

## Magic State Cultivation

Craig Gidney Simons Institute Quantum Colloquium April 2025

Google

#### 10 years ago: 94% of quantum computation is T factories

states translates to then needing about 1200 AA factories working in parallel, and thus  $1200 \times 8 \times 10^5 \approx 10^9$  physical qubits. The remainder of Shor's algorithm requires about 2N = 4000 logical qubits, which in a  $d_2 = 34$  distance surface code takes about  $4000 \times 14500 \approx 5.6 \times 10^7$ additional physical qubits, adding a fairly negligible 6% to the AA factory footprint, for a total of about a billion physical qubits.

> Fowler et al 2012 "Surface codes: Towards practical large-scale quantum computation" <u>arXiv:1208.0928</u>

#### 10 years ago: 94% of quantum computation is T factories



#### 5 years ago: 30-70% of quantum computation is T factories

(b) Fast setup for  $p = 10^{-3}$ 



Litinski 2018 "A Game of Surface Codes: Large-Scale Quantum Computing with Lattice Surgery" <u>arXiv:1808.02892</u>



Gidney et al 2019 "How to factor 2048 bit RSA integers in 8 hours using 20 million noisy qubits" <u>arXiv:1808.02892</u>



#### 1e-12 error

#### (assuming 1e-3 physical noise)

#### Major improvements over the past 10 years

- Postselect the injection
  - Li 2014 arXiv:1410.7808
- Use lattice surgery instead of braiding

Horsman+ arXiv:1111.4022 Fowler+ arXiv:1808.06709 Litinski arXiv:1808.02892

- Reduce distance where the distillation code protects the computation code Litinski arXiv:1905.06903
- Use complementary gap to get better attempts-vs-errors tradeoffs Bombin+ arXiv:2212.00813 Gidney+ arXiv:2312.04522





#### History of magic state cultivation - 2015



Goto 2015 "Minimizing resource overheads for fault-tolerant preparation of encoded states of the Steane code" (no arXiv preprint?) <u>doi: 10.1038/srep19578</u> - Encode  $|T\rangle$  into a distance 3 color code

- Measure transversal Clifford to verify  $|T\rangle$ 

- Prepare a bell pair  $|00\rangle$ + $|11\rangle$
- Use it to control a transversal  $H_{XY}$
- Phase kickback produces  $|00\rangle\text{-}|11\rangle$  if  $|T\rangle$  is wrong
- Measure XX to distinguish  $|00\rangle \pm |11\rangle$
- Measure ZZ to flag hook errors

Cons: d=2 fault distance, ends in small code

#### History of magic state cultivation - 2020



Chamberland et al 2020 "Very low overhead fault-tolerant magic state preparation using redundant ancilla encoding and flag qubits" <u>arXiv:2003.03049</u>

- Can target any suppression d
- Encode  $|T\rangle$  into a distance 2d+1 color code
- Control transversal Clifford with a cat state
- Alternate measuring stabilizers and Clifford
  - Requires just-in-time decoding

Cons: 1e-4 noise, ends in small code

#### History of magic state cultivation - 2024



- Cultivation works at 10<sup>-3</sup> noise
- Only need simple grid connectivity

Itogawa et al 2024 "Even more efficient magic state distillation by zero-level distillation" <u>arXiv:2403.03991</u>

Cons: d=2 fault distance, ends in small code

### This is a 15-to-1 distillation jammed into a color code



Another tell: **35 triplets** of T -> ZT errors that make it fail

## **Our Improvements**



#### Decrease costs, enabling postselection

- Grow color code incrementally
- Pair up T checks to reduce their cost
- Use superdense color code cycle

#### End with the state in a safe place

- Escape to a big surface code by "grafting"
- Good soft information via complementary gap

#### Was 1e-4 logical error $\rightarrow$ Now 2e-9

#### Reasons for the new name

#### Cultivation

- Gradually improve one state
- Key operations are physical (within one color code)
- Can't reach arbitrarily low error (cost wall from postselection)
- Ends with an exciting escape scene

#### Distillation

- Turn many states into fewer better states
- Key operations are logical (across many surface codes)
- Reaches arbitrarily low error (just keep iterating it)
- States always in sufficiently large codes

