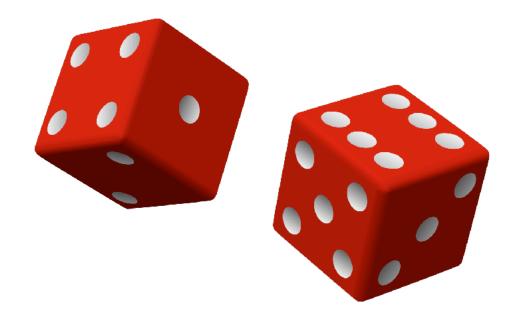
Low-degree polynomials are good extractors

Omar AlrabiahJesse GoodmanUC BerkeleyUT Austin



Jonathan Mosheiff Ben-Gurion U

João Ribeiro U Lisboa

How biased is a random function?

 $f: \mathbb{F}_2^n \to \mathbb{F}_2$ a uniformly random function

$$\mathsf{bias}(f) = \Pr_{x \sim \mathbb{F}_2^n} \left[f(x) = 0 \right] - \Pr_{x \sim \mathbb{F}_2^n} \left[f(x) = 0 \right]$$

Most functions are nearly unbiased: $\Pr[|\operatorname{bias}(f)| > \varepsilon] \le 2^{-\Omega(\varepsilon^2 2^n)}$

= 1]

How biased is a random low-degree polynomial?

 $f: \mathbb{F}_2^n \to \mathbb{F}_2$ a random degree *d* polynomial

$$f(x) = \sum_{S \subseteq [n], |S| \le d} c$$

f is very far from a uniformly random function!

Bias of random low-degree polynomials

[Ben-Eliezer, Hod, Lovett 2008]

$$f: \mathbb{F}_{2}^{n} \to \mathbb{F}_{2} \text{ a random degree } d \text{ polynomial}$$
$$\Pr[|\operatorname{bias}(f)| > 2^{-cn/d}] \le 2^{-c\binom{n}{\le d}}$$

Moment argument. Very roughly,

- polynomials p, with $x_1, \ldots, x_t \sim \mathbb{F}_2^n$.
- random coordinates.

• t-th moment of |bias(f)| is probability that $p(x_1) + \cdots + p(x_t) = 0$ for all degree-d

• This probability is controlled by dimension of puncturing of Reed-Muller code to t

Some applications

[Ben-Eliezer, Hod, Lovett 2008]

$$f: \mathbb{F}_{2}^{n} \to \mathbb{F}_{2} \text{ a random degree } d \text{ polynomial}$$
$$\Pr[|\operatorname{bias}(f)| > 2^{-cn/d}] \le 2^{-c\binom{n}{\le d}}$$

- Concentration bounds for weight distribution of Reed-Muller codes.

• Most degree d polynomials are hard to approximate by degree d - 1 polynomials.

