
Efficient Cryptographic Proofs 
from RAA Codes

Martijn 
Brehm

Hadas 
Zeilberger

University of 
Amsterdam

Binyi 
Chen

Ben 
Fisch

Nicolas 
Resch

Ron D. 
Rothblum

University of 
Amsterdam

Stanford 
University

Yale 
University

Yale 
University

Succinct



Succinct Non-Interactive Arguments (SNARGs)

proof π

Prover: (x, w) Verifier: x

Targets: 
• Succinct proof:  
• Efficient prover (linear time) 
• Efficient verifier (polylog time)

|π | ≪ |w |

[Kilian'92, 
Micali'94]

Key bottleneck 

in practice

L = {x : ∃w, Γ(x, w) = 1}

Soundness 
against  

poly-time 
provers



Recall: Interactive Oracle Proofs (IOPs)

Hybrid between (public-coin) interactive proofs and PCPs

Prover: (x, w) Verifier: x

proof π2

proof π1

challenge r1

challenge r2

⋮

# queries

≪ |w |

[Reingold-Rothblum-Rothblum'16, BenSasson-Chiesa-Spooner'16]

x
?
∈ L

L = {x : ∃w, Γ(x, w) = 1} Soundness against  
arbitrary provers



Common SNARG Construction Paradigm

Polynomial 
IOP

Polynomial 
Commitment 

Scheme (PCS)
Interactive 

Succinct Argument

SNARG

[Kil'92,BFS'20,

CHMMVW'20]

[FS'86, Mic'94, BCS'16]



Common SNARG Construction Paradigm

Polynomial 
IOP

Polynomial 
Commitment 

Scheme (PCS)
Interactive 

Succinct Argument

SNARG

[Kil'92,BFS'20,

CHMMVW'20]

[FS'86, Mic'94, BCS'16]



Polynomial IOPs
[RRR'16, BFS'20, CHMMVW'20]

Prover: (x, w) Verifier: x
(evaluations of) polynomial P1

challenge r1

challenge r2

⋮

(evaluations of) polynomial P2

Queries:

what is ?Pi(α)



Common SNARG Construction Paradigm

Polynomial 
IOP

Polynomial 
Commitment 

Scheme (PCS)
Interactive 

Succinct Argument

SNARG

[Kil'92,BFS'20,

CHMMVW'20]

[FS'86, Mic'94, BCS'16]



Common SNARG Construction Paradigm

Polynomial 
IOP

Polynomial 
Commitment 

Scheme (PCS)
Interactive 

Succinct Argument

SNARG

[Kil'92,BFS'20,

CHMMVW'20]

[FS'86, Mic'94, BCS'16]



Polynomial Commitment Scheme (PCS)

(short) commitment to P

P

Later…

what is value of  on ?P x

I'm convinced 
P(x) = y

Key bottleneck in 
modern SNARGs

it is y



Blaze: a new fast Multilinear PCS (MLPCS)
• Focus on committing to multilinear polynomials over 

characteristic 2 fields


• That is,  is of the form 


• Go hand-in-hand with highly efficient multilinear polynomial 
IOPs: Spartan [Set'20], Lasso/Jolt [STW'24, AST'24], 
Hyperplonk [CBBS'23] and generally GKR-based schemes 
such as Orion [XZS'22]

P : 𝔽r
2λ → 𝔽2λ

P(X1, …, Xr) = ∑
S⊆[r]

cS∏
i∈S

Xi, cS ∈ 𝔽2λ



Why Characteristic 2?

• Addition is fast


• Eliminate "embedding 
overhead" [DP23]


• Friendly to arithmetization 
of logical operations

• Multiplication is a bit more 
complicated (but we won't 
be doing much!)


• Less friendly to integer 
arithmetic

Real reason: we use a code that we currently 
only know how to analyze over …𝔽2

Pros Cons



Blaze Asymptotics

• Cost of committing to  (described by  field 
elements)


• Commitment generation:  additions +  Merkle Hash


• Evaluation proof generation:  additions +  multiplications


• Proof length and Verification time: 

P : 𝔽r → 𝔽 N = 2r

8N 1

6N 5N

Oλ((log N)2)Prior works: 
, or  

with unspecified 
constant

O(N log N) O(N)



Techniques: Bird's Eye View
1. Building on code-switching technique [RonZewi-Ron'20], 

using code interleaving we build an MLPCS from 


2. Use Repeat-Accumulate-Accumulate (RAA) codes, which 
have very fast encoding and (usually) good distance

MLPCS for "smaller" 
polynomials

Error-correcting 
code

Leads to proof-size & 
verification time

Leads to proving time 
& committing time



The Multi-Linear Polynomial 
Commitment Scheme (MLPCS)



Multilinear Extension

• Given a function , there exists a unique 
 s.t.


