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Problem Definitions

• Nearest Codeword Problem
• Input: a linear code 𝐶 ⊆ 𝔽!", and a vector 𝑏 ∈ 𝔽!".

• Output: the minimum distance from 𝑏 to any codeword in 𝐶, i.e.,min
#∈%

| |𝑏 − 𝑐 &.



Problem Definitions

• Nearest Codeword Problem	(An	Equivalent	View)
• Input: an affine subspace V ⊆ 𝔽'(.

• Output: the minimum Hamming weight of a vector 𝑥 ∈ 𝑉.



• Nearest Codeword Problem	(An	Equivalent	View)
• Input: an affine subspace V ⊆ 𝔽!".

• Output: the minimum Hamming weight of a vector 𝑥 ∈ 𝑉.

• MinimumDistance Problem
• Input: a linear code	(a.k.a.	subspace) 𝐶 ⊆ 𝔽!".

• Output: the minimum Hamming weight of a non-zero codeword in 𝐶.

Problem Definitions



Hardness of NCP and MDP

• NP-hardness of NCP:
• reducing from ExactCover.

• NP-hardness of MDP:
• [Vardy’97], using as a gadget a Reed-Solomon code concatenated with Hadamard code.

• NP-hardness of approximating NCP:
• still from ExactCover, a direct corollary of PCP theorem

• NP-hardness of approximating MDP:

• [Dumer-Micciancio-Sudan’03], a randomized reduction, using locally dense code as a gadget

• derandomized by [Cheng-Wan’12, Austrin-Khot’14, Micciancio’14]

𝑑

𝛿𝑑
0! 𝑡 ∈ 𝔽!"



Our Results

• A	simple	deterministic	reduction	showing	the	inapproximability	of	NCP/MDP	within	any	
constant	factors	assuming	NP≠P

• PCP-free

• Deterministic

• Homogenization	in	a	reverse	way	–	MDP	->	NCP



Proof Overview

• Starting	Point:
• satisfiability	of	a	system	of	homogeneous	quadratic	equations

• Key	tools:
• bound	on	the	2nd	generalized	Hamming	weight	of	any	code

• rank-1	testing	of	a	matrix	in	a	tensor	code,	via	Hamming	weight

• an	𝜀-balanced	code

• Idea:
• rewrite	QuadEQ	as	rank-1	testing
• use	𝜀-balanced	code	to	ensure	in	the	(YES)	case	we	have	low	weight

• use	the	bound	on	2nd	generalized	Hamming	weight	to	argue	in	the	(NO)	case,	every	solution	has	high	
weight



2nd Generalized Hamming Weight

• For	any	linear	code	𝐶 ⊆ 𝔽!"	with	distance	𝑑(𝐶),	the	2nd	generalized	Hamming	weight,	written	as	𝑑)(𝐶),	
is	defined	as	the	minimum	of

supp 𝑢 ∪ supp 𝑣 ,
for	any	linearly	independent	codewords	𝑢, 𝑣 ∈ 𝐶.



2nd Generalized Hamming Weight

• For	any	linear	code	𝐶 ⊆ 𝔽!"	with	distance	𝑑(𝐶),	the	2nd	generalized	Hamming	weight,	written	as	𝑑)(𝐶),	
is	defined	as	the	minimum	of

supp 𝑢 ∪ supp 𝑣 ,
for	any	linearly	independent	codewords	𝑢, 𝑣 ∈ 𝐶.

• Fact:	𝑑#(𝐶) ≥ 1 + $
%
𝑑(𝐶).

• Proof:
• Since	𝐶	is	a	linear	code,	∀𝜆 ∈ 𝔽$ ,	𝑢 + 𝜆𝑣	also	belongs	to	𝐶
• The	sparsest	vector	𝑢 + 𝜆𝑣	among	all	choices	of	𝜆	has	weight	≤

𝑢 % + 𝑣 % − 1 +
1

𝑞 − 1 supp 𝑢 ∩ supp 𝑣

by	pigeonhole,	but	this	should	be	≥ 𝑑(𝐶)
• Rearranging	gives	desired	bound

supp(𝑢)

supp(𝑣)

𝑢

𝑣

𝑢 + 𝜆𝑣

≥
1

𝑞 − 1 |supp(𝑢) ∩ supp(𝑣)|



Rank-1 Testing via Hamming Weights

• For	any	linear	code	𝐶 ⊆ 𝔽!"	with	distance	𝑑(𝐶),	consider	the	tensor	code	𝐶⨂𝐶,	we	have:
• (1)	Some	rank-1	matrix	𝑀 ∈ 𝐶⨂𝐶	achieves 𝑀 & = 𝑑(𝐶)).

