Efficient Cryptographic Proofs from RAA Codes

Martijn **Brehm**

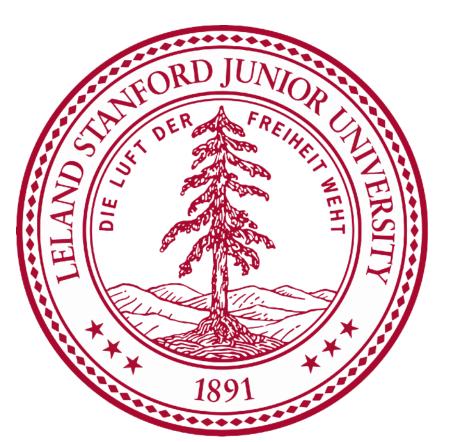
Binyi Chen

University of Amsterdam

Stanford University

Ben Fisch

Yale University



Nicolas Resch

University of

Ron D. Rothblum

Hadas Zeilberger

Amsterdam

Succinct

Yale University

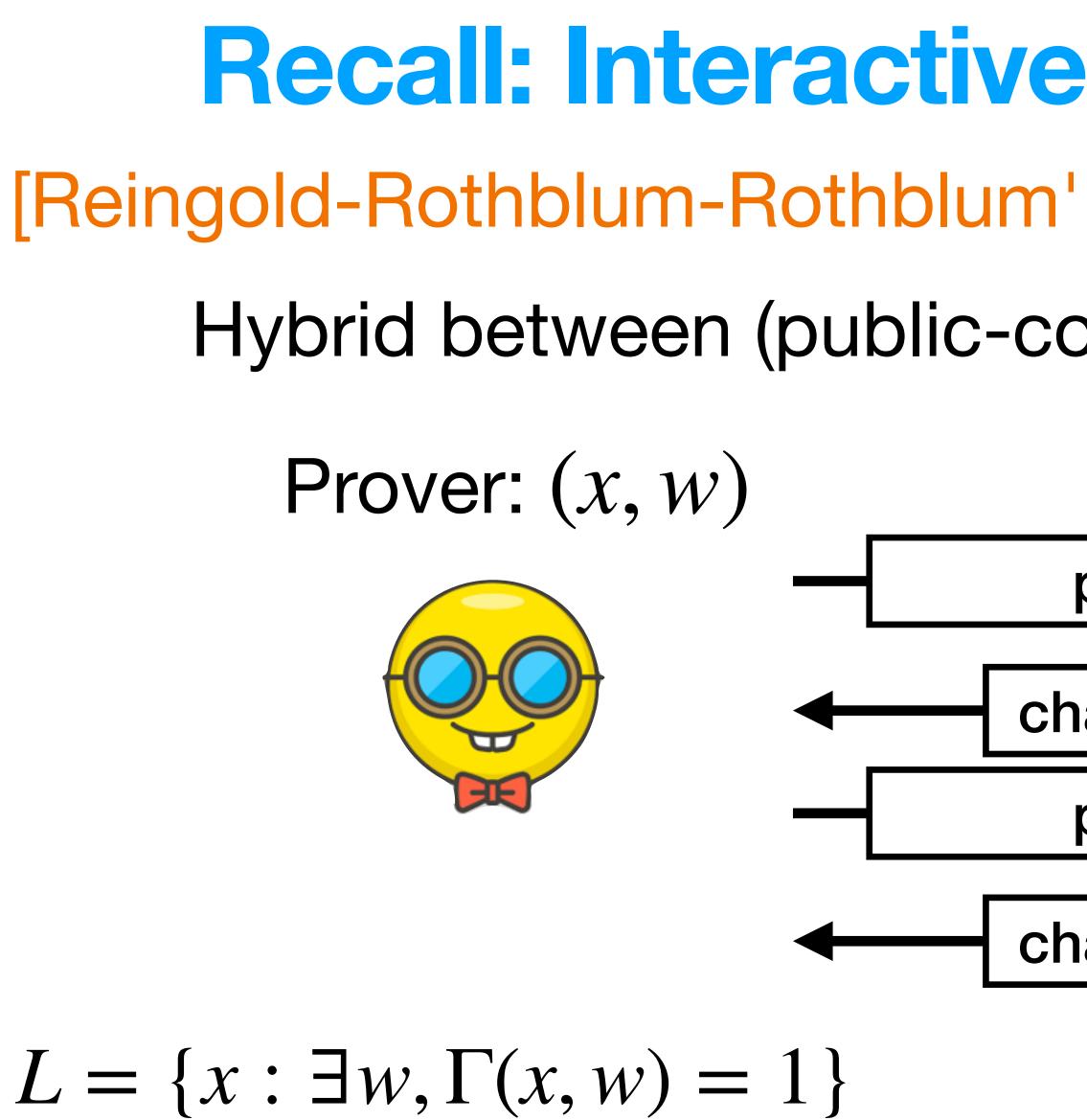
Succinct Non-Interactive Arguments (SNARGs) [Kilian'92, Verifier: *x* Prover: (x, w)Micali'94]