• Specifically, take


   where 

f : {0,1}r → 𝔽
̂f : 𝔽r → 𝔽

eq(b, x) =
r

∏
i=1

(bixi + (1 − bi)(1 − xi))

̂f(x) = ∑
b∈{0,1}r

f(b) ⋅ eq(b, x)

 is multilinear̂f  for all  ̂f(x) = f(x) x ∈ {0,1}r

Will identify  with a function u ∈ 𝔽k u : {0,1}log k → 𝔽



MLPCS from Codes & IOPP

To get a multilinear polynomial commitment scheme (MLPCS),


suffices to design an interactive oracle proof of proximity 
(IOPP) for the language [FS'86, Kil'92, Mic'94, BCS'16]

{𝒞(m) ∈ 𝔽n : m ∈ 𝔽k and m̂(z) = v}

Fix a code 𝒞 : 𝔽k → 𝔽n

only need to reject if input is far (in 
Hamming distance) from language

(k = 2r)



Interleaved Codes
Given  and integer 


Construct new code  by interleaving [Ligero, 
BCGGHJ'17]

𝒞 : 𝔽k → 𝔽n t

𝒞t : 𝔽 tk → 𝔽 tn

m1

m2

⋮
mt

c1 = 𝒞(m1)
c2 = 𝒞(m2)

⋮
ct = 𝒞(mt)

Assuming IOPP for  exists,


   we construct IOPP for  ( )

{𝒞(m) ∈ 𝔽n : m ∈ 𝔽k and m̂(z) = v}

{𝒞t(M) : M ∈ 𝔽 t×k, M̂(z) = v} z ∈ 𝔽log(tk)

t = Θ(log n)

Identify ,  
and 

M ∈ 𝔽 t×k M ∈ 𝔽 tk

M : {0,1}log t+log k → 𝔽



, 
M ∈ 𝔽 t×k v ∈ 𝔽
z ∈ 𝔽log(t)+log(k)

c1

c2

⋮
ct

C =

Need to prove 
M̂(z) = v

,
v ∈ 𝔽
z ∈ 𝔽log(t)+log(k)

Idea: decompose to claim on rows

M̂(z) = ∑
b∈{0,1}log t+log k

eq(b, z) ⋅ M(b)

= ∑
b1∈{0,1}log t, b2∈{0,1}log k

eq(b1, z1) ⋅ eq(b2, z2) ⋅ M(b1, b2)

= ∑
b1∈{0,1}log t

eq(b1, z1) ⋅ M̂b1
(z2)

z = (z1, z2) ∈ 𝔽log t × 𝔽log k



Multilinear Evaluation with Interleaving

1. Prover sends function  defined as


2. Verifier checks that

u : {0,1}log t → 𝔽

u(x) = M̂x(z2)

̂u(z1) = ∑
b1∈{0,1}log t

eq(b1, z1) ⋅ u(b1) = v

If Verifier check passes but ,  
then Prover sent incorrect 

M̂(z) ≠ v
u

How to 
enforce 

correctness?

Send random 
linear combination 

of m1, …, mt



, 
M ∈ 𝔽 t×k v ∈ 𝔽
z ∈ 𝔽log(t)+log(k)

c1

c2

⋮
ct

C =
,
v ∈ 𝔽

z ∈ 𝔽log(t)+log(k)

Compute u(x) = M̂x(z2)

u

Sample r ∈ 𝔽 t

r

, 

which is 


-encoding of 


c0 := Σi rici

𝒞
m0 := Σi rimi

Check ̂u(z1)
?= vc0

Check 
consistency of  
and  for  

c0
C Ω(λ/δ)
i ∈ [n]

Run IOPP for  
with , , , 

𝒞
m0 c0 z2

v0 := Σi riui



Proximity Gaps

Can use elegant results on proximity gaps for codes [RVW'13, 
BKS'18] to guarantee that whp,  is far from c0 = Σi rici 𝒞

What if  is far from ?C ∈ 𝔽 t×n 𝒞t

Theorem: ([BKS'18]) Suppose  has min. distance , 
let  be an affine space and suppose  for 

which . Then if  is s.t. ,  

𝒞 ≤ 𝔽n δ
U ⊆ 𝔽n ∃u ∈ U

Δ(u, 𝒞) > τ ε > 0 τ − ε < δ/3
ℙu∈U[Δ(u, 𝒞) < τ − ε] ≤ (ε𝔽)−1



Summary
Prover time dominated by computation of  -encodings


Additionally: for soundness need good distance

t 𝒞

So: pick code with blazing fast encoding!