• (2)	Every	rank-(≥2)	matrix	𝑀 ∈ 𝐶⨂𝐶	has 𝑀 & ≥ 1 + *
!
𝑑(𝐶)).

• Proof	of	(2):
• Any	matrix	𝑀	of	rank	≥ 2	has	two	linearly	independent	rows	𝑟*, 𝑟)

𝑟"

𝑟#



𝑟#

Rank-1 Testing via Hamming Weights

• For	any	linear	code	𝐶 ⊆ 𝔽!"	with	distance	𝑑(𝐶),	consider	the	tensor	code	𝐶⨂𝐶,	we	have:
• (1)	Some	rank-1	matrix	𝑀 ∈ 𝐶⨂𝐶	achieves 𝑀 & = 𝑑(𝐶)).

• (2)	Every	rank-(≥2)	matrix	𝑀 ∈ 𝐶⨂𝐶	has 𝑀 & ≥ 1 + *
!
𝑑(𝐶)).

• Proof	of	(2):
• Any	matrix	𝑀	of	rank	≥ 2	has	two	linearly	independent	rows	𝑟*, 𝑟)

• By	the	bound	on	2nd	generalized	Hamming	weight,	𝑟*, 𝑟)	have	joint	support	size	≥ 1 + *
!
𝑑(𝐶)

	

𝑟"

joint	support	size	
≥ 1 + "

$
𝑑(𝐶)



Rank-1 Testing via Hamming Weights

• For	any	linear	code	𝐶 ⊆ 𝔽!"	with	distance	𝑑(𝐶),	consider	the	tensor	code	𝐶⨂𝐶,	we	have:
• (1)	Some	rank-1	matrix	𝑀 ∈ 𝐶⨂𝐶	achieves 𝑀 & = 𝑑(𝐶)).

• (2)	Every	rank-(≥2)	matrix	𝑀 ∈ 𝐶⨂𝐶	has 𝑀 & ≥ 1 + *
!
𝑑(𝐶)).

• Proof	of	(2):
• Any	matrix	𝑀	of	rank	≥ 2	has	two	linearly	independent	rows	𝑟*, 𝑟)

• By	the	bound	on	2nd	generalized	Hamming	weight,	𝑟*, 𝑟)	have	joint	support	size	≥ 1 + *
!
𝑑(𝐶)

• For	each	column	𝑐	in	their	joint	support,	𝑐	has	weight	≥ 𝑑 𝐶 	since	𝑀 ∈ 𝐶⨂𝐶	

every	column	
also	belongs	to	𝐶



𝜀-Balanced Codes

• A	linear	code	𝐶 ⊆ 𝔽!"	with	distance	𝑑(𝐶)	is	said	to	be	𝜀-balanced	if	the	Hamming	weight	of	any	
non-zero	codeword	is	in	[𝑑 𝐶 , 1 + 𝜀 𝑑(𝐶)].

• A	construction	of	𝜀-balanced	code	over	𝔽!:
• Take	Reed-Solomon	code	with	degree	𝜀𝑛	(it	has	distance 1 − 𝜀 𝑛	and	is	thus	𝜀-balanced)

• Concatenate	it	with	Hadamard	code	over	𝔽!



NP-hardness of QuadEQ

• (Non-homogeneous)	QuadEQ:
• Input:	a	system	of	𝑚	quadratic	equations	on	𝑛	variables	{𝑥*, … , 𝑥"}	over	𝔽!:

I
+,-∈ "

𝐴+,-
. 𝑥+𝑥- = 𝑏(.)