Key bottleneck in practice

Targets: • Succinct proof: $\pi \ll w$ Efficient prover (linear time) Efficient verifier (polylog time)

 $L = \{x : \exists w, \Gamma(x, w) = 1\}$

Soundness against poly-time provers



Recall: Interactive Oracle Proofs (IOPs) [Reingold-Rothblum-Rothblum'16, BenSasson-Chiesa-Spooner'16] Hybrid between (public-coin) interactive proofs and PCPs Verifier: *x* proof π_1 # queries challenge r_1 \mathcal{W} \ll proof π_2 $x \stackrel{?}{\in} L$ challenge r_2

Soundness against arbitrary provers

Common SNARG Construction Paradigm

Polynomial IOP

[Kil'92,BFS'20, CHMMVV'20]

Interactive Succinct Argument

SNARG

Polynomial Commitment Scheme (PCS)

[FS'86, Mic'94, BCS'16]

Common SNARG Construction Paradigm

Polynomial IOP

[Kil'92,BFS'20, CHMMVV'20]

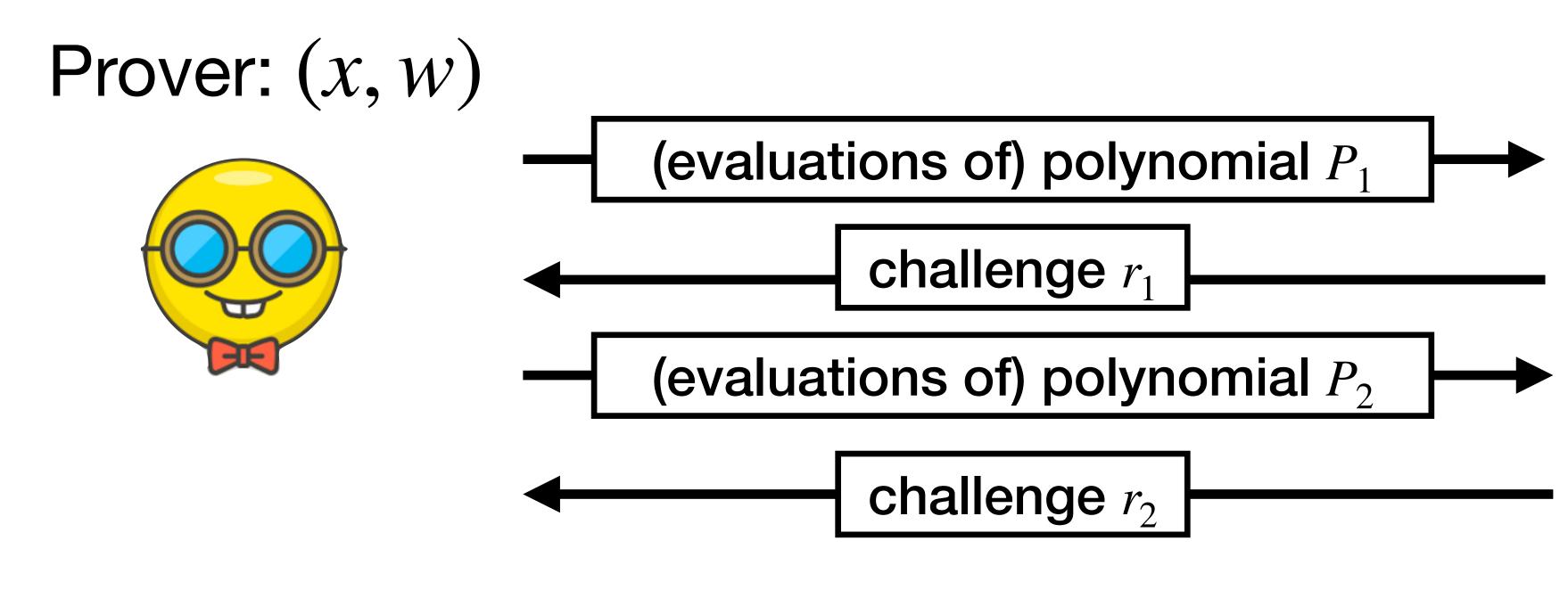
Interactive Succinct Argument

SNARG

Polynomial Commitment Scheme (PCS)

[FS'86, Mic'94, BCS'16]

Polynomial IOPs [RRR'16, BFS'20, CHMMVW'20]



Verifier: *x*

Queries: what is $P_i(\alpha)$?