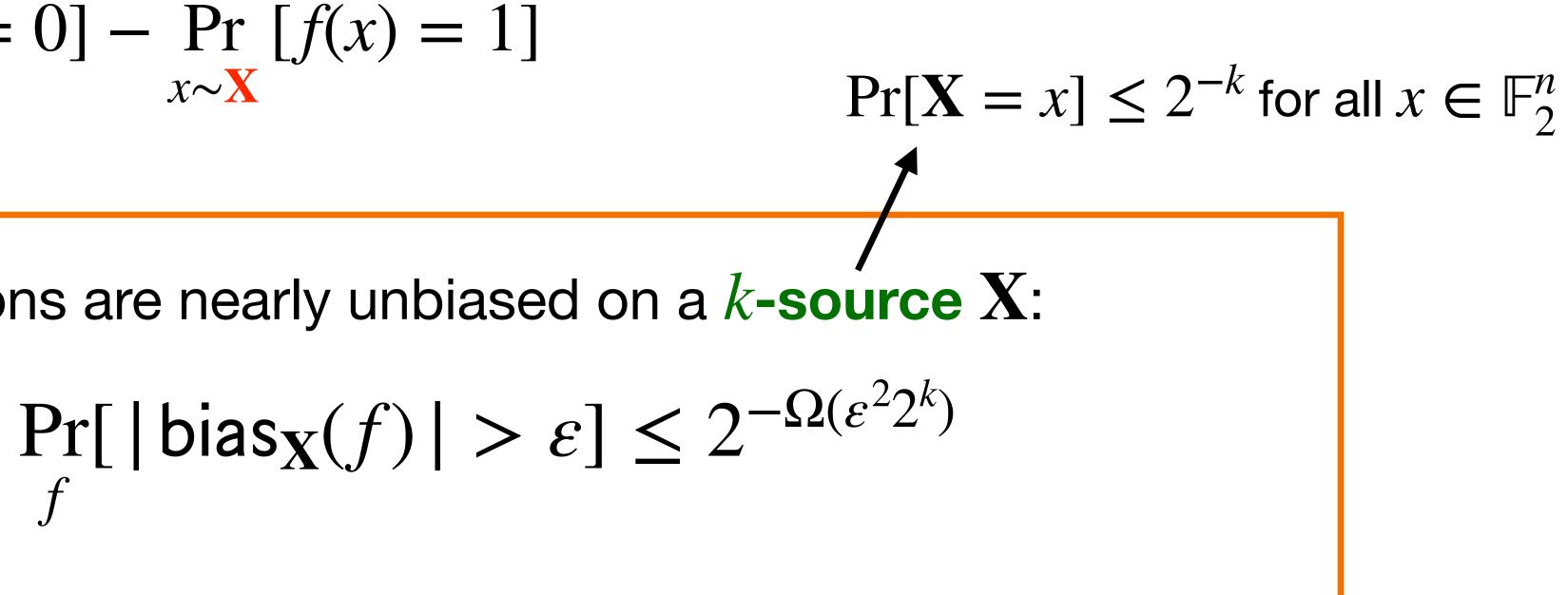
Time-space tradeoffs for learning low-degree polynomials from random evaluations.

Generalizing "bias"

There are many notions of "bias" beyond "behavior on uniform input"! In particular, can consider behavior on input $x \sim \mathbf{X}$.

$$\mathsf{bias}_{\mathbf{X}}(f) = \Pr_{x \sim \mathbf{X}} [f(x) = 0] - \Pr_{x \sim \mathbf{X}} [f(x)]$$

Most functions are nearly unbiased on a k-source X:



How biased is a random low-degree polynomial on a k-source?

 $f: \mathbb{F}_2^n \to \mathbb{F}_2$ a random degree d polynomial

Simple example: Take X uniform over k-dimensional subspace $V \subseteq \mathbb{F}_2^n$.

Restriction of f to V is random k-variate polynomial of degree d.

 $\implies \Pr_{f}[|\mathsf{bias}_{\mathbf{X}}(f)| > 2^{-ck/d}] \le$

$$\leq 2^{-c\binom{k}{\leq d}}$$

How biased is a random low-degree polynomial on a k-source?

 $f: \mathbb{F}_2^n \to \mathbb{F}_2$ a random degree d polynomial

Bias on uniform input generalizes easily to all "affine sources". How about arbitrary k-sources?

For any k-source X: $\Pr[|\operatorname{bias}_{\mathbf{X}}(f)|$

$$> 2^{-ck/d}] \le 2^{-c\binom{k}{\le d}}$$

Let f be a random degree-d polynomial. Then, for any k-source X:

Proof idea: We generically reduce to the "uniform input" case.

By leftover hash lemma, there is L with $m \approx k$ such that $L(\mathbf{X}) \approx U_m$. 2.