.∈[2]

• Output:	whether	there	is	a	solution	{𝑥*, … , 𝑥"}

• NP-hardness:
• Reduce	from	Circuit	Satisfiability
• Add	an	equation	𝑥+ 𝑥+ − 1 = 0	for	each	variable	to	ensure	it	takes	Boolean	value
• Add	an	equation	constraining	each	gate’s	computation	(e.g.	for	an	AND	gate	𝑦4 = 𝑦+ ∧ 𝑦- ,	add	an	
equation	𝑥4) = 𝑥+𝑥-)



NP-hardness of QuadEQ

• (Homogeneous)	QuadEQ:
• Input:	a	system	of	𝑚	quadratic	equations	on	𝑛	variables	{𝑥*, … , 𝑥"}	over	𝔽!:

I
+,-∈ "

𝐴+,-
. 𝑥+𝑥- = 0

.∈[2]

• Output:	whether	there	is	a	non-zero	solution	{𝑥*, … , 𝑥"}

• NP-hardness:
• Reduce	from	non-homogeneous	version
• Add	a	variable	𝑧,	replacing	the	constant	1
• Add	an	equation	𝑥& 𝑥& − 𝑧 = 0	for	each	variable,	to	ensure	it	takes	either	0	or	𝑧
• If	𝑧	takes	0	in	some	solution,	then	every	𝑥& 	also	has	to	take	0,	and	this	is	the	all-0	solution

• Otherwise, 𝑥&𝑧'( &∈ ) 	is	a	solution	to	the	non-homogeneous	system



• Take	a	Homo-QuadEQ instance 𝑛,𝑚, 𝐴#,%
&

#,%∈ " ,&∈[)]
.

• Let	𝐺 ∈ 𝔽!+×"	be	the	generating	matrix	of	an	𝜀-balanced	code	𝐶	with	distance	𝑑(𝐶).

• The	output	MDP	instance:
• the	subspace	of	matrices

𝐺𝑋𝐺5 , 𝑋 ∈ 𝔽!"×",

with	constraints

• 𝑋5 = 𝑋

• ∀𝑡 ∈ 𝑚 ,∑+,-∈ " 𝐴+,-
. 𝑋+,- = 0

Reducing Homo-QuadEQ to gap MDP



Reducing Homo-QuadEQ to gap MDP

• 𝑉 = 𝐺𝑋𝐺-	 𝑋 ∈ 𝔽!"×", 𝑋- = 𝑋, ∀𝑡 ∈ 𝑚 ,∑#,%∈ " 𝐴#,%
& 𝑋#,% = 0}

• (Completeness)
• Let	𝑥 ∈ 𝔽!"	be	the	non-zero	solution	of	Homo-QuadEQ,	we	take	𝑋 = 𝑥𝑥5 .

• 𝐺𝑋𝐺5 = 𝐺𝑥 𝐺𝑥 5 ,	which	has	weight 1 + 𝜀 )𝑑(𝐶))	by	the	𝜀-balanced	property	of	𝐶.



Reducing Homo-QuadEQ to gap MDP

• 𝑉 = 𝐺𝑋𝐺-	 𝑋 ∈ 𝔽!"×", 𝑋- = 𝑋, ∀𝑡 ∈ 𝑚 ,∑#,%∈ " 𝐴#,%
& 𝑋#,% = 0}

• (Soundness)

• Suppose	Homo-QuadEQ	has	no	non-zero	solution,	we	argue	𝑑(𝑉) ≥ 1 + *
!
𝑑(𝐶)).

• If	𝑋	is	rank-1,	then	𝑋 = 𝑥𝑥5 	for	some	non-zero	solution	𝑥	of	Homo-QuadEQ.

• If	𝑋	has	rank	≥ 2,	then	𝐺𝑋𝐺5 	is	a	matrix	in	𝐶⨂𝐶	with	rank	≥ 2. 𝐺𝑋𝐺5 & ≥ 1 + *
!
𝑑 𝐶 )



Corollaries

• Simple	tensoring	amplifies	the	inapproximability	ratio	of	MDP	to
• any	constant	assuming	NP≠P;

• 2789#$% "	assuming	NP⊈DTIME(2789&(#) ")

• 𝑛#/ 789 789 "	for	some	fixed	𝑐,	assuming	NP⊈∩;<&DTIME(2"
))

• Same	inapproximability	ratios	for	NCP:
• the	same	reduction,	but	from	Non-Homo-QuadEQ,	to	get	a	mild	constant	gap
• then	amplify	the	gap,	which	is	a	bit	non-trivial

• An	alternative	way	to	get	NCP:
• in	our	(YES)	case	of	MDP,	there	is	a	coordinate	which	always	takes	1

• don’t	need	to	worry	about	all-0	solutions