Common SNARG Construction Paradigm

Polynomial IOP

[Kil'92,BFS'20, CHMMVV'20]

Interactive Succinct Argument

SNARG

Polynomial Commitment Scheme (PCS)

[FS'86, Mic'94, BCS'16]

Common SNARG Construction Paradigm

Polynomial IOP

[Kil'92,BFS'20, CHMMVV'20]

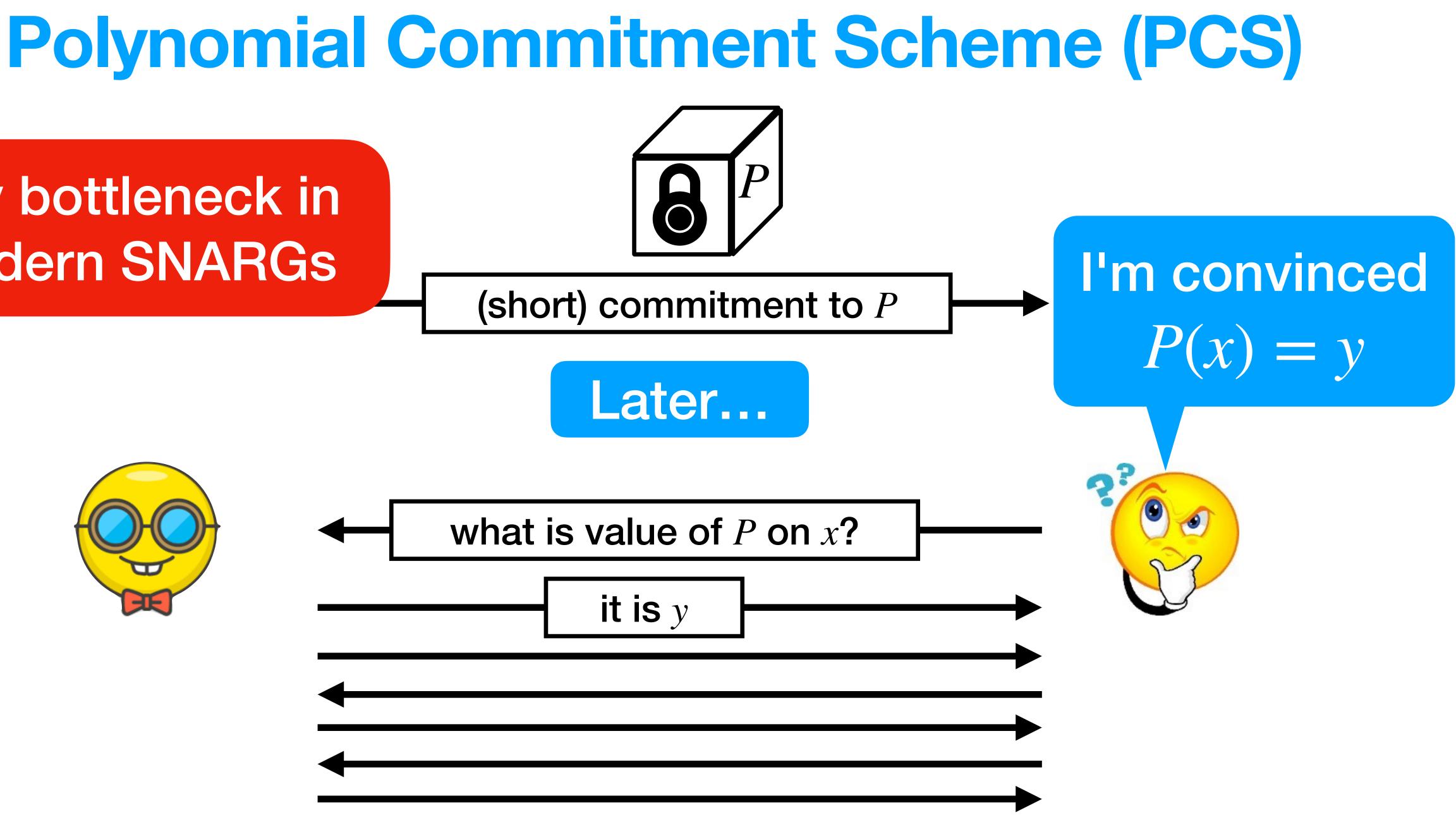
Interactive Succinct Argument

SNARG

Polynomial Commitment Scheme (PCS)

[FS'86, Mic'94, BCS'16]

Key bottleneck in modern SNARGs



Blaze: a new fast Multilinear PCS (MLPCS)

- Focus on committing to multilinear polynomials over characteristic 2 fields
- That is, $P: \mathbb{F}_{2^{\lambda}}^{r} \to \mathbb{F}_{2^{\lambda}}^{r}$ is of the form
 - $P(X_1, ..., X_r) = \sum_{r=1}^{r}$ $S\subseteq$
- IOPs: Spartan [Set'20], Lasso/Jolt [STW'24, AST'24], such as Orion [XZS'22]

$$\sum_{i \in S} c_S \prod_{i \in S} X_i, \quad c_S \in \mathbb{F}_{2^{\lambda}}$$

 Go hand-in-hand with highly efficient multilinear polynomial Hyperplonk [CBBS'23] and generally GKR-based schemes

Why Characteristic 2?

Pros

- Addition is fast
- Eliminate "embedding overhead" [DP23]
- Friendly to arithmetization of logical operations

Real reason: we use a code that we currently only know how to analyze over F_2 ...

