
Magic State Cultivation

Craig Gidney
Simons Institute Quantum Colloquium
April 2025



10 years ago: 94% of quantum computation is T factories

Fowler et al 2012
"Surface codes: Towards practical 
large-scale quantum computation"

arXiv:1208.0928

https://arxiv.org/abs/1208.0928


10 years ago: 94% of quantum computation is T factories

youtube.com/watch?v=XbFoXT73xVQ

http://youtube.com/watch?v=XbFoXT73xVQ


5 years ago: 30-70% of quantum computation is T factories

Litinski 2018
"A Game of Surface Codes: Large-Scale 

Quantum Computing with Lattice Surgery"
arXiv:1808.02892

Gidney et al 2019
"How to factor 2048 bit RSA integers in 8 

hours using 20 million noisy qubits"
arXiv:1808.02892

https://arxiv.org/abs/1808.02892
https://arxiv.org/abs/1808.02892


2019 This Talk2014

1e-12 error

1e-12 1e-9 1e-6

(assuming 1e-3 physical noise)



Major improvements over the past 10 years

- Postselect the injection
Li 2014 arXiv:1410.7808

- Use lattice surgery instead of braiding
Horsman+ arXiv:1111.4022
Fowler+ arXiv:1808.06709
Litinski arXiv:1808.02892

- Reduce distance where the distillation code protects the computation code
Litinski arXiv:1905.06903

- Use complementary gap to get better attempts-vs-errors tradeoffs
Bombin+ arXiv:2212.00813
Gidney+ arXiv:2312.04522



- Postselect the injection
Li 2014 arXiv:1410.7808

- Use lattice surgery instead of braiding
Horsman+ arXiv:1111.4022
Fowler+ arXiv:1808.06709
Litinski arXiv:1808.02892

- Reduce distance where the distillation code protects the computation code
Litinski arXiv:1905.06903

- Use complementary gap to get better attempts-vs-errors tradeoffs
Bombin+ arXiv:2212.00813
Gidney+ arXiv:2312.04522

Major improvements over the past 10 years

Very different from a list of theory advances!



Overview of a Cultivation
Open in Crumble



History of magic state cultivation - 2015

- Encode |T⟩ into a distance 3 color code

- Measure transversal Clifford to verify |T⟩
- Prepare a bell pair |00⟩+|11⟩
- Use it to control a transversal HXY
- Phase kickback produces |00⟩-|11⟩ if |T⟩ is wrong
- Measure XX to distinguish |00⟩±|11⟩
- Measure ZZ to flag hook errors

Cons: d=2 fault distance, ends in small code
Goto 2015

"Minimizing resource overheads
for fault-tolerant preparation of

encoded states of the Steane code"
(no arXiv preprint?) doi: 10.1038/srep19578

http://dx.doi.org/10.1038/srep19578


History of magic state cultivation - 2020

- Can target any suppression d

- Encode |T⟩ into a distance 2d+1 color code

- Control transversal Clifford with a cat state

- Alternate measuring stabilizers and Clifford

- Requires just-in-time decoding

Cons: 1e-4 noise, ends in small code
Chamberland et al 2020

"Very low overhead fault-tolerant magic 
state preparation using redundant ancilla 

encoding and flag qubits"
arXiv:2003.03049

https://arxiv.org/abs/2003.03049


History of magic state cultivation - 2024

- Cultivation works at 10-3 noise

- Only need simple grid connectivity

Cons: d=2 fault distance, ends in small code

Itogawa et al 2024
"Even more efficient magic state 

distillation by zero-level distillation" 
arXiv:2403.03991

https://arxiv.org/abs/2403.03991


This is a 15-to-1 distillation jammed into a color code
1T                    +                 7T+7T = 15T

Another tell: 35 triplets of T -> ZT errors that make it fail



Our Improvements

Decrease costs, enabling postselection
- Grow color code incrementally
- Pair up T checks to reduce their cost
- Use superdense color code cycle

End with the state in a safe place
- Escape to a big surface code by "grafting"
- Good soft information via complementary gap

Was 1e-4 logical error → Now 2e-9
3→5

1→3

Escape
5→15

Wait for 
decoder



Reasons for the new name

Cultivation

- Gradually improve one state

- Key operations are physical
(within one color code)

- Can't reach arbitrarily low error
(cost wall from postselection)

- Ends with an exciting escape scene

Distillation

- Turn many states into fewer better states

- Key operations are logical
(across many surface codes)

- Reaches arbitrarily low error
(just keep iterating it)

- States always in sufficiently large codes



Stage 1: Injection
Open in Crumble

https://algassert.com/crumble#circuit=Q(0,0)0;Q(1,0)1;Q(1,1)2;Q(1,2)3;Q(1,3)4;Q(2,0)5;Q(2,1)6;Q(2,2)7;Q(2,3)8;Q(3,0)9;Q(3,1)10;Q(3,2)11;Q(4,0)12;Q(4,1)13;POLYGON(0,0,1,0.25)9_13_11_6;POLYGON(0,1,0,0.25)2_6_11_3;POLYGON(1,0,0,0.25)1_9_6_2;TICK;R_10_7_5;RX_6_9_11_2_1_3_13_0_4_12;TICK;CX_6_10_9_5_11_7;TICK;CX_6_7_9_10;TICK;CX_6_5_11_10;TICK;CX_1_5_3_7_13_10;TICK;CX_5_1_7_3_10_13;TICK;CX_2_3_12_13;TICK;CX_2_1_13_12;TICK;CX_3_2;TICK;CX_1_2;TICK;S_DAG_2;TICK;CX_1_2;TICK;CX_3_2;TICK;CX_0_1_4_3;TICK;CX_1_0_3_4;TICK;POLYGON(0,0,1,0.25)12_9_6_11;POLYGON(0,1,0,0.25)8_11_6_2;POLYGON(0,1,0,0.25)2_6_11_4;POLYGON(1,0,0,0.25)2_6_9_0;TICK;R_5_13_7_8;RX_1_10_3;TICK;CX_1_5_3_7_4_8_10_13;TICK;CX_1_0_5_9_7_11_8_4_10_6;TICK;CX_1_2_5_6_7_8_10_11;TICK;CX_3_2_7_6_10_9_13_12;TICK;CX_2_3_6_7_9_10_12_13;TICK;CX_0_1_6_10_9_5_11_7;TICK;CX_2_1_6_5_8_7_11_10;TICK;CX_1_5_3_7_10_13;TICK;M_5_13_7_4;MX_1_10_3;DT(2,0,0)rec[-7];DT(4,1,0)rec[-6];DT(2,2,0)rec[-5];DT(1,3,0)rec[-4];DT(1,0,0)rec[-3];DT(3,1,0)rec[-2];DT(1,2,0)rec[-1];TICK;POLYGON(0,0,1,0.25)12_9_6_11;POLYGON(0,1,0,0.25)8_11_6_2;POLYGON(1,0,0,0.25)2_6_9_0;TICK;MPP_X0*X2*X6*X9;DT(1,2,1)rec[-1]_rec[-2]_rec[-4];TICK;MPP_Z0*Z2*Z6*Z9;DT(2,0,2)rec[-1]_rec[-9];TICK;MPP_X2*X6*X8*X11;DT(1,0,3)rec[-1]_rec[-6];TICK;MPP_Z2*Z6*Z8*Z11;DT(2,2,4)rec[-1]_rec[-9];TICK;MPP_X6*X9*X11*X12;DT(2,1,5)rec[-1];TICK;MPP_Z6*Z9*Z11*Z12;DT(4,1,6)rec[-1]_rec[-12];TICK;MPP_Y0*Y2*Y6*Y8*Y9*Y11*Y12;OI(0)rec[-1]_rec[-8]_rec[-9]


Stage 2: Cultivation

Grow the color code

Stabilize the color code

Double-check the T state

Repeat (until approaching the postselection cost wall)