3. Apply rest of the Ben-Eliezer, Hod, Lovett argument for uniform input.

 $\Pr_{f}[|\mathsf{bias}_{\mathbf{X}}(f)| > 2^{-ck/d}] \le 2^{-c\binom{k}{\le d}}$

- 1. For any linear map $L: \mathbb{F}_2^n \to \mathbb{F}_2^m$ and $g: \mathbb{F}_2^n \to \mathbb{F}_2$ a random degree-d polynomial,
 - moments of $|bias_{\mathbf{X}}(f)| \leq moments of |bias_{\mathbf{L}(\mathbf{X})}(g)|$

Low-degree polynomials as extractors

Direct via union bound!

Examples:

- Affine sources
- Locally-samplable sources
- Polynomial sources
- Variety sources

With high prob, random degree-d polynomial is nearly unbiased on any small enough class of sources \mathscr{C} . In other words, f is a low-error extractor for \mathscr{C} .

Concurrent work:

Golovnev, Guo, Hatami, Nagargoje, Yan (RANDOM 2024) obtained similar results with polynomially-small error.

Can we take this even further?

We saw that random degree-d polynomials are good extractors for all small classes of sources.

What about large but structured classes of sources?

• Two independent sources: (\mathbf{X}, \mathbf{Y})

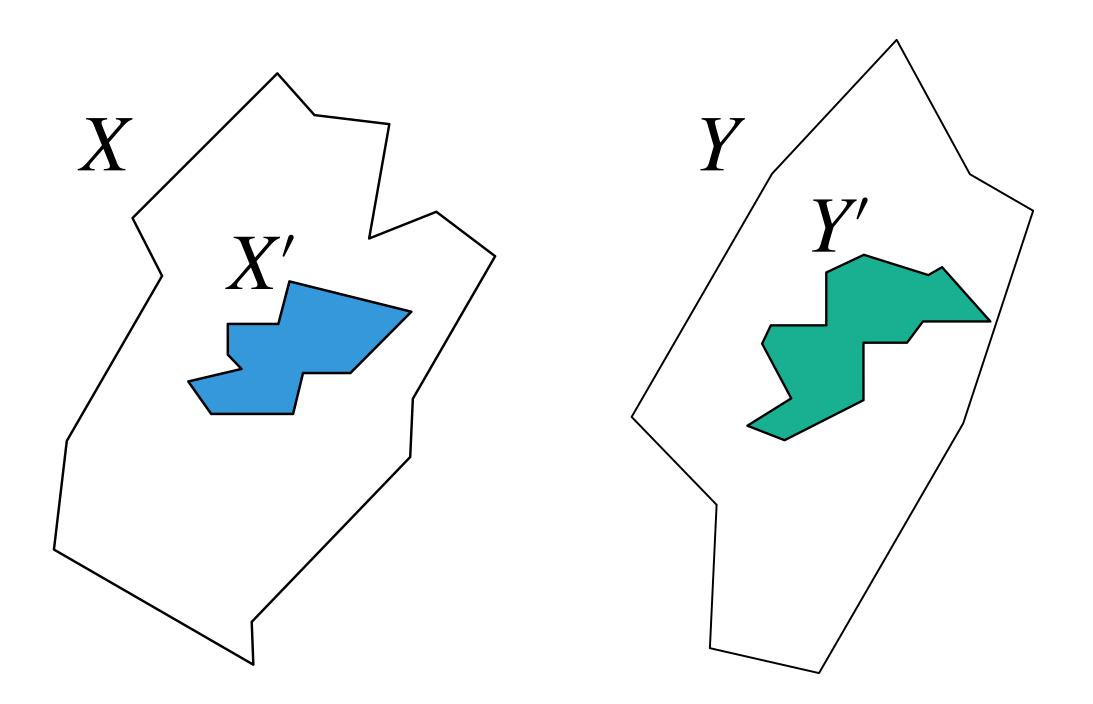
• Sumset sources: W = X + Y the most general so far

Some of the best explicit **low-error** extractors we know for these classes are lowdegree polynomials over small fields.