Cons

- Multiplication is a bit more complicated (but we won't be doing much!)
- Less friendly to integer arithmetic

Blaze Asymptotics

- elements)
- Commitment generation: 8N additions + 1 Merkle Hash
- Proof length and

Prior works: $O(N \log N)$, or O(N)with unspecified constant

• Cost of committing to $P: \mathbb{F}^r \to \mathbb{F}$ (described by $N = 2^r$ field

• Evaluation proof generation: 6N additions + 5N multiplications

 $(V)^{2})$

Techniques: Bird's Eye View

using code interleaving we build an MLPCS from

MLPCS for "smaller" polynomials

> Leads to proof-size & verification time

2. Use Repeat-Accumulate-Accumulate (RAA) codes, which have very fast encoding and (usually) good distance

1. Building on code-switching technique [RonZewi-Ron'20],

Error-correcting code

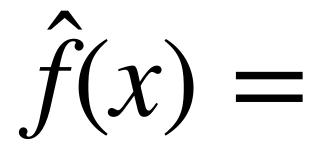
Leads to proving time & committing time

The Multi-Linear Polynomial Commitment Scheme (MLPCS)

Multilinear Extension Will identify $u \in \mathbb{F}^k$ with a function $u : \{0,1\}^{\log k} \to \mathbb{F}$

• Given a function $f: \{0,1\}^r \to \mathbb{F}$, there exists a unique $\hat{f}: \mathbb{F}^r \to \mathbb{F}$ s.t.

• Specifically, take



where $eq(b, x) = (b_i x_i + (1 - b_i)(1 - x_i))$ i=1

\hat{f} is multilinear $\hat{f}(x) = f(x)$ for all $x \in \{0,1\}^r$

$\hat{f}(x) = \int f(b) \cdot eq(b, x)$ $b \in \{0,1\}^{r}$

MLPCS from

Fix a code

To get a multilinear polynomial commitment scheme (MLPCS),

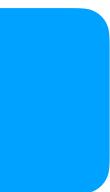
suffices to design an interactive oracle proof of proximity (IOPP) for the language [FS'86, Kil'92, Mic'94, BCS'16]

 $\{\mathscr{C}(m)\in\mathbb{F}^n:m$

Codes & IOPP
$$(k = 2^{r})$$
$$\bullet \mathscr{C} : \mathbb{F}^{k} \to \mathbb{F}^{n}$$

$$\in \mathbb{F}^k \text{ and } \hat{m}(z) = v \}$$

only need to reject if input is far (in Hamming distance) from language



$t = \Theta(\log n)$ **Interleaved Codes** Identify $M \in \mathbb{F}^{t \times k}$, $M \in \mathbb{F}^{tk}$ and $M: \{0,1\}^{\log t + \log k} \to \mathbb{F}$

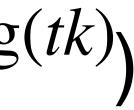
Given $\mathscr{C} : \mathbb{F}^k \to \mathbb{F}^n$ and integer t

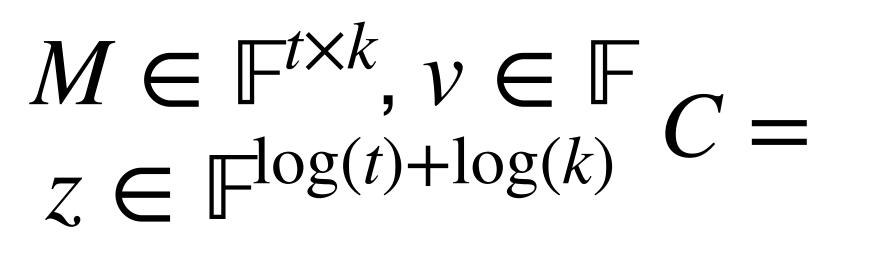
Construct new code \mathscr{C}^t : $\mathbb{F}^{tk} \to \mathbb{F}^{tn}$ by interleaving [Ligero, BCGGHJ'17]

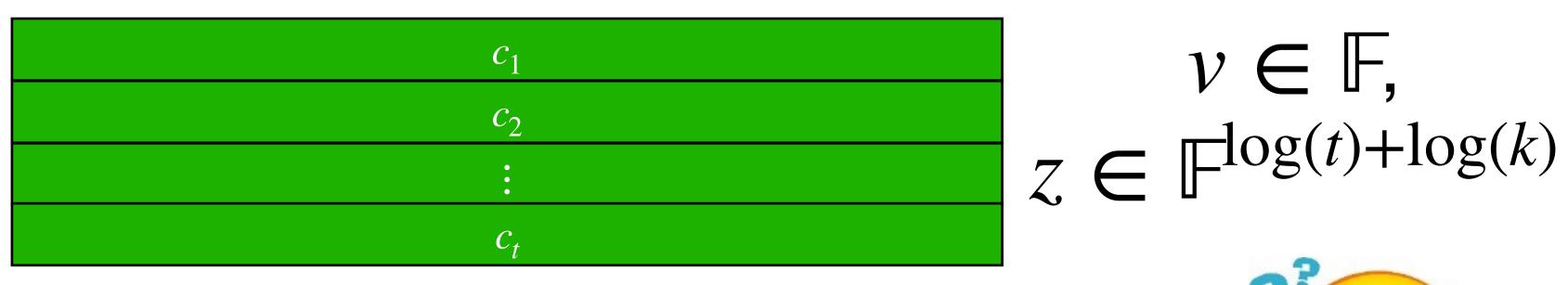
Assuming IOPP for $\{\mathscr{C}(m) \in \mathbb{F}^n : m \in \mathbb{F}^k \text{ and } \hat{m}(z) = v\}$ exists,