Actually,  better already have an 
IOPP for multilinear evaluation…

𝒞

can use "off-
the-shelf" 

constructions

but we actually provide tailor-
made one for our choice of 𝒞



Repeat-Accumulate-Accumulate  
Codes [Divsalar-Jin-McEliece'98]



RAA Encoding
(rate  case)1/4

m ∈ 𝔽k
2

Repeat
m m m m

Permute

Permute

Accumulate

Accumulate prefix-sum mod 2

prefix-sum mod 2

working over …𝔽2



RAA Generator Matrix
(rate  case)1/4

m

Repeat

1111
1111

1111⋱

Permute

1

1

1

⋱
1

1

Π1

Permute

1
1

⋱
1

1

1

Π2

Accumulate
A

1
0

Accumulate
A

1
0



Analysis
Over random choice of 2 permutations, we show whp


a rate  RAA code has min. distance 


This builds off prior works [PS'03, BMS'07, KZKC'07, RF'09]

1/4 ≥ 0.19

Use Input-Output-Weight-Enumerator Function

N(a, b) := |{x ∈ 𝔽n
2 : wt(x) = a and wt(xA) = b} |

= ( b − 1
⌈a/2⌉ − 1) ⋅ ( n − b

⌊a/2⌋)

GV bound for 
rate : 1/4
∼ 0.21

pa→b := ℙ
x ∈ 𝔽n

2,
wt(x) = a

[wt(xA) = b] =
N(a, b)

(n
a)



Analysis
Let number of codewords of weight 


By Markov: 

X = ≤ d

ℙ[dist(𝒞) ≤ d] = ℙ[X ≥ 1] ≤ 𝔼[X]

𝔼[X] =
n/4

∑
a=1

n

∑
b=1

d

∑
w=1

(n/4
a ) ⋅ p4a→b ⋅ pb→w

choices for 
codeword 

weight

choices for 
intermediate 

weight

choices for 
message weight

number of 
messages

prob. of going from  
intermediate weight to 

codeword weight

prob. of going from  
repeated message weight 

to intermediate weight



Analysis

𝔼[X] =
n/4

∑
a=1

n

∑
b=1

d

∑
w=1

(n/4
a ) ⋅ p4a→b ⋅ pb→w

Break up sum based on b

: 

use ; 

final bound 

b ≤ h = ω(log n)

(a
b) ≤ (ea

b )b

1/nε

: 

use ; 

final bound 

b ≥ h = ω(log n)

(a
b) ≤ 2aH(b/a)

2−Ω(h)



Tests

From crypto perspective: failure probability  quite large…


also,  unavoidable (consider prob. of weight 
; all terms )

1/nε

1/nO(1)

O(1) → O(1) → O(1) 1/poly(n)

To boost failure probability: check encoding 
of low-weight messages

Actually, just check 
first round 

accumulation

Conditioned on test passing, failure probability decreases substantially

but with poly-time test, failure probability still …≥ 1/poly(n)



RAA over Extension Fields
Thus far: analyzed RAA codes over 


Can use same generator matrix  to define code over 

𝔽2

G 𝔽2λ

But: for soundness, need , |𝔽 | = 2λ λ ≈ 128

Can implement by "bit-slicing"

m∈

𝔽k
2λ

m1

m2

mλ

∈ 𝔽k
2

∈ 𝔽k
2

∈ 𝔽k
2

≅ ⋮
↦↦

↦

m1G
m2G

mλG

⋮



Conclusion



Recap
1. Building on code-switching technique [RonZewi-Ron'20], 

using code interleaving we build an MLPCS from 


2. Use Repeat-Accumulate-Accumulate (RAA) codes, which 
have very fast encoding and are (usually) near GV-bound

"Smaller" 
MLPCS

Error-correcting 
code

Leads to proof-size & 
verification time

Leads to proving time 
& committing time

⟹IOPP for 




 
{𝒞(m) ∈ 𝔽n : m ∈ 𝔽k

 and m̂(z) = v}

P P(x) = y



Open Problems
• Analyze RA* codes directly over larger alphabets? 

[BFKTWZ'24] Can we approach the Singleton bound?


• (More) explicit constructions? Like [Applebaum-Kachlon'20], 
design test that leads to negligible  failure probability?


• Could puncturing be useful? 


• Concrete bounds for smaller ? (currently need )


• Improved proximity gaps? Maybe tailor-made for RAA codes?

n−ω(1)

n n ≈ 220

Thank you!


