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Concepts are distributed across dimensions of token embeddings, and 
across neurons in the MLP.



Unsupervised feature discovery

16 + 25 =

41

Transformer

Carry-over
X10

Interpretability pipeline



Unsupervised feature discovery

16 + 25 =

41

Transformer

C ← 0
X10

Interpretability pipeline



Unsupervised feature discovery

16 + 25 =

41

Transformer

X10

Interpretability pipeline

C ← 0



Unsupervised feature discovery

X10

Interpretability pipeline

16 + 25 =

Transformer

C ← 0



Unsupervised feature discovery

X10

Interpretability pipeline

16 + 25 =

Transformer

31

C ← 0



Sparse auto-encoders (SAEs)

Represent  as a sparse sum of concept directions.z

z
+=

B.A. Olshausen, D.J. Field. 1997. Sparse coding with an overcomplete basis set: A strategy employed by V1?	 

Elad, M. 2010. Sparse and redundant representations: from theory to applications in signal and image processing.



Sparse auto-encoders (SAEs)

Linear  + ReLUM
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Objective: 
min

M
𝔼z[∥z − ̂z∥2

2] + α∥c∥1

c = ReLU(Mz + b), ̂z = MTc

• Adopted in interpretability community around 20231,2.


• Assume concepts are represented linearly3.


• If concepts are disentangled, each column of the 
decoder gives us a steering direction.
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• Adopted in interpretability community around 20231,2.


• Concepts are represented linearly3,4.


• If concepts are disentangled, each column of the 
decoder gives us a steering direction.

Objective: 
min
M

𝔼z[∥z − ̂z∥2
2] + α∥c∥1

c = ReLU(Mz + b), ̂z = MTc

1Cunningham et al., 2023. Sparse Autoencoders Find Highly Interpretable Features in Language Models. 2https://transformer-circuits.pub/2023/monosemantic-features.  

3Mikolov et al., 2013. Linguistic Regularities in Continuous Space Word Representations.  4Jiang et al., 2024. On the origins of linear representations in large language models.



2Wu et al. 2025. AxBench: Steering LLMs? Even Simple Baselines Outperform Sparse Autoencoders. 
3https://deepmindsafetyresearch.medium.com/negative-results-for-sparse-autoencoders-on-downstream-tasks-and-deprioritising-sae-research-6cadcfc125b9

SAEs 
reappear in 
ML papers.

SAEs gains 
popularity in 

industry.

SAEs scaled 
up and open-

sourced1.

SAEs 
underperform 

on steering 
benchmarks2.

Industry 
moving away 
from SAEs3.

1Lieberum et al. 2024. Gemma Scope: Open Sparse Autoencoders Everywhere All At Once on Gemma 2



We need unsupervised methods that provably 
disentangle the steerable concepts.



Causal representation learning 
Discovering “intervenable” features



“Blue ball on the left”
“Pink ball to the right”

“Grey ball in the center”

Learning to encode images

Supervision from text



f(x)

“Blue ball on the left”

“Pink ball to the right”

“Grey ball in the center”

g(y)

min
f∈ℱ

𝔼x,y[(g(y) − W⊤f(x))2]

Learning to encode images



A “nice” choice of basis

Cool color Warm color

Left

Right

These axes align with concepts we 
want to intervene upon in isolation.



Are we guaranteed to learn these features?

f(x)

“Blue ball on the left”

“Pink ball to the right”

“Grey ball in the center”

g(y)

min
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𝔼x,y[(g(y) − W⊤f(x))2]



Learning objective is underspecified!
Rotated by 63 degrees

“Blue ball on the left”

“Pink ball to the right”

“Grey ball in the center”

g(y)

min
f∈ℱ

𝔼x,y[(g(y) − W⊤f(x))2]



This indeterminacy affects steering

Rotated by 63 degrees

Learning the vector that changes blue to 
pink would require labeled data. 

Axes of the learned basis don’t align with 
the concepts we want to change! 
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Weak supervision via invariances

When the shifts are 1-sparse, and with 
some key extra assumptions, we can 

show that .̂z = ̂f(x) = PDz
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Sparse auto-encoders
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Rotated by 63 degrees

Do we end up with entangled features like our rotated basis?



Evidence from experiments
Single-concept shifts . Use each column of LlamaScope decoder to 

steer  and take best similarity to true .
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Sparse auto-encoders (SAEs)

Represent  as a sparse sum of concept directions.z
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Sparsity regularization should lead to disentangled features — what might be going wrong?
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Issue 1: Some concepts may not learnable

? ? ? ? ?

Linear  + ReLUM

z

cc1 c2

Mapping from concepts to LLM 
representations is not injective.



E.g., if we lack examples  that capture only a 
single concept, spurious encoders that 

entangle concepts also minimize regularizer!

z

Issue 2: Not enough diversity in underlying concepts

∼ p(c)

min
M

∥z − ̂z∥2
2 + α∥c∥1

• Moran, Sridhar, Wang and Blei. 2022. Identifiable deep 
generative models via sparse decoding.  

• Arora et al. 2013. A practical algorithm for topic 
modeling with provable guarantees.



 📃  arXiv: 2502.12179



Multi-concept shift datasets

∼ p(c)
1 2 3 4 5

{1,4} ∼ P(S)

∼ p(δc |s)

= c̃

x

x̃

δz−

z = f(x)

z̃ = f(x̃)

E.g., last token 
embedding in last layer.
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{1,4} ∼ P(S)

∼ p(δc |s)

= c̃

z = f(x)
x

x̃ z̃ = f(x̃)

δz−

⚠ These are more general than single-concept shift contrastive pairs 
used to learn steering vectors via supervision.  

🤖 We could, e.g., use LLMs to generate concept-shifted examples, 
and learn despite the fact that LLMs don’t generate perfect 

counterfactuals.
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Tackling lack of diversity: By formalizing conditions on 
, we get the diverse shifts we need for sparsity 

regularization to guarantee concept recovery. 
P(S, δc)
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Multi-concept shift datasets

∼ p(c)
1 2 3 4 5

{1,4} ∼ P(S)

∼ p(δc |s)

= c̃

δz

What about unmeasurable concepts? They get cancelled 
out when we consider embedding differences ! δz

Key detail here: We restrict ourselves to recovering 
only the concepts that vary across the dataset!

Tackling lack of diversity: By formalizing conditions on 
, we get the diverse shifts we need for sparsity 

regularization to guarantee concept recovery. 
P(S, δc)



Sparse shift auto-encoders (SSAEs)

∼ p(c)
1 2 3 4 5

{1,4} ∼ P(S)

∼ p(δc |s)
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Sparse shift auto-encoders (SSAEs)

z
+=

Not basis where concept activations are sparse.. … but where interventions are sparse



SSAEs provably recover concept shifts

Objective: 


min
E,D

𝔼z,z̃ [∥δz − ̂δz∥2
2] s.t. 𝔼[∥δc∥0] ≤ β

E

D

δz

̂δz

δc Informal theorem statement: We estimate concept 
shifts  and linear mixing function  up to 

permutations and scaling of the target solutions.
δc D

Columns of the decoding matrix are parallel to 
steering directions.



How does this work with Llama 3.1 embeddings?



Competitive with SAEs or significantly better where SAEs had not 
worked well.

How does this work with Llama 3.1 embeddings?



The forest 

• Causal representation learning unifies many strategies for identifiable 
learning of interpretable latent features.


• We can also learn causal models over these latent variables up to not-so-
bad indeterminacies. 


• There’s interest in discovering causal models to help with planning and 
reasoning. CRL offers a starting point.