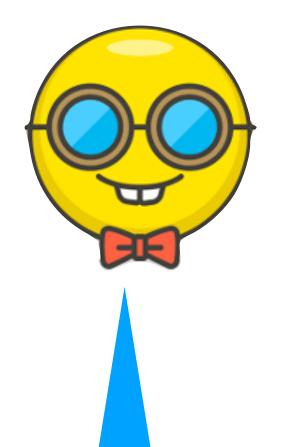
we construct IOPP for $\{\mathscr{C}^t(M) : M \in \mathbb{F}^{t \times k}, \ \hat{M}(z) = v\}$ $(z \in \mathbb{F}^{\log(tk)})$

$c_1 = \mathscr{C}(m_1)$
$c_2 = \mathscr{C}(m_2)$
$c_t = \mathscr{C}(m_t)$

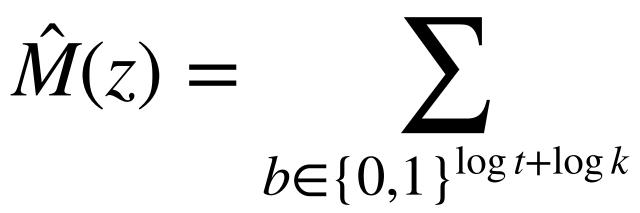




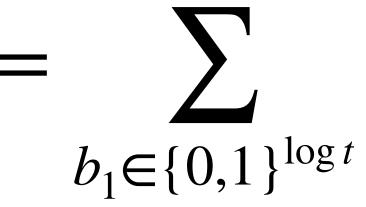




Idea: decompose to claim on rows



Need to prove $\hat{M}(z) = v$



 $z = (z_1, z_2) \in \mathbb{F}^{\log t} \times \mathbb{F}^{\log k}$

$$eq(b,z) \cdot M(b)$$

 $eq(b_1, z_1) \cdot eq(b_2, z_2) \cdot M(b_1, b_2)$ $b_1 \in \{0,1\}^{\log t}, b_2 \in \{0,1\}^{\log k}$

$$eq(b_1, z_1) \cdot \hat{M}_{b_1}(z_2)$$

Multilinear Evaluation with Interleaving

2. Verifier checks that $\hat{u}(z_1) = \sum_{i=1}^{n} eq(b_1, z_1) \cdot u(b_1) = v$ $b_1 \in \{0,1\}^{\log t}$

If Verifier check passes but $\hat{M}(z) \neq v$, then Prover sent incorrect u

1. Prover sends function $u : \{0,1\}^{\log t} \to \mathbb{F}$ defined as Send random $u(x) = \hat{M}_{x}(z_{2})$ linear combination of $m_1, ..., m_t$

How to enforce correctness?

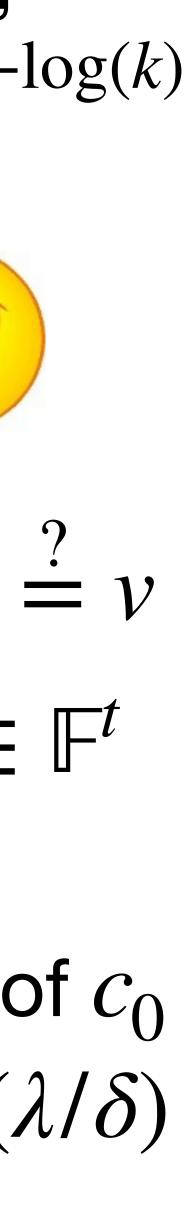
 $M \in \mathbb{F}^{t \times k}, v \in \mathbb{F}$ $z \in \mathbb{F}^{\log(t) + \log(k)} C =$

Compute $u(x) = \hat{M}_x(z_2)$

 $c_0 := \sum_i r_i c_i,$ which is **C-encoding of** $m_0 := \sum_i r_i m_i$

Run wit

$\begin{array}{c} c_1 \\ c_2 \\ \vdots \\ c_t \end{array}$	$v \in \mathbb{F},$ $z \in \mathbb{F}^{\log(t)+1}$
U	
<i>r</i> <i>c</i> ₀	Check $\hat{u}(z_1)$:
	Sample $r \in$
n IOPP for \mathscr{C}	Check
th $m_0, c_0, z_2,$	consistency c
$D := \sum_{i} r_{i} u_{i}$	and C for $\Omega(Z)$
	$i \in [n]$



Proximity Gaps

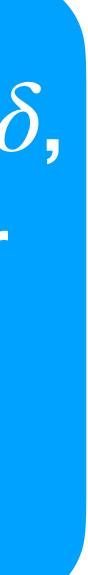
What if $C \in \mathbb{F}^{t \times n}$ is far from \mathscr{C}^t ?

