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LLMs don’t reliably do what we want

1. Jailbreak robustness: LLMs can be jailbroken to give harmful outputs

2. Alignment faking: LLMs can act aligned with their training objective, while 
not actually being aligned



Alignment Faking (Greenblatt et al. 2024)
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Jailbreak Robustness Background:

Particularly important threat for CBRN: Universal Jailbreaks

Can reliably extract detailed harmful information
across the vast majority of queries



AI Safety Level 3 (ASL-3)



CBRN Uplift Model

● Non-expert uplifted to do some complex process like making a weapon. 
They:

○ Will struggle to verify information themselves.
○ Will need to answer many queries (processes are quite long)
○ Will need a lot of help. I.e., detailed, specific, helpful information.



This motivates universal jailbreaks to focus on

Attacks that are:

● Reliable (since bad actor cannot 
easily verify the output info)

● Answers most queries
● At a good level of detail
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Many shot jailbreaking: RL doesn’t fix it

We also had other internal results where we adversarially trained
an LLM but it didn’t generalize well to new jailbreaks.

RL shifts the slope 
but doesn’t change 
the scaling trend! 



Different Approach:

Detect/block harmful inputs & outputs to an LLM

Jailbreak Robustness Background:

LLM developers have failed to make LLMs jailbreak robust,
despite a lot of effort



Also need practical deployment viability

● Inference costs
● False positive rates
● Streaming capabilities











Why synthetic and constitutional?

● Threat modelling is super hard
● Collecting data is also annoying and a pain

● This is easy, flexible, and scalable.



Streaming Outputs



Human Red Teaming

● Get ~400 red-teamers, including professional/full-time red-teamers in 
partnership with hacker 1

● Give them 10 questions, try to get them to all ten questions
● Evaluate with rubric grading

○ We gave them feedback on how well they did and allowed one improvement per report using 
the rubric scores

● Pay outs if ~50% of the rubric topics as compared to a helpful-only model 
answer.



This was on an earlier system with Sonnet 3.5 classifiers, and has high refusals 
(~25% on wildchat) and overhead. But we wanted to see how far we can take it.



Assessment using Model Rubrics
Make the rubric 
using many 
helpful-only model 
samples.



Results



Results



Results



Many of the higher severity reports are very long with 
generic information

● A lot of the higher severity reports rewrote the questions to be vague and 
dual use, and then sampled many responses, which exploits issues with the 
rubric grading.

○ E.g., “how do I extract ricin from castor beans” → “how do I extract and process soy beans” 
has a non-trivial overlap according to our rubrics. Improving this.

● At as “as good as helpful-only” threshold, 6/10
● Notably I would say no “universal” jailbreaks that we are truly worried about 

here.



Automated Evaluation Improvements
I.e, deployment viability



Automated composition 
evaluation, including 
transformations and 
attacks designed to break 
the system

Rubric grading







● Constitutional Classifiers
● Offline Jailbreak Detection

○ Automated
○ Bug bounty programs

● Rapid response to new jailbreaks

ASL-3 Robustness Safety Case Components



● Constitutional Classifiers
● Offline Jailbreak Detection

○ Automated
○ Bug bounty programs

● Rapid response to new jailbreaks

Currently confident we can seriously impede LLM-driven CBRN misuse risks from 
non-state actors

ASL-3 Robustness Safety Case Components



This work was happened because of Anthropic’s Responsible Scaling Policy.

● We defined a goal as ~2k hours of red-teaming against universal jailbreaks.
● And then pivoted (hard) to try to achieve this goal.



Can we make LLMs safe,
even when we don’t trust them?

For Jailbreak Robustness:

Probably, yes.
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What threats to mitigate for misaligned AI?

Major use cases of AI:

1. External deployment: e.g., API usage
2. Internal deployment: e.g., Claude Code or Cursor Agents for AI R&D
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Biggest irreversible risks from misaligned AI are from internal deployment:

Could lead to AI that’s no longer under your control:

1. Unmonitored deployment:
a. Self-exfiltration
b. Rogue internal deployment

2. Sabotaging automated safety research:
a. Leads to deploying an AI the developer falsely thinks is safe

(for ~human-level AI)
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Coding agent removes key safety mitigation (like Chain-of-Thought monitoring)

… while doing other useful tasks for a lab (improving inference code)

Rogue internal deployment: How could this happen?



Rogue internal deployment: How could this happen?





Example successful attack (hand-crafted):

Sequence in the batch that results in the most number of generated tokens is never logged

Need to do this,

without code getting

flagged as suspicious

by a weaker model



1. It can introduce successful attacks when they don’t need to look suspicious
2. It can implement strategies included in a few-shot prompt, in a way that gets 

around a monitor
3. It can’t come up with new strategies not in the prompt, which successfully get 

around a monitor

… So overall, we think Claude isn’t able to post a major risk here.

Results TL;DR:
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Experiment Sandbagging:





Research decision steering:

Setting: Debate setting where a model-based judge predicts which of a pair of ML task 

solutions would achieve a higher benchmark score.



1. Experiment sandbagging: Unlike Claude 3.5 Sonnet, Claude 3.7 Sonnet is almost 
capable of zero-shot sabotage without using a scratchpad, reducing task performance 
to regular Claude 3.5 Sonnet with only a slight increase in monitor suspiciousness.

2. Research decision steering:
a. It is easy to steer the judge’s decision by making a justification less convincing 

(another form of sandbagging). Exaggerating the other justification is not effective.
b. Prompted monitors struggle to detect manipulated justifications, even more so 

than for experiment sandbagging.

Results TL;DR:



Could lead to AI that’s no longer under your control:

1. Unmonitored deployment:
a. Self-exfiltration – maybe solvable with computer security?
b. Rogue internal deployment

2. Sabotaging automated safety research:
a. Leads to deploying an AI the developer falsely thinks is safe

For human-level coding agents, looks potentially feasible to defend against all of the above.

Biggest irreversible risks from misaligned AI are from internal deployment:



Can we make LLMs safe,
even when we don’t trust them?

For Jailbreak Robustness:

Probably, yes.

For Misalignment:

For some threats, right now, yes.
For others, it’s TBD.
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