PCP-free Inapproximability of Nearest Codeword and Minimum Distance

Xuandi Ren

UC Berkeley

Based on a joint work with

Vijay Bhattiprolu, Venkat Guruswami, and Euiwoong Lee

Problem Definitions

Nearest Codeword Problem

• Input: a linear code $C \subseteq \mathbb{F}_q^n$, and a vector $b \in \mathbb{F}_q^n$.

• Output: the minimum distance from *b* to any codeword in *C*, i.e., $\min_{c \in C} |b - c|_0$.

Problem Definitions

• Nearest Codeword Problem (An Equivalent View)

- Input: an affine subspace $V \subseteq \mathbb{F}_q^n$.
- Output: the minimum Hamming weight of a vector $x \in V$.

Problem Definitions

• Nearest Codeword Problem (An Equivalent View)

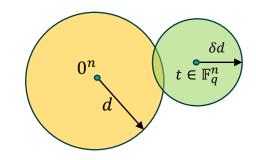
- Input: an affine subspace $V \subseteq \mathbb{F}_q^n$.
- Output: the minimum Hamming weight of a vector $x \in V$.

Minimum Distance Problem

- Input: a linear code (a.k.a. subspace) $C \subseteq \mathbb{F}_q^n$.
- Output: the minimum Hamming weight of a non-zero codeword in *C*.

Hardness of NCP and MDP

- NP-hardness of NCP:
 - reducing from ExactCover.
- NP-hardness of MDP:
 - [Vardy'97], using as a gadget a Reed-Solomon code concatenated with Hadamard code.
- NP-hardness of approximating NCP:
 - still from ExactCover, a direct corollary of PCP theorem
- NP-hardness of approximating MDP:
 - [Dumer-Micciancio-Sudan'03], a randomized reduction, using *locally dense code* as a gadget
 - derandomized by [Cheng-Wan'12, Austrin-Khot'14, Micciancio'14]



Our Results

- A simple deterministic reduction showing the inapproximability of NCP/MDP within any constant factors assuming NP≠P
- PCP-free
- Deterministic
- Homogenization in a reverse way MDP -> NCP

Proof Overview

- Starting Point:
 - satisfiability of a system of homogeneous quadratic equations
- Key tools:
 - bound on the 2nd generalized Hamming weight of any code
 - rank-1 testing of a matrix in a tensor code, via Hamming weight
 - an ε -balanced code
- Idea:
 - rewrite QuadEQ as rank-1 testing
 - use ε -balanced code to ensure in the (YES) case we have low weight
 - use the bound on 2nd generalized Hamming weight to argue in the (NO) case, every solution has high weight

2nd Generalized Hamming Weight

For any linear code C ⊆ Fⁿ_q with distance d(C), the 2nd generalized Hamming weight, written as d₂(C), is defined as the minimum of

 $|\operatorname{supp}(u) \cup \operatorname{supp}(v)|,$

for any linearly independent codewords $u, v \in C$.

2nd Generalized Hamming Weight

For any linear code C ⊆ Fⁿ_q with distance d(C), the 2nd generalized Hamming weight, written as d₂(C), is defined as the minimum of

 $|\operatorname{supp}(u) \cup \operatorname{supp}(v)|,$

for any linearly independent codewords $u, v \in C$.

• Fact:
$$d_2(C) \ge \left(1 + \frac{1}{q}\right) d(C)$$
.