How biased is a random function vs sumset sources?

Not so easy anymore...

each of size 2^k , but X + Y can also have size 2^k .



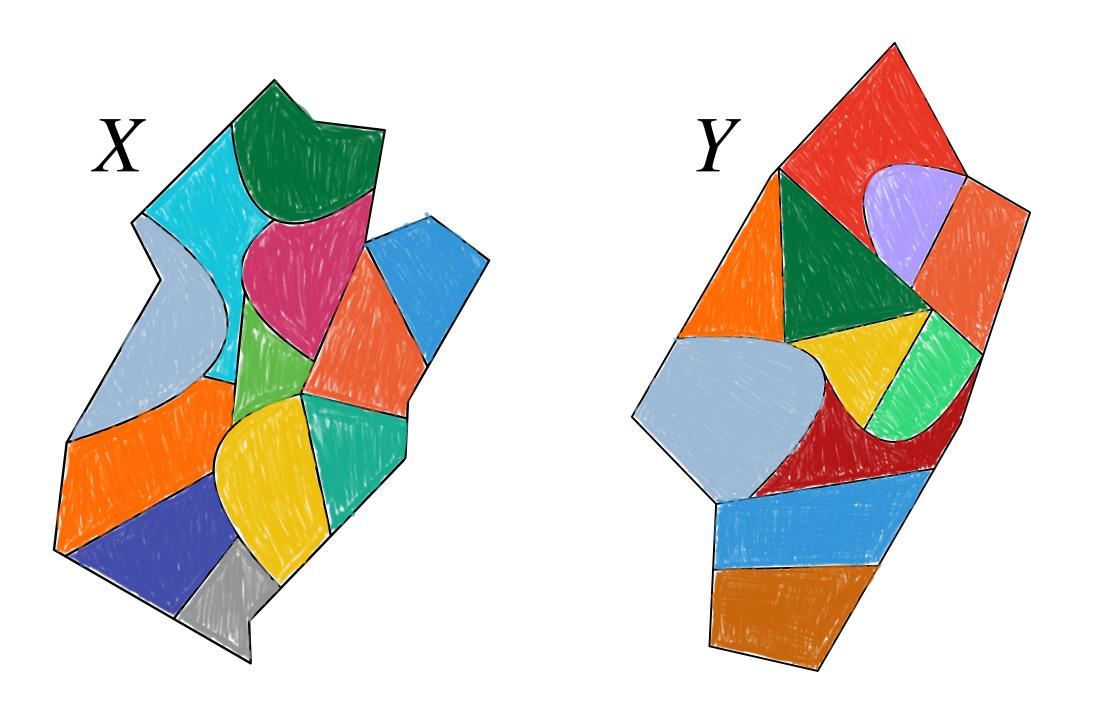
Naive application of probabilistic method fails. There are $\approx 2^{n2^k}$ pairs of sets (X, Y)

- Idea: Find not-too-small $X' \subseteq X$ and $Y' \subseteq Y$ such that $|X' + Y'| \approx |X'| \cdot |Y'|$.
- [Mrazović 2016] Take random subsets of X and Y! Can achieve $|X'| \approx \sqrt{|X|}$, $|Y'| \approx \sqrt{|Y|}$.

How biased is a random function vs sumset sources?

Not so easy anymore...

each of size 2^k , but X + Y can have size 2^k .



Naive application of probabilistic method fails. There are $\approx 2^{n2^k}$ pairs of sets (X, Y)

In fact, can always partition X and Y into nottoo-small (X_i) and (Y_j) such that $|X_i + Y_j| \approx |X_i| \cdot |Y_j|$, for all i, j.

Take independent random partitions of X and Y into equal-size subsets!

Low-degree polynomials vs sumset sources

 ε on the class of k-sumset sources with entropy $k \approx d(n/\varepsilon^2)^{2/d}$.