## Stage 1: Injection

#### **Open in Crumble**



### Stage 2: Cultivation

Grow the color code

Stabilize the color code

Double-check the T state

Repeat (until approaching the postselection cost wall)

#### Example Kickback Measurement by Cat State



#### Reverse Example Kickback Measurement by Cat State



#### **Double-Check Kickback Measurement**



## Every ending measurement a flag



Exact Kickback Measurement (d=3)



Time-Forward (Bottom Row)

#### Exact Kickback Measurement (d=5)

#### Open in Crumble



### Escaping small code distance by growing the color code



Chromobius was so bad at this I almost dropped the whole idea

Definitely not *intrinsically* bad. We need a better decoder.

### Stage 3: Escape!





Light = X Dark = Z

Red/Green/Blue: Color Code Region

Overlapping stabilizers are shown inset to avoid ambiguity

## Stage 3: Escape!







Growing Surface Code from Color Code (d=7)





Grafted Color/Surface Code (d=19)





Grafted Matchable Code (d=19)



#### Decoding the Color Code Region with a Matcher

X Subgraph

Z Subgraph









## Benchmarking

State vector simulation

**X** Too large. Escape stage has >100 qubits.

State vector simulation

**X** Too large. Escape stage has >100 qubits.

Stabilizer simulation

**X** Too picky. Can't handle the T gates.

State vector simulation

X Too large. Escape stage has >100 qubits.

Stabilizer simulation

**X** Too picky. Can't handle the T gates.

Tensor network simulation

X Too interconnected. Dozens of color code cycles.

State vector simulation

**X** Too large. Escape stage has >100 qubits.

Stabilizer simulation

**X** Too picky. Can't handle the T gates.

Tensor network simulation

X Too interconnected. Dozens of color code cycles.

Stabilizer decomposition

✓ <u>arxiv:2202.09202</u> does some comparable sized simulations

**X** Too slow. Minutes per shot. Want billions of shots.

State vector simulation

X Too large. Escape stage has >100 qubits.

Stabilizer simulation

**X** Too picky. Can't handle the T gates.

Tensor network simulation

X Too interconnected. Dozens of color code cycles.

Stabilizer decomposition

✓ arxiv:2202.09202 does some comparable sized simulations

**X** Too slow. Minutes per shot. Want billions of shots.

Replace T gates with S gates

✓ Easy and fast to simulate. Circuit still functions (distills S|+) instead of T|+)).

? How accurate is this?











Expected Attempts per Kept Shot









## **Contrasting With Other Techniques**



Cost (Qubit·Rounds)



Cost (Qubit·Rounds)







Cost (Qubit·Rounds)



Cost (Qubit·Rounds)



Cost (Qubit·Rounds)