Example Kickback Measurement by Cat State

Color
Code
Input

Transversal 
Controlled 
Clifford

Cat State
Prep

Result
Readout



Reverse Example Kickback Measurement by Cat State

Color
Code
Input

Transversal 
Controlled 
Clifford

Cat State
Un-prep

Result
Un-readout



Double-Check Kickback Measurement

Color
Code
Input

Transversal 
Controlled 
Clifford #1

Cat State
Prep

R
es

ul
t U

n-
re

ad
ou

t R
esult R

eadout

Transversal 
Controlled 
Clifford #2

Cat State
Un-prep



Every ending measurement a flag

detecting region



Exact Kickback Measurement (d=3)

Time-Reversed Check (Top Row)

Time-Forward (Bottom Row)

Open in Crumble

https://algassert.com/crumble#circuit=Q(0,0)0;Q(0,1)1;Q(1,0)2;Q(1,1)3;Q(2,0)4;Q(2,1)5;Q(2,2)6;Q(2,3)7;Q(3,0)8;Q(3,1)9;Q(3,2)10;Q(4,0)11;Q(4,1)12;POLYGON(0,0,1,0.25)8_11_10_5;POLYGON(0,1,0,0.25)7_10_5_3;POLYGON(1,0,0,0.25)3_5_8_0;TICK;MPP_Y0*Y3*Y5*Y7*Y8*Y10*Y11;TICK;MPP_X0*X3*X5*X8;TICK;MPP_Z0*Z3*Z5*Z8;TICK;MPP_X3*X5*X7*X10;TICK;MPP_Z3*Z5*Z7*Z10;TICK;MPP_X5*X8*X10*X11;TICK;MPP_Z5*Z8*Z10*Z11;TICK;RX_12_9_4_2_6_1;TICK;S_DAG_0_3_5_7_8_10_11;TICK;CX_1_0_9_8_6_7_4_5_2_3_12_11;TICK;CX_3_1_5_6_9_12;TICK;CX_5_3_9_10;TICK;CX_5_9;TICK;MX_5;DT(0,0,0)rec[-1]_rec[-8];TICK;RX_5;TICK;CX_5_9;TICK;CX_5_3_9_10;TICK;CX_3_1_5_6_9_12;TICK;CX_1_0_9_8_6_7_12_11_4_5_2_3;TICK;S_5_10_11_8_7_3_0;TICK;MX_12_9_4_2_6_1;DT(4,1,1)rec[-6];DT(3,1,1)rec[-5];DT(2,1,1)rec[-4]_rec[-7];DT(1,0,1)rec[-3];DT(2,2,1)rec[-2];DT(0,1,1)rec[-1];TICK;MPP_Z5*Z8*Z10*Z11;DT(2,1,2)rec[-1]_rec[-9];TICK;MPP_X5*X8*X10*X11;DT(2,1,3)rec[-1]_rec[-9]_rec[-11];TICK;MPP_Z3*Z5*Z7*Z10;DT(1,1,4)rec[-1]_rec[-13];TICK;MPP_X3*X5*X7*X10;DT(1,1,5)rec[-1]_rec[-11]_rec[-15];TICK;MPP_Z0*Z3*Z5*Z8;DT(0,0,6)rec[-1]_rec[-17];TICK;MPP_X0*X3*X5*X8;DT(0,0,7)rec[-1]_rec[-13]_rec[-19];TICK;MPP_Y0*Y3*Y5*Y7*Y8*Y10*Y11;OI(0)rec[-1]_rec[-8]_rec[-9]_rec[-12]_rec[-13]


Exact Kickback Measurement (d=5)

Open in Crumble



Escaping small code distance by growing the color code

Chromobius was so bad at this I almost dropped the whole idea

Definitely not intrinsically bad. We need a better decoder.



Stage 3: Escape!



Grafted Color/Surface Code

Light = X
Dark = Z

Red/Green/Blue:
Color Code Region

Overlapping stabilizers are 
shown inset to avoid ambiguity



Stage 3: Escape!



Decoding the Color Code Region with a Matcher
X Subgraph Z Subgraph





Benchmarking



Obstacle: How do we sample this?

State vector simulation
✗ Too large. Escape stage has >100 qubits.



Obstacle: How do we sample this?

State vector simulation
✗ Too large. Escape stage has >100 qubits.