Some interesting regimes:

- For fixed degree d, get bias $\varepsilon = o(1)$ and min-entropy $k \approx dn^{2/d}$.
- $k = \Omega(dn^{\frac{1}{d-1}})$ is necessary even for constant bias ε . [Cohen-Tal 2015]
- Get min-entropy $k = O(\log(n/\varepsilon))$ with degree $d = O(\log(n/\varepsilon))$, for any ε .

For even d, with high prob a random degree-d polynomial $f : \mathbb{F}_2^n \to \mathbb{F}_2$ has bias

For even d, with high prob a random degree-d polynomial $f: \mathbb{F}_2^n \to \mathbb{F}_2$ is **nonconstant** on every k-sumset X + Y with $k \approx dn^{2/d}$.

How to control $\Pr[f(W) \equiv 0]$ for a set *W*?

$$M_{d}^{W} = \begin{pmatrix} w_{1}^{S_{1}} & w_{1}^{S_{2}} & \dots \\ w_{2}^{S_{1}} & w_{2}^{S_{2}} & \dots \\ \vdots & \vdots & \vdots \end{pmatrix} \in \mathbb{F}_{2}^{|W| \times \binom{n}{\leq d}}$$

 $f(W) = M_d^W \times v_f \longrightarrow$ unif. random coeff. vector

An easier special case

 $\operatorname{rank}_d(W) = \operatorname{rank}(M_d^W)$ $\Pr_{f}[f(W) \equiv 0] \le 2^{-\operatorname{rank}_{d}(W)}$

Naive union bound is hopeless... There are $\approx 2^{2n2^k}$ choices for (X, Y), but $\operatorname{rank}_d(X+Y) \le \binom{n}{< d} \le dn^d.$



constant on every k-sumset X + Y with $k \approx dn^{2/d}$.

Proof idea: Find large $X' \subseteq X$ and $Y' \subseteq Y$ such that $\operatorname{rank}_{d}(X' + Y')$ is large.

that $\operatorname{rank}_{d}(W') = |W'|$.

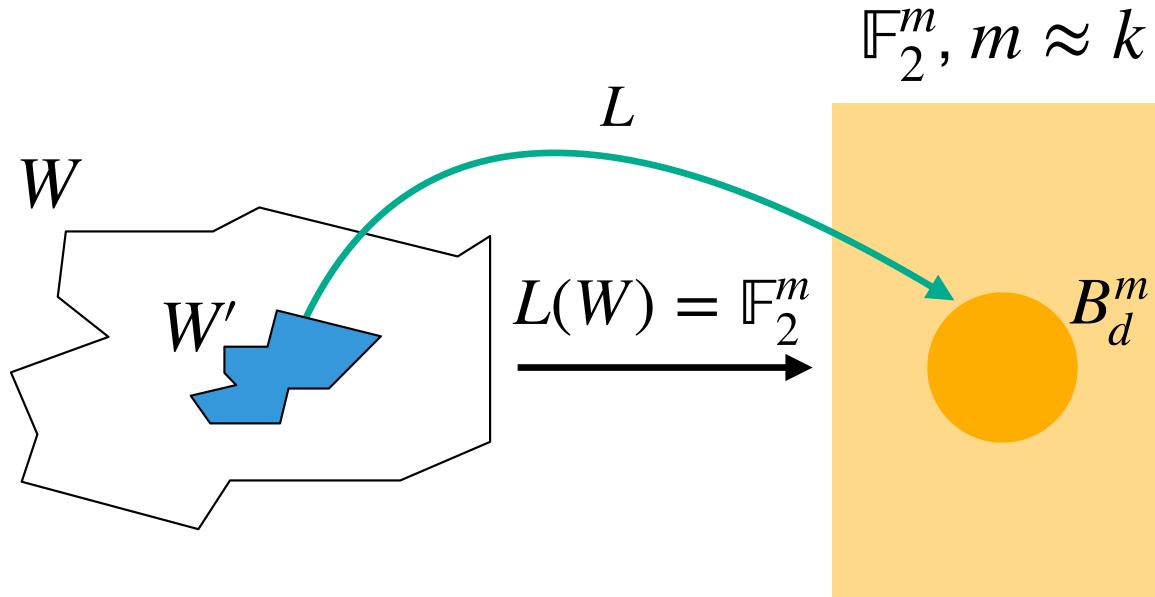
An easier special case

For even d, with high prob a random degree-d polynomial $f : \mathbb{F}_2^n \to \mathbb{F}_2$ is **non**-

