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Alignment

* The capabilities and alignment of modern Al models are specified indirectly, by
engineering the data distribution used to train them

* However, model behaviour is underspecified: many different ways of performing the
computation within the model are consistent with low loss

* Two models with the same evaluation performance but different “modes of
computation” may behave differently in other settings

* Many approaches to alignment benefit from progress on understanding these
differences, detecting them and tracing them back to causes

* SLT has non-trivial things to say here, and empirical tools to back it up

“You are what you eat: Al alignment requires understanding how data shapes structure and generalisation” S. Pepin
Lehalleur, J. Hoogland, M. Farrugia-Roberts, S. Wei, A. Gietelink Oldenziel, G. Wang, L. Carroll, D. Murfet
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1. Model Selection



Let D, be a dataset of size n and let L (w) be the

empirical loss for a statistical model p(x | w)

parametrised by w with prior p(w)
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But does this actually happen?
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* Following Garg et al 2022 and Raventos et al 2023, we study in-context linear regression

» A transformer is trained to predict y € R given x € R” = [

S with task diversity M

» dMMSE,, = posterior predictive distributionon {t, ..., t;,} (memorising solution)

» Ridge = posterior predictive distribution on Wfor t ~ N(O, /) (generalising solution)

“Dynamics of transient structure in in-context linear regression transformers” L. Carroll, J. Hoogland, M. Farrugia-
Roberts, D. Murfet 2025
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Something else What you asked for
(e.g. Ridge) n < n' n* n > nt (e.g. dMMSEM)
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(e.g. Ridge) n<n* n' n>n' (e.g. AMMSE,,)

The optimal solution (in a Bayesian sense) is not necessarily the lowest loss solution

For feasible n your desired solution could be “screened” by lower complexity solutions

In a paradigm where you indirectly specify safe behaviour by engineering the data
distribution, the nature of this screening seems important

Is reward hacking lower complexity?



2.Some Theory



Defining the Learning Coeflicient

. LetL(w) = — J'q(x)log p(x|w) be the average negative log likelihood (pop. loss)

* The local learning coefficient (LLC) at a local minimum w* € Wof L(w) is

A(w*) := —lim log, [Vol(%t, W) Ivol(t, w)

1—0

where for some ball B around w*

vol(z, w*) = J o(w)dw
|L(w)—L(w*)|<t, weB

See Watanabe’s books and “The local learning coefficient: a singularity-aware
complexity measure” E. Lau, Z. Furman, G. Wang, D. Murfet, S. Wei AISTATS 2025



https://arxiv.org/abs/2308.12108
https://arxiv.org/abs/2308.12108
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The LLC can be defined in terms of the rate at which the parameter space volume (within a given neighborhood
and with a given maximum loss) shrinks as the loss threshold is reduced to that of the local minimum. We show
four population loss landscapes for a two-dimensional parameter space with decreasing LLC (increasing
degeneracy). In these examples, the local multiplicity is 1.



Free Energy Formula

 Assume relative finite variance [Green, §3.1] in addition to the fundamental

conditions of [Gray] (excepting realisability) and that there is a point wy, minimising
L in the interior of W.

* Theorem (Watanabe): We have by [Green, §6.3] for a local semi-analytic
neighbourhood 7 of a local minimum w* of L

F (W) =nL (w*)+ Aw*)logn — (m(w*) — 1)loglogn + Ff + 0,(1)

» Here m € Nis the multiplicity and F¥ is a random variable which converges to a
random variable in law.
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Estimating the Learning Coeflicient

The LLC depends on the model (i.e. architecture) and data distribution
Computing the LLC directly using volumes is intractable

Theoretically deriving LLCs is difficult (needs nontrivial algebraic geometry in
general) and has been done only in a few cases, including DLNs

However, using theorems of Watanabe we can derive an estimator

Jw*) = nﬁl = s gy L) — Ln(w*)]

pOv 1w, B.7) o exp( = npL,ow) = Lilw = w¥3)



Estimating the Learning Coeflicient

Jw*) = nﬁl = s gy L) — Ln(w*)]

p(w | w*, 0,v7) GXp( — nﬁLn(W) — gHW _ W*H%)

Sampling from this distribution is difficult

We use approximate samples based on scalable gradient-based methods (principally
SGLD, and an RMSProp variant for larger models)

Selection of hyper parameters nf, y and step-size € and batch-size m for SGLD

We are Very Interested in theoretical and empirical progress on SGLD or related
methods as these are the foundation of everything we do



Caveats

LLC estimation is currently a bit of an art

We do not trust the absolute value of the estimates (they are far too low in general).
However relative changes seem meaningful (e.g. over training, or with respect to
variations in the data distribution).