BKS'18] to guarantee that whp, $c_0 = \sum_i r_i c_i$ is far from \mathscr{C}

<u>Theorem: ([BKS'18]) Suppose $\mathscr{C} \leq \mathbb{F}^n$ has min. distance δ ,</u> let $U \subseteq \mathbb{F}^n$ be an affine space and suppose $\exists u \in U$ for which $\Delta(u, \mathscr{C}) > \tau$. Then if $\varepsilon > 0$ is s.t. $\tau - \varepsilon < \delta/3$,

 $\mathbb{P}_{u \in U}[\Delta(u, \mathscr{C}) < \tau - \varepsilon] \leq (\varepsilon \mathbb{F})^{-1}$

Can use elegant results on *proximity gaps* for codes [RVW'13,



Prover time dominated by computation of $t \mathscr{C}$ -encodings

So: pick code with blazing fast encoding!

Additionally: for soundness need good distance

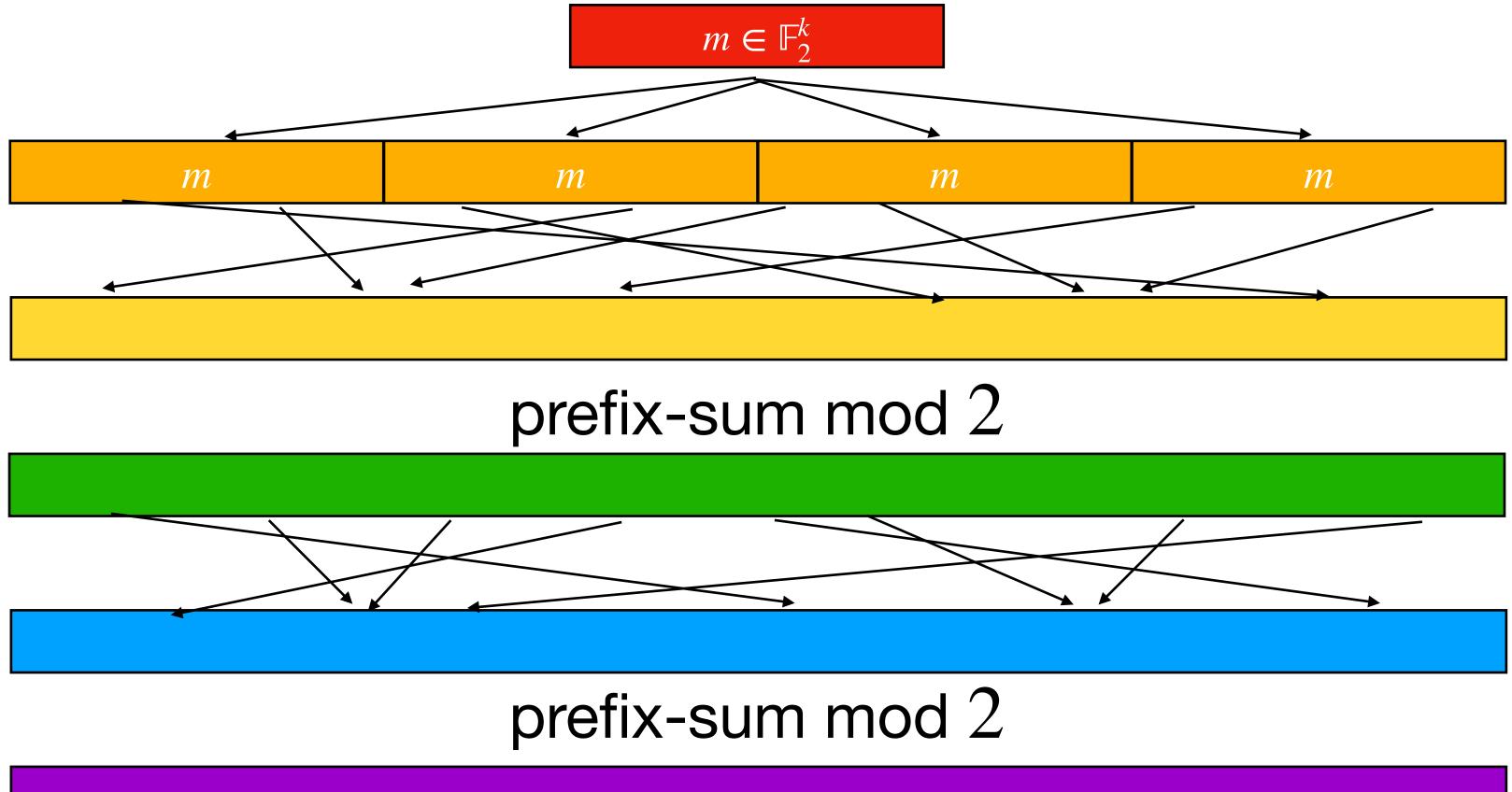
Actually, *C* better already have an IOPP for multilinear evaluation...

can use "offthe-shelf" constructions

> but we actually provide tailormade one for our choice of $\ensuremath{\mathscr{C}}$

