non-homogeneous version
* Add a variable z, replacing the constant 1
* Add an equation x;(x; — z) = 0 for each variable, to ensure it takes either 0 or z
» If z takes 0 in some solution, then every x; also has to take 0, and this is the all-0 solution

* Otherwise, {xiz‘l}ie[n] is a solution to the non-homogeneous system



Reducing Homo-QuadEQ to gap MDP

e Take a Homo-QuadEQ instance (n, m, {AE?} el ]).
7 ) jEIn teE[m

* LetG € IFIC}’ “ be the generating matrix of an e-balanced code C with distance d(C).

K The output MDP instance: \

 the subspace of matrices
GXG",X € Fp*™,

with constraints

e XT =X

(t) _




Reducing Homo-QuadEQ to gap MDP

{- V ={GXGT | X € FP*", XT = X,Vt € [m], ¥ jepmy AL X ; = 0) }

* (Completeness)

 Letx € [Fj be the non-zero solution of Homo-QuadEQ, we take X = xxT.

¢ GXGT = (Gx)(Gx)T, which has weight (1 + £)2d(C)? by the e-balanced property of C.



Reducing Homo-QuadEQ to gap MDP

{- V ={GXGT | X € FP*", XT = X,Vt € [m], ¥ jepmy AL X ; = 0) }

* (Soundness)

* Suppose Homo-QuadEQ has no non-zero solution, we argue d(V) = (1 + é) d(C)2.

 If X isrank-1, then X = xx” for some non-zero solution x of Homo-QuadEQ.

 If X hasrank > 2, then GXG7 is a matrix in CQC with rank > 2. |GXGT|, = (1 + g) d(C)?



Corollaries

* Simple tensoring amplifies the inapproximability ratio of MDP to
* any constant assuming NP+#P;

&

. Zlogl— 0(1) Tl)

" assuming NPZDTIME(2!°8

« n¢/10810g™ for some fixed ¢, assuming NP€Ng+ DTIME(Z"S)

e Same inapproximability ratios for NCP:

» the same reduction, but from Non-Homo-QuadEQ, to get a mild constant gap

« then amplify the gap, which is a bit non-trivial

* An alternative way to get NCP:
 in our (YES) case of MDP, there is a coordinate which always takes 1

* don’t need to worry about all-0 solutions