Stabilizer simulation
✗ Too picky. Can't handle the T gates.



Obstacle: How do we sample this?

State vector simulation
✗ Too large. Escape stage has >100 qubits.

Stabilizer simulation
✗ Too picky. Can't handle the T gates.

Tensor network simulation
✗ Too interconnected. Dozens of color code cycles.



Obstacle: How do we sample this?

State vector simulation
✗ Too large. Escape stage has >100 qubits.

Stabilizer simulation
✗ Too picky. Can't handle the T gates.

Tensor network simulation
✗ Too interconnected. Dozens of color code cycles.

Stabilizer decomposition
✓arxiv:2202.09202 does some comparable sized simulations
✗ Too slow. Minutes per shot. Want billions of shots.

https://arxiv.org/abs/2202.09202


Obstacle: How do we sample this?

State vector simulation
✗ Too large. Escape stage has >100 qubits.

Stabilizer simulation
✗ Too picky. Can't handle the T gates.

Tensor network simulation
✗ Too interconnected. Dozens of color code cycles.

Stabilizer decomposition
✓arxiv:2202.09202 does some comparable sized simulations
✗ Too slow. Minutes per shot. Want billions of shots.

Replace T gates with S gates
✓Easy and fast to simulate. Circuit still functions (distills S|+⟩ instead of T|+⟩).
? How accurate is this?

https://arxiv.org/abs/2202.09202


S gate circuit as a proxy for the T gate circuit



S gate circuit as a proxy for the T gate circuit

1.5x gap



S gate circuit as a proxy for the T gate circuit

2x gap

1.5x gap



S gate circuit as a proxy for the T gate circuit

Don't understand why it changes.
For now: assume it's 2x.

2x gap

1.5x gap



End-to-end simulations



End-to-end simulations

at 1e-3 noise
d1=5 achieves
1e-9 logical error



End-to-end simulations

halving noise would 
cut cost by 10x!



End-to-end simulations

halving noise would 
improve errors 50x!



End-to-end simulations

doubling noise increases 
cost >100x...



Contrasting With Other Techniques



Cost
(Qubit·Rounds)

Cost of good 
magic states

Logical E
rror R

ate



Cost
(Qubit·Rounds)

Injection Cost of good 
magic states

Logical E
rror R

ate



Cost
(Qubit·Rounds)

Injection

Distillation

Cost of good 
magic states

Logical E
rror R

ate



Distillation

Cost
(Qubit·Rounds)

Injection

Cultivation

Cost of good 
magic states

Logical E
rror R

ate



Cost
(Qubit·Rounds)

Cost of good 
magic states

10x Cheaper

Logical E
rror R

ate



Cost
(Qubit·Rounds)

Cost of good 
magic states

Removes a nasty
cost discontinuity

Logical E
rror R

ate



Cost
(Qubit·Rounds)

Cost of Cultivation
≈

Cost of Controlled-Not

Cost of good 
magic states

Logical E
rror R

ate



An example of possible consequences:
rotating compactly by using more T gates







Summary



Impact on large scale architecture?

Amdahl's law:
- If 50% of the computation is distillation, max easy improvement is 2x

Jevon's paradox:
- When X gets cheaper, you use more of X
- Sometimes so much more that total spend on X goes up instead of down!
- Example: carry lookahead adder runs faster but uses more T states

Unclear how this all plays out.



Glass half empty

Non-Clifford gates still force a time ordering (prevent arbitrary parallelization)

Non-Clifford gates still require feedback to complete

Good estimates can't just count Ts anymore

If T states are as cheap as CNOTs... why are CNOTs so expensive??

Architectures enabling transversal CNOTs might still be T state dominated



Summary

Cultivation is 10x cheaper than prior work
One T gate ≈ two CNOT gates

Cultivation reaches 2e-9 error (from noise strength 1e-3)
within 10x of relevance to factoring 2048 bit numbers

Cultivation fits in small spaces
A hallway wide enough to route logical qubits is large enough for cultivation

Reducing noise improves cultivation dramatically
If physical qubits improve 10% per year, we might never need distillation



Bonus Figures



Cost of waiting longer



What if we still need distillation?