[Keevash-Sudakov 2005] For every $W \subseteq \mathbb{F}_2^n$ of size 2^k there is $W' \subseteq W$ of size $\binom{k}{< d}$ such

But we need W' to be a sumset!

A simple proof of \approx Keevash-Sudakov



Goal: For W of size 2^k , find $W' \subseteq W$ of size $\approx \binom{k}{\langle d}$ such that $\operatorname{rank}_d(W') = |W'|$.

 $\operatorname{rank}_{d}(W')$ $\geq \operatorname{rank}_{d}(L(W'))$ B_d^m $= \operatorname{rank}_d(B_d^m)$ $= \begin{pmatrix} m \\ < d \end{pmatrix} \approx \begin{pmatrix} k \\ < d \end{pmatrix}$

Upgrading to sumsets with large rank_d

Goal: Find large $X' \subseteq X$ and $Y' \subseteq Y$ such that $\operatorname{rank}_{d}(X' + Y') \approx |X'| \cdot |Y'|$.

Warmup: $X = Y = \mathbb{F}_{2}^{k}$

 B_d^k = radius-d Hamming ball in \mathbb{F}_2^k

$$B_{d/2}^{k} + B_{d/2}^{k} = B_{d}^{k}$$

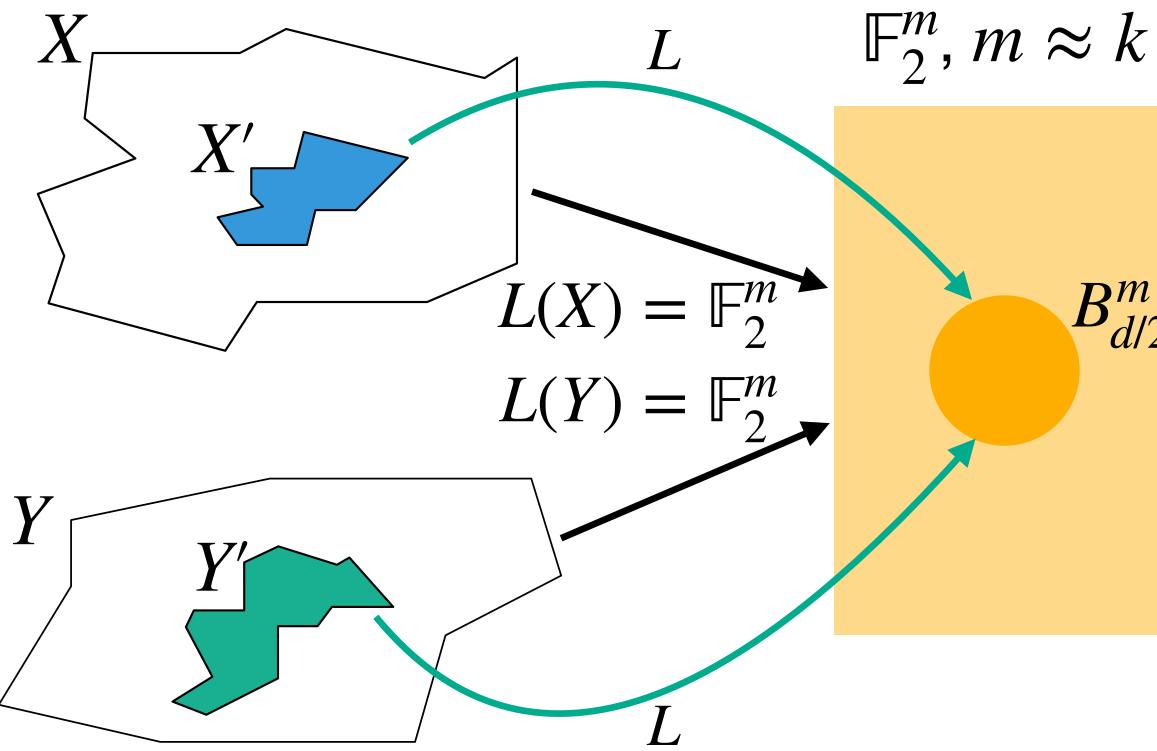
$$\operatorname{rank}_{d}(B_{d/2}^{k} + B_{d/2}^{k}) = \operatorname{rank}_{d}(A_{d/2}^{k})$$