An example of possible consequences: rotating compactly by using more T gates

| Qubit Index                           | Init  | T Gate Directions                                                                                                                                        | Finish   | Т     | Infidelity |
|---------------------------------------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------|------------|
| $(k \text{ in } Z^{2^{-k}} +\rangle)$ | Basis | (the signs in $T_X^{\pm 1}, T_Z^{\pm 1}, T_X^{\pm 1}, T_Z^{\pm 1}, \dots$ )                                                                              | Clifford | Count |            |
| 0                                     | $R_X$ |                                                                                                                                                          | Z        | 0     | 0          |
| 1                                     | $R_Y$ |                                                                                                                                                          |          | 0     | 0          |
| 2                                     | $R_Z$ | +                                                                                                                                                        | H        | 1     | 0          |
| 3                                     | $R_Z$ | +-+++++++++-++++++++++++++++++++                                                                                                                         | H,Y      | 50    | 0          |
| 4                                     | $R_Z$ | +++-+-+++-+++-++++++++++++++++-+                                                                                                                         | H,Z      | 46    | 4.1e-16    |
| 5                                     | $R_Z$ | +-+++++++++++++++++++++++++++++++++++                                                                                                                    | S,H      | 48    | 6.8e-16    |
| 6                                     | $R_Z$ | +++++++-++-++-++++++++++++++++                                                                                                                           | X        | 49    | 4.1e-17    |
| 7                                     | $R_Z$ | ++++++++++++-+-+++++++++++++++++                                                                                                                         | Н        | 50    | 6.9e-16    |
| 8                                     | $R_Z$ | ++-++-++++-++++++++++++++++++++++++++                                                                                                                    | Y        | 45    | 3.0e-16    |
| 9                                     | $R_Z$ | ++-+++++++++++++-+++++++++++++++++++                                                                                                                     | H        | 48    | 2.3e-16    |
| 10                                    | $R_Z$ | +++++++++++++++++++++++++++++++++++                                                                                                                      |          | 49    | 5.0e-17    |
| 11                                    | $R_Z$ | ++-+++-+++++-+-++++++++++++++++++++                                                                                                                      | Z        | 47    | 9.7e-16    |
| 12                                    | $R_Z$ | +++                                                                                                                                                      | Y        | 45    | 6.8e-16    |
| 13                                    | $R_Z$ | ++++                                                                                                                                                     | H,Z      | 46    | 6.9e-16    |
| 14                                    | $R_Z$ | ++++++++-+-+++++-+++++++++++++++++                                                                                                                       |          | 49    | 3.9e-16    |
| 15                                    | $R_Z$ | +++-++++-+++++++++++++++++++++++++                                                                                                                       | H,Y      | 46    | 6.2e-16    |
| 16                                    | $R_Z$ | ++-++-+++++++++++++++++++++++++++++++                                                                                                                    | H,Y      | 48    | 4.9e-16    |
| 17                                    | $R_Z$ | +-+++++++-+-++++-+-++++-+-++++-+-+-+++                                                                                                                   |          | 43    | 5.3e-16    |
| 18                                    | $R_Z$ | +++++++-+++++++++++++++ <mark>+</mark> +                                                                                                                 | X        | 49    | 1.8e-16    |
| 19                                    | $R_Z$ | ++-++++++++++++++++++++++++++++++++++                                                                                                                    | Z        | 49    | 1.3e-16    |
| 20                                    | $R_Z$ | +-++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |          | 49    | 9.7e-16    |
| 21                                    | $R_Z$ | ++++-++-++++++++++++++++++++++++++++                                                                                                                     | H        | 48    | 6.1e-16    |
| 22                                    | $R_Z$ | +-++-++-+++-+++-+++++++++++++++++++++++                                                                                                                  | H,Z      | 52    | 3.4e-16    |
| 23                                    | $R_Z$ | ++++++++++++++++++++                                                                                                                                     | X        | 47    | 5.9e-16    |
| 24                                    | $R_Z$ | ++++++++++++-++++-+++++++++++++++                                                                                                                        | Х        | 49    | 2.5e-16    |
| 25                                    | $R_Z$ | +-+-+++++-++++++++++++++++++++++++++                                                                                                                     |          | 49    | 2.9e-16    |
| 26                                    | $R_X$ |                                                                                                                                                          |          | 0     | 5.5e-16    |
| 27                                    | $R_X$ |                                                                                                                                                          |          | 0     | 1.4e-16    |







## Summary

### Impact on large scale architecture?

Amdahl's law:

- If 50% of the computation is distillation, max easy improvement is 2x

Jevon's paradox:

- When X gets cheaper, you use more of X
- Sometimes so much more that total spend on X goes up instead of down!
- Example: carry lookahead adder runs faster but uses more T states

Unclear how this all plays out.

### Glass half empty

Non-Clifford gates still force a time ordering (prevent arbitrary parallelization)

Non-Clifford gates still require feedback to complete

Good estimates can't just count Ts anymore

If T states are as cheap as CNOTs... why are CNOTs so expensive??

Architectures enabling transversal CNOTs might still be T state dominated

## Summary

Cultivation is 10x cheaper than prior work One T gate ≈ two CNOT gates

Cultivation reaches **2e-9** error (from noise strength 1e-3) *within 10x of relevance to factoring 2048 bit numbers* 

Cultivation fits in small spaces A hallway wide enough to route logical qubits is large enough for cultivation

Reducing noise improves cultivation dramatically If physical qubits improve 10% per year, we might never need distillation



## **Bonus Figures**

#### Cost of waiting longer



Expected Retries per Kept Round

#### What if we still need distillation?