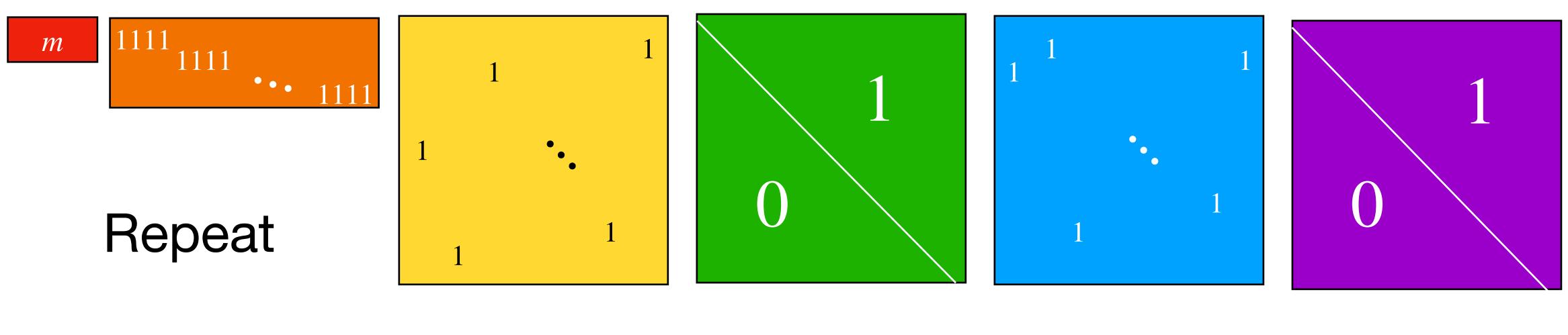
Repeat-Accumulate-Accumulate Codes [Divsalar-Jin-McEliece'98]

Repeat Permute Accumulate Permute Accumulate



RAA Encoding (rate 1/4 case)

working over \mathbb{F}_2 ...



Permute Accumulate Permute Accumulate A A Π_2 Π_1

RAA Generator Matrix (rate 1/4 case)

Over random choice of 2 permutations, we show whp a rate 1/4 RAA code has min. distance ≥ 0.19 This builds off prior works [PS'03, BMS'07, KZKC'07, RF'09]

Use Input-Output-Weight-Enumerator Function

 $N(a, b) := | \{x \in \mathbb{F}_{2}^{n} : wt(x) = a \text{ and } wt(xA) = b \} |$

- GV bound for rate 1/4: ~ 0.21

$= \begin{pmatrix} b-1\\ \lfloor a/2 \rfloor - 1 \end{pmatrix} \cdot \begin{pmatrix} n-b\\ \lfloor a/2 \rfloor \end{pmatrix} \xrightarrow{p_{a \to b}} := \underset{\substack{x \in \mathbb{F}_{2}^{n}, \\ \text{wt}(x) = a}}{\mathbb{P}} \begin{bmatrix} \text{wt}(xA) = b \end{bmatrix} = \frac{N(a, b)}{\binom{n}{a}}$

Let X = number of codewords of weight $\leq d$ By Markov: $\mathbb{P}[dist(\mathscr{C}) \leq d] = \mathbb{P}[X \geq 1] \leq \mathbb{E}[X]$ number of messages $\mathbb{E}[X] = \sum_{a=1}^{n/4} \sum_{b=1}^{n} \sum_{w=1}^{d} \binom{n/4}{a} \cdot p_{4a \to b} \cdot p_{b \to w}$ choices for message weight choices for choices for codeword intermediate weight

prob. of going from <u>repeated</u> message weight to intermediate weight

weight

prob. of going from intermediate weight to codeword weight

Break up sum based on b

 $b \leq h = \omega(\log n)$: $\begin{pmatrix} a \\ \leq \end{pmatrix} \leq \begin{pmatrix} ea \\ b \end{pmatrix}$ use 6/7 final bound $1/n^{\varepsilon}$

Analysis

 $\mathbb{E}[X] = \sum_{a=1}^{n/4} \sum_{b=1}^{n} \sum_{w=1}^{d} \binom{n/4}{a} \cdot p_{4a \to b} \cdot p_{b \to w}$

 $b \ge h = \omega(\log n)$: $\begin{array}{c} (a) \\ \leq 2^{aH(b/a)}; \\ \end{array}$ use $\boldsymbol{\mathcal{O}}$ final bound $2^{-\Omega(h)}$

From crypto perspective: failure probability $1/n^{\varepsilon}$ quite large... also, $1/n^{O(1)}$ unavoidable (consider prob. of wei Actually, just check $O(1) \rightarrow O(1) \rightarrow O(1)$; all terms 1/poly(n))

To boost failure probability: check encoding of low-weight messages

Conditioned on test passing, failure probability decreases substantially

but with poly-time test, failure probability still $\geq 1/\text{poly}(n)$...