Can we generalize this?

$B_{d}^{k}(B_{d}^{k}) = |B_{d}^{k}| = \binom{k}{\langle d} \approx |B_{d/2}^{k}|^{2}$

Upgrading to sumsets with large rank_d

Goal: Find large $X' \subseteq X$ and $Y' \subseteq Y$ such that $\operatorname{rank}_d(X' + Y') \approx |X'| \cdot |Y'|$.



 $\operatorname{rank}_d(X' + Y')$ $\geq \operatorname{rank}_d(L(X' + Y'))$ $B_{d/2}^m$ $= \operatorname{rank}_{d}(B_{d/2}^{m} + B_{d/2}^{m})$ $= \operatorname{rank}_d(B^m_d) = |B^m_d| \approx |X'| \cdot |Y'|$

Now the union bound works if $k \ge dn^{2/d}$

Number of choices for X' and Y' is $\left(\begin{array}{c}2^n\\|X'|\end{array}\right)\cdot\left(\begin{array}{c}1\\\end{array}\right)$

Random degree-d polynomial f is constant on X' + Y' with probability $< 2^{-\operatorname{rank}_d(X'+Y')}$

There exist subsets X', Y' of size $\approx \sqrt{dk^d}$ such that $\operatorname{rank}_d(X' + Y') \approx |X'| \cdot |Y'|$.

$$\begin{pmatrix} 2^n \\ |Y'| \end{pmatrix} \le 2^{n\sqrt{dk^d}}$$

$$\approx 2^{-|X'| \cdot |Y'|} \approx 2^{-dk^d}$$

Achieving smaller bias vs sumsets

- Previous strategy shows that most degree-d polynomials are high-error sumset extractors. We can extend this to lower bias.
- Idea: Show that X and Y are close to convex combinations (X_i) and (Y_i) with $\operatorname{rank}_{d}(X_{i} + Y_{j}) = |X_{i}| \cdot |Y_{j}| \text{ for all } i, j.$

Need to choose $X' \subseteq X$ and $Y' \subseteq Y$ in a correlated manner.

But... Independently and randomly selecting $X' \subseteq X$ and $Y' \subseteq Y$ doesn't work anymore!

- Most degree-4 polynomials are 2-source extractors with exponentially-small error for min-entropy $k \approx n/\log n$. Polynomial Freiman-Ruzsa + Approximate Duality [Ron-Zewi-Ben-Sasson 2011] + subspace-evasive sets from degree-2 polynomials.
- Improved impossibility results for sumset dispersers vs. polynomial sources.

Bonus

Wrapping up

- Random low-degree polynomials are unbiased in a very general sense.
- Small classes of sources: Most low-degree polynomials are low-error extractors.
- Sumset sources: Most low-degree polynomials are high-error extractors

Open problems:

- Constant-degree polynomials compute low-error sumset extractors? \bullet
- Constant-degree polynomials compute low-error 2-source extractors for minentropy $\ll n/\log n$?

Thanks!