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• What’s does DeepSeek R1 think of? 

• Why are its thoughts inefficient? 

• Let’s improve reasoning through credit assignment 
(process rewards / progress rewards)!

2

Goal of this talk



• A paradigm shift: Reason / think first and answer next 
• OpenAI o1, DeepSeek r1, Gemini 2.5 

• Reasoning is being ingrained into LLMs through reinforcement learning 

• It’s fine to make mistakes during the thought process — different from 
chain-of-thought or other search methods 

• Great potential for inference-time scaling
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Large Language Models 
-> Large Reasoning Models
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LLM vs LRM



• Thoughtology is the systematic study of reasoning chains 
/ thoughts 
• Reasoning patterns 
• Inference-time scaling of thoughts vs performance 
• User given context vs parametric knowledge 
• Similarity with human language processing  
• World modelling 
• Many more
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Thoughtology
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https://mcgill-nlp.github.io/thoughtology/
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DeepSeek-R1 Thoughtology
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Reasoning patterns observed in R1 thoughts

Problem
Definition:

Delineation
of task goals

‘Ok, so the user

wants me to...’

Bloom:

Decomposition
of problem and
initial execution
to a potential
answer, which
may be verified.

‘First, I

should...’

Reconstruction:

Reconsideration of
initial assumptions,
possibly leading
to a new answer,
and verification
of confidence.

‘Wait,

alternatively

...’

Final Answer:

Qualification
of confidence
and final an-
swer to return.

‘Ok, I’m

sure now...’
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Not all reasoning cycles are equal in size

• Bloom (first) cycle has 
the longest length of all 

• Reconstruction cycles 
(“aha” moments) 
become shorter in length 
with time 

• But occasional spikes in 
reconstruction cycles — 
reblooms

Reasoning cycles observed in GSM8K 

(annotated with GPT4o)
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• Reconstruction cycles: 
• Reblooms: sampling a 

different solution 

• Rumination: self-
verification or a 
verbatim repeat of 
previous cycle 

• Essentially R1 discovered 
self-consistency but with 
sequential sampling
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Thoughts have a sweet spot for length

Plots created by sampling 40 thoughts per problem. No budget forcing.
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Thoughts have a sweet spot for length

• Inference-time scaling hurts beyond the sweet spot 
• Sweet spot is problem specific
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Forcing to lower budgets is more cost-effective
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Correct solutions have shorter lengths
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Correct solutions have shorter lengths
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Cannot control thought budget through prompt
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• No mention of budget in its thoughts 
• Signs of no process monitoring — meta cognition

Cannot control thought budget through prompt
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Faithfulness to given context

• Much more faithful to input 
context even if the context 
refutes parametric knowledge 

• Opposite to what LLMs do   
(Min et al. 2022)
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OOD Evaluation: world modelling

• Not faithful to its own thoughts — i.e., answer is not from its 
thoughts 

• For ASCII visual problems, hallucinates in math and code

Prompt: draw a dog?



• Abilities that didn’t emerge/learn. 
• No process monitoring (you can’t force the model to think in 

certain budget) 
• Not faithful to its own thoughts in OOD settings.
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What did R1 succeed/fail to discover?

• Abilities that are discovered: 
• Sequential self-consistency 
• More importance to user input than parametric knowledge
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DeepSeek-R1 Thoughtology

Many more findings in paper



• Reasoning cycles: predominantly ruminants and some reblooms 

• Problem specific sweet spot for thought’s length — inference time 
scaling beyond certain length is counterproductive 

• Thought: Is R1 essentially a sequential self-consistency model?
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Partial summary: DeepSeek R1 Thoughtology
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Partial summary: DeepSeek R1 Thoughtology
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Is R1 an inefficient sequential self-consistency model?

• Reward at the end isn’t enough.  
• Perhaps step-wise credit assignment is the solution.
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• Let’s assume problems and answers are given but not proofs
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Desiderata of reasoning with LLMs
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answer
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Desiderata of reasoning with LLMs

Identifying impact of each step/state on the outcome =
Credit Assignment in reinforcement learning
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Supervised learning if steps  are given:yt

̂g
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• Since reasoning steps are not given 
• Encourage the model to generate steps that are important 

Supervised learning if steps  are given:yt

̂g
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• Since reasoning steps are not given 
• Encourage the model to generate steps that are important 

Supervised learning if steps  are given:yt

̂g

Advantage: The relative goodness of step  yt
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Advantage: The relative goodness of step  yt

What does it do?
1. If Advantage  is positive: increase log-likelihood of .

2. If Advantage  is negative: decrease log-likelihood of .

A(yt) yt

A(yt) yt



a1 a2 a3 a4 a5 a6 a7 a8 a9actions

grads

A1 A2 A3 A4 A5 A6 A7 A8 A9advantages

+1

GRPO (DeepSeek-R1 RL Training objective)
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GRPO (DeepSeek-R1 RL Training objective)

advantages

=
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• Biggest drawback of GRPO: All steps are equal 

• Conjecture: this is probably why we see a lot of rumination 
(repeatedly solving the same problem again and again) 

• Instead rely on the value of a state to determine the advantage/
importance — PPO / VinePPO

GRPO (DeepSeek-R1 RL Training objective)



a1 a2 a3 a4 a5 a6 a7 a8 a9actions

grads

A1 A2 A3 A4 A5 A6 A7 A8 A9advantages

PPO / VinePPO
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1. Combining the fractions on the left gives 

.

2. Multiply both sides by  to clear the 
fraction: .

3. Distribute the 5 on the right side: 
.

4. Rearrange to solve for x: 

.

1 + 2x
x − 1

= 5

x − 1
1 + 2x = 5(x − 1)

1 + 2x = 5x − 5

1 + 5 = 5x − 2x ⟹ 6 = 3x ⟹ x = 2

✅

✅

✅

❌

V("Find all ... 1. Combing the frac... = 5") = 0.66

Value of a state = the expected reward if you start in that state

Average  over 
infinite samples
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Computing the Advantage At
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Computing the Advantage At

*Given that  and the environment is fully deterministic.γ = 1
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Computing the Advantage At

*Given that  and the environment is fully deterministic.γ = 1
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Computing the Advantage At

On average, how well we perform after 
i.e. sampling from 

at
st+1 = [st; at]

*Given that  and the environment is fully deