Low-degree polynomials
are good extractors
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How biased is a random function?

/. [, — [, a uniformly random function

bias(f) = Pr [f(x) = 01— Pr [f(x)=1]

n

Most functions are nearly unbiased:

Pr[ | bias(f)| > e] < 272
f



How biased is a random low-degree polynomial?

f: F, = [, arandom degree d polynomial

=) ax’ withiid ag~ T,
SClnl,|S|<d

f is very far from a uniformly random function!



Bias of random low-degree polynomials
[Ben-Eliezer, Hod, Lovett 2008]

f:F, — [, arandom

Prl [ bias(f) | > 2-4] < 27(24)
f

Moment argument. Very roughly,

» 7-th moment of | bias(f) | is probability that p(x;) + --- + p(x,) = O for all degree-d
polynomials p, with x;, ..., x, ~ [,

e This probability is controlled by dimension of puncturing of Reed-Muller code to
random coordinates.



Some applications
[Ben-Eliezer, Hod, Lovett 2008}

f:F, — [, arandom

Prl [ bias(f) | > 2-4] < 27(24)
f

* Concentration bounds for weight distribution of Reed-Muller codes.

» Most degree d polynomials are hard to approximate by degree d — 1 polynomials.

* Time-space tradeoffs for learning low-degree polynomials from random evaluations.



Generalizing “bias”

There are many notions of “bias” beyond “behavior on uniform input”!
In particular, can consider behavior on input x ~ X.

biasx(f) = Pr [f(x) = 0] = Pr [f(x) = 1]

x~X x~X Pr[X = x] <2 ¥forallx € 5

/

Most functions are nearly unbiased on a k-source X:

Pr[ | biasx(f)| > e] < 272D
f



How biased is a random low-degree polynomial
?

f: F; — [, arandom degree d polynomial

Simple example: Take X uniform over k-dimensional subspace V C [ .

Restriction of fto V' is random k-variate polynomial of degree d.

—>  Pr[|biasx(f)| > 27" < 2“’( < d)
f



How biased is a random low-degree polynomial
?

f: F; — [, arandom degree d polynomial

Bias on uniform input generalizes easily to all “affine sources”.
How about arbitrary k-sources?

For any k-source X:

Pr[ | biasx(f)| > 27M4] < 2“‘< < d)
f



Let f be a random degree-d polynomial. Then, for any k-source X:

Pr[ | biasx(f) | > 27M4] < 2“'( < d>
f

Proof idea: We generically reduce to the “uniform input” case.

1. Foranylinearmap L : [, — 5 and g : ' — [, a random degree-d polynomial,
moments of | biasx(f)| < moments of | biasy,x)(g) |

2. By leftover hash lemma, there is L with m = k such that L(X) =~ U,,..

3. Apply rest of the Ben-Eliezer, Hod, Lovett argument for uniform input.



Low-degree polynomials as extractors

With high prob, random degree-d polynomial is nearly unbiased on any small
enough class of sources €. In other words, f is a low-error extractor for 6.

Direct via union bound!

Examples: Concurrent work:
» Affine sources
* Locally-samplable sources Nagargoje, Yan (RANDOM 2024)

* Polynomial sources obtained similar results with
* Variety sources polynomially-small error.

Golovnev, Guo, Hatami,




Can we take this even further?

We saw that random degree-d polynomials are good extractors for all small classes
of sources.

What about large but structured classes of sources?

» Two independent sources: (X, Y)

o | Sumset sources: W =X +Y

Some of the best explicit low-error extractors we know for these classes are low-
degree polynomials over small fields.



How biased is a random function vs sumset sources?

Not so easy anymore...

Naive application of probabilistic method fails. There are = on2’ pairs of sets (X, Y)
each of size 2", but X + Y can also have size 2*.

Idea: Find not-too-small X' C Xand Y C Y
suchthat | X'+ Y'| =~ | X'| - | Y'].

[Mrazovi¢ 2016}
Take random subsets of X and Y'!

Can achieve | X'| ~ v/ | X]|, | Y| =1/ |Y]|.




How biased is a random function vs sumset sources?

Not so easy anymore...

Naive application of probabilistic method fails. There are = on2’ pairs of sets (X, Y)
each of size 2", but X + Y can have size 2%

In fact, can always partition X and Y into not-
too-small (X;) and (Y;) such that

| X;+ Y| = | X;|-|Y;], foralli,].

Take independent random partitions of X and
Y into equal-size subsets!




Low-cdegree polynomials vs sumset sources

For even d, with high prob a random degree-d polynomial f : [, — [, has bias

2)2/d

¢ on the class of k-sumset sources with entropy k ~ d(n/e

Some interesting regimes:

. For fixed degree d, get bias € = o(1) and min-entropy k ~ dn*?

o k= Q(dndfll) IS necessary even for constant bias €. [Cohen-Tal 2015]

 Get min-entropy k = O(log(n/¢)) with degree d = O(log(n/¢)), for any €.



An easier special case

For even d, with high prob a random degree-d polynomial f : 5 — [ is non-

constant on every k-sumset X + Y with k ~ dn?/.

How to control Pr[ f(W) = 0] foraset W ? rank (W) = rank( MO‘ZV)

f
= —rank (W
Wfl WISZ n I;I'[f(W) — O] < N —Tan A W)
MW— S S ”:‘W‘X<5d>
d W21 W22 & 2

Naive union bound is hopeless...
k
There are ~ 2> choices for (X, Y), but

rank (X + Y) < ( " ) < dn®.

W) = M;V X Vp —> unif. random <d

coeff. vector



An easier special case

For even d, with high prob a random degree-d polynomial f : 5 — [ is non-

constant on every k-sumset X + Y with k ~ dn?/“.

Proof idea: Find large X’ C X and Y’ C Y such that rank (X' + Y’) is large.

[Keevash-Sudakov 2005] For every W C [ of size 2% there is W' C W of size (
that rank (W') = | W'|.

But we need W’ to be a sumset!



A simple proof of ~ Keevash-Sudakov

Goal: For W of size 2%, find W' C W of size & ( <kd> such that rank (W') = | W'|.
”:m, ~ Kk /
. 2 M rank (W)
%4 > rank (L(W'))
L(W)=F" B”"
Lz’ a = rank /(B")

=(Zd>%<skd)



Upgrading to with large rank

Goal: Find large X' C X and Y’ C Y such thatrank ( X'+ Y') = | X'| - | Y'|.
Warmup: X = Y = IFS
B§ = radius-d Hamming ball in [F’;

k k. pk
By, + By, = DB,

k
rank(By, + Byp) = rank(By) = | B | = ( <d ) ezl



Upgrading to sumsets with large rank

Goal: Find large X' C X and Y’ C Y such thatrank ( X'+ Y') = | X'| - | Y'|.

X T 1 ”:31, m~k rankd(X/ 4 Y/)

X’/—\\ > rank (L(X' + Y))
LX) = F B™

R
= rankd(Bc’g}l2 + Bc’;}z)

L(Y) =F”
Y =rank,(B]) = |B]'| = | X'[ - | Y|

P




Now the union bound works if k > dn?

There exist subsets X', Y’ of size ~ V/dk? such that rank ( X'+ Y')) = | X'| - | Y'|.

Random degree-d polynomial f is constant on X’ + Y’ with probability

< p-rank(X+Y) o A=|X|Y] o, H—dk



Achieving smaller bias vs sumsets

Previous strategy shows that most degree-d polynomials are high-error sumset
extractors. We can extend this to lower bias.

Idea: Show that X and Y are close to convex combinations (X;) and (Yj) with
rank (X; + Y;) = | X;| - | ¥;| forall i, .

But... Independently and randomly selecting X' C X and Y’ C Y doesn’t work anymore!
Need to choose X' C X and Y’ C Y in a correlated manner.



 Most degree-4 polynomials are 2-source extractors with exponentially-small error

for min-entropy k =~ n/log n.

Polynomial Freiman-Ruzsa + Approximate Duality [Ron-Zewi—Ben-Sasson 2011] +
subspace-evasive sets from degree-2 polynomials.

* Improved impossibility results for sumset dispersers vs. polynomial sources.



Wrapping up

« Random low-degree polynomials are unbiased in a very general sense.
 Small classes of sources: Most low-degree polynomials are low-error extractors.

 Sumset sources: Most low-degree polynomials are high-error extractors

Open problems:
* Constant-degree polynomials compute low-error sumset extractors?

* Constant-degree polynomials compute low-error 2-source extractors for min-
entropy < n/log n?