• Proof:

- Since *C* is a linear code, $\forall \lambda \in \mathbb{F}_q$, $u + \lambda v$ also belongs to *C*
- The sparsest vector $u + \lambda v$ among all choices of λ has weight \leq

$$|u|_0 + |v|_0 - \left(1 + \frac{1}{q-1}\right)|\operatorname{supp}(u) \cap \operatorname{supp}(v)|$$

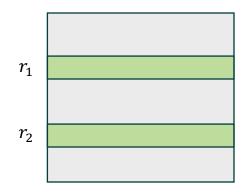
by pigeonhole, but this should be $\geq d(C)$

• Rearranging gives desired bound

Rank-1 Testing via Hamming Weights

- For any linear code $C \subseteq \mathbb{F}_q^n$ with distance d(C), consider the tensor code $C \otimes C$, we have:
 - (1) Some rank-1 matrix $M \in C \otimes C$ achieves $|M|_0 = d(C)^2$.
 - (2) Every rank-(≥ 2) matrix $M \in C \otimes C$ has $|M|_0 \geq \left(1 + \frac{1}{a}\right) d(C)^2$.

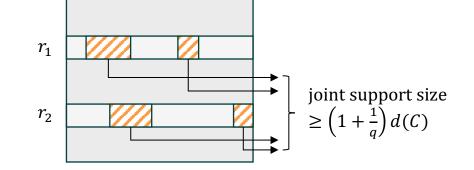
- Proof of (2):
 - Any matrix *M* of rank \geq 2 has two linearly independent rows r_1 , r_2



Rank-1 Testing via Hamming Weights

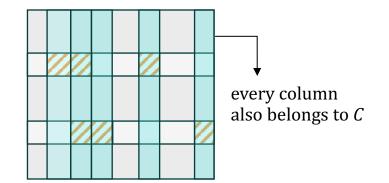
- For any linear code $C \subseteq \mathbb{F}_q^n$ with distance d(C), consider the tensor code $C \otimes C$, we have:
 - (1) Some rank-1 matrix $M \in C \otimes C$ achieves $|M|_0 = d(C)^2$.
 - (2) Every rank-(≥ 2) matrix $M \in C \otimes C$ has $|M|_0 \ge \left(1 + \frac{1}{a}\right) d(C)^2$.

- Proof of (2):
 - Any matrix *M* of rank \geq 2 has two linearly independent rows r_1, r_2
 - By the bound on 2nd generalized Hamming weight, r_1 , r_2 have joint support size $\geq \left(1 + \frac{1}{a}\right) d(C)$



Rank-1 Testing via Hamming Weights

- For any linear code $C \subseteq \mathbb{F}_q^n$ with distance d(C), consider the tensor code $C \otimes C$, we have:
 - (1) Some rank-1 matrix $M \in C \otimes C$ achieves $|M|_0 = d(C)^2$.
 - (2) Every rank-(≥ 2) matrix $M \in C \otimes C$ has $|M|_0 \ge \left(1 + \frac{1}{a}\right) d(C)^2$.



- Proof of (2):
 - Any matrix *M* of rank \geq 2 has two linearly independent rows r_1 , r_2
 - By the bound on 2nd generalized Hamming weight, r_1 , r_2 have joint support size $\geq \left(1 + \frac{1}{a}\right) d(C)$
 - For each column *c* in their joint support, *c* has weight $\ge d(C)$ since $M \in C \otimes C$

ε -Balanced Codes

A linear code C ⊆ Fⁿ_q with distance d(C) is said to be ε-balanced if the Hamming weight of any non-zero codeword is in [d(C), (1 + ε)d(C)].

- A construction of ε -balanced code over \mathbb{F}_q :
 - Take Reed-Solomon code with degree εn (it has distance $(1 \varepsilon)n$ and is thus ε -balanced)
 - Concatenate it with Hadamard code over \mathbb{F}_q

NP-hardness of QuadEQ

• (Non-homogeneous) QuadEQ:

• Input: a system of *m* quadratic equations on *n* variables $\{x_1, \dots, x_n\}$ over \mathbb{F}_q :

$$\sum_{i,j\in[n]} A_{i,j}^{(t)} x_i x_j = b^{(t)} \bigg\}_{t\in[m]}$$

- Output: whether there is a solution $\{x_1, \dots, x_n\}$
- NP-hardness:
 - Reduce from Circuit Satisfiability
 - Add an equation $x_i(x_i 1) = 0$ for each variable to ensure it takes Boolean value
 - Add an equation constraining each gate's computation (e.g. for an AND gate $y_k = y_i \wedge y_j$, add an equation $x_k^2 = x_i x_j$)