Tests

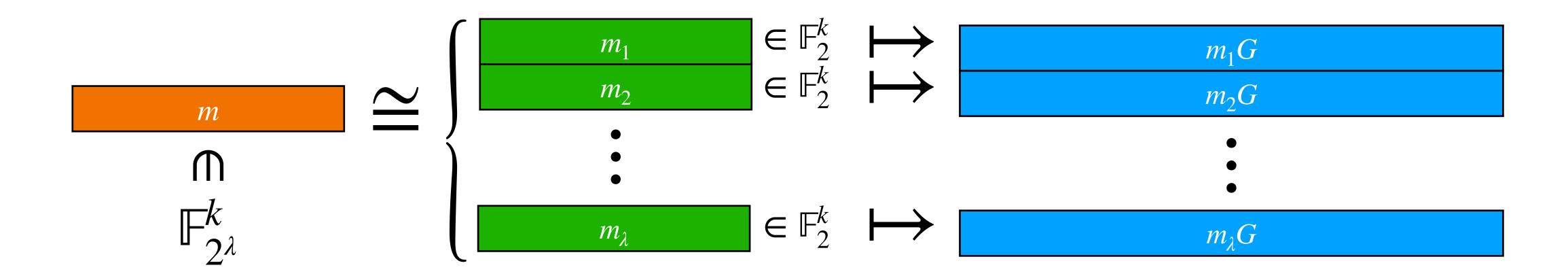
first round accumulation

Thus far: analyzed RAA codes over \mathbb{F}_2

But: for soundness, need $|\mathbb{F}| = 2^{\lambda}$, $\lambda \approx 128$

Can use same generator matrix G to define code over $\mathbb{F}_{2\lambda}$

Can implement by "bit-slicing"



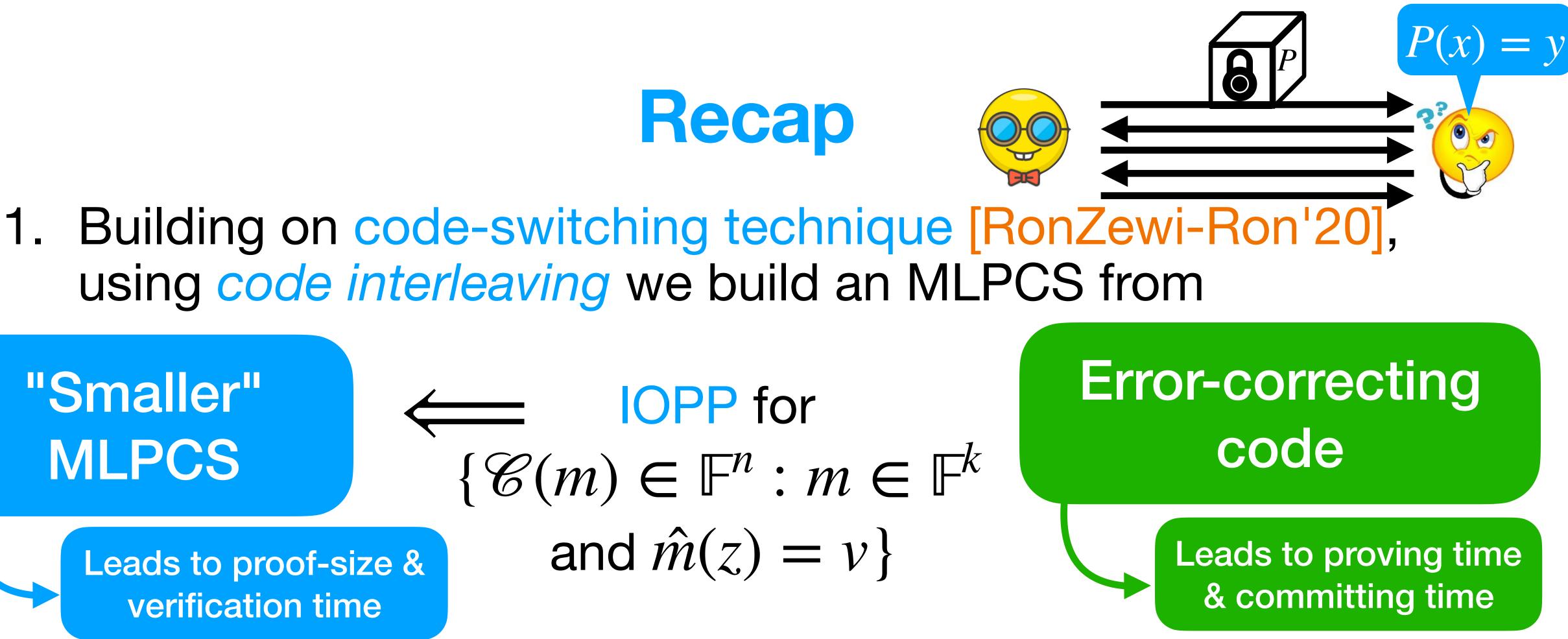
RAA over Extension Fields

Conclusion

using code interleaving we build an MLPCS from

"Smaller" MLPCS Leads to proof-size & verification time

2. Use Repeat-Accumulate-Accumulate (RAA) codes, which have very fast encoding and are (usually) near GV-bound



- Analyze RA* codes directly over larger alphabets? [BFKTWZ'24] Can we approach the Singleton bound?
- (More) explicit constructions? Like [Applebaum-Kachlon'20], design test that leads to negligible $n^{-\omega(1)}$ failure probability?
- Could puncturing be useful?
- Concrete bounds for smaller *n*? (currently need $n \approx 2^{20}$)
- Improved proximity gaps? Maybe tailor-made for RAA codes?

Open Problems