Hyperparameter selection is a bit fraught, but we are pushing on theoretical and
empirical fronts to try to understand this better

We do not believe in accurate posterior approximation with reasonable resources
for large neural networks. The hope is that we are able to sample well enough for
the expectation values of observables we care about



5. Experiments



Deep Linear Networks (DLNSs)
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“The local learnin fficient: a singularity-aware complexity measure”
E. Lau, Z. Furman, G. Wang, D. Murfet, S. Wei AISTATS 2025



https://arxiv.org/abs/2308.12108

Small Transformers

Test loss l?(Wt)
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“Loss landscape geometry drives stagewise development in transformers” J. Hoogland,
G. Wang, M. Farrugia-Roberts, L. Carroll, S. Wei, D. Murfet 2024


https://arxiv.org/abs/2402.02364

LLC s “just anumber”

Only allow the parameter to vary
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Use L for another data distribution

Measure across training



Small Language Models
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“Differentiation and specialization of attention heads via the refined local learning coefficient” G. Wang, J.
Hoogland, S. Van Wingerden, Z. Furman, D. Murfet, ICLR 2025 (Spotlight).



https://arxiv.org/abs/2410.02984
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Intuition: the LLC has contributions from many “patterns” in the data,
with different sensitivity to different patterns, and if you vary the distribution

of those patterns different heads respond differently

“Differentiation and specialization of attention heads via the refined local learning coefficient” G. Wang, J.
Hoogland, S. Van Wingerden, Z. Furman, D. Murfet, ICLR 2025 (Spotlight).
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4. Structure



Alignment

* The capabilities and alignment of modern Al models are specified indirectly, by
engineering the data distribution used to train them

* However, model behaviour is underspecified: many different ways of performing the
computation within the model are consistent with low loss

* Two models with the same evaluation performance but different “modes of
computation” may behave differently in other settings

* Many approaches to alignment benefit from progress on understanding these
differences, detecting them and tracing them back to causes

* SLT has non-trivial things to say here, and empirical tools to back it up

“You are what you eat: Al alignment requires understanding how data shapes structure and generalisation” S. Pepin
Lehalleur, J. Hoogland, M. Farrugia-Roberts, S. Wei, A. Gietelink Oldenziel, G. Wang, L. Carroll, D. Murfet
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“You are what you eat: Al alignment requires understanding how data shapes structure and generalisation” S. Pepin
Lehalleur, J. Hoogland, M. Farrugia-Roberts, S. Wei, A. Gietelink Oldenziel, G. Wang, L. Carroll, D. Murfet



Susceptibilities
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Given a tangent vector v € T, and observable ¢ : W — R the associated susceptibility is

xW) == —T,(($)_,° F)@) €

For example, if v is the infinitesimal formof 2 — ¢, := (1 — h)g + hq’

0
X = [ dW)p(w | Dy, q)dw

" dh 0
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As with the LLC, we do this locally at w* € W and for observables that depend on a

component C where W = U X C, w* = (u*, ¢*) and define estimators using SGLD

0 0 -~
*. C,v) = — Cov |, —L" = A(w*: C,
y(w ) [¢c m ] 23 o ( q5)

e = 8 — ) |Liow) = Liow)]

h=0



Susceptibilities

Experiments

* We took a two-layer attention-only transformer trained on the Pile, and studied
susceptibilities for pairs consisting of ¢ the above observable associated to

individual attention heads, and v the variation of the Pile in the direction of one of
its subsets (e.g. arXiv, NIH exporter).

* These numbers (which can be positive or negative) tracked across training
checkpoints give a picture of the degree to which varying the data distribution (e.g.
to include more math or code) pushes the posterior restricted to parts of the model

* This is work in progress 2

“Studying small language models with susceptibilities” G. Baker, G. Wang, J. Hoogland, D. Murfet, in preparation
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-PRD X9KU at LANL (J.T.), and by the Deutsche Forschungsgemeinschaft (S.K.).
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Conjecture: Much of the information “in” Layer o head o is about brackets
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e Interpretability: by studying the data matrix { Jw*; C, I/j)}l-, i we hope to
understand internal structure in large models and the effect of training and fine-
tuning on that structure

e Patterning: if we can detect sensitivity of the posterior to certain patterns in the
data, we may be able to more effectively steer the learning process (both in pre-
training and in post-training)



Conclusion

SLT is a mathematical theory of Bayesian statistics, due to Sumio Watanabe

We have developed and tested a scalable estimator of the core quantity, the LLC, to
transformer models of 7B parameters.

Across a variety of settings it reflects changes in complexity (for parts of the model
and parts of the data) that we can independently validate “make sense”

The LLC and related quantities like susceptibilities provide a foundation for
understanding how structure in data shapes structure in models

These theoretical and empirical foundations can be applied to many problems in Al
safety, including but not limited to interpretability
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