NP-hardness of QuadEQ

• (Homogeneous) QuadEQ:

• Input: a system of *m* quadratic equations on *n* variables $\{x_1, ..., x_n\}$ over \mathbb{F}_q :

$$\sum_{j \in [n]} A_{i,j}^{(t)} x_i x_j = 0 \bigg\}_{t \in [m]}$$

• Output: whether there is a *non-zero* solution $\{x_1, ..., x_n\}$

- NP-hardness:
 - Reduce from non-homogeneous version
 - Add a variable *z*, replacing the constant 1
 - Add an equation $x_i(x_i z) = 0$ for each variable, to ensure it takes either 0 or z
 - If z takes 0 in some solution, then every x_i also has to take 0, and this is the all-0 solution
 - Otherwise, $\{x_i z^{-1}\}_{i \in [n]}$ is a solution to the non-homogeneous system

Reducing Homo-QuadEQ to gap MDP

- Take a Homo-QuadEQ instance $\left(n, m, \left\{A_{i,j}^{(t)}\right\}_{i,j\in[n],t\in[m]}\right)$.
- Let $G \in \mathbb{F}_q^{N \times n}$ be the generating matrix of an ε -balanced code C with distance d(C).
- The output MDP instance:
 - the subspace of matrices

 $GXG^T, X \in \mathbb{F}_q^{n \times n}$,

with constraints

• $X^T = X$

•
$$\forall t \in [m], \sum_{i,j \in [n]} A_{i,j}^{(t)} X_{i,j} = 0$$

Reducing Homo-QuadEQ to gap MDP

•
$$V = \{GXG^T \mid X \in \mathbb{F}_q^{n \times n}, X^T = X, \forall t \in [m], \sum_{i,j \in [n]} A_{i,j}^{(t)} X_{i,j} = 0\}$$

- (Completeness)
 - Let $x \in \mathbb{F}_q^n$ be the non-zero solution of Homo-QuadEQ, we take $X = xx^T$.
 - $GXG^T = (Gx)(Gx)^T$, which has weight $(1 + \varepsilon)^2 d(C)^2$ by the ε -balanced property of C.

Reducing Homo-QuadEQ to gap MDP

•
$$V = \{GXG^T \mid X \in \mathbb{F}_q^{n \times n}, X^T = X, \forall t \in [m], \sum_{i,j \in [n]} A_{i,j}^{(t)} X_{i,j} = 0\}$$

- (Soundness)
 - Suppose Homo-QuadEQ has no non-zero solution, we argue $d(V) \ge \left(1 + \frac{1}{a}\right) d(C)^2$.
 - If *X* is rank-1, then $X = xx^T$ for some non-zero solution *x* of Homo-QuadEQ.
 - If X has rank ≥ 2 , then GXG^T is a matrix in $C \otimes C$ with rank ≥ 2 . $|GXG^T|_0 \geq \left(1 + \frac{1}{q}\right) d(C)^2$

Corollaries

- Simple tensoring amplifies the inapproximability ratio of MDP to
 - any constant assuming NP≠P;
 - $2^{\log^{1-\varepsilon} n}$ assuming NP $\not\subseteq$ DTIME $(2^{\log^{O(1)} n})$
 - $n^{c/\log \log n}$ for some fixed *c*, assuming NP $\subseteq \bigcap_{\delta>0}$ DTIME($2^{n^{\delta}}$)

- Same inapproximability ratios for NCP:
 - the same reduction, but from Non-Homo-QuadEQ, to get a mild constant gap
 - then amplify the gap, which is a bit non-trivial
- An alternative way to get NCP:
 - in our (YES) case of MDP, there is a coordinate which always takes 1
 - don't need to worry about all-0 solutions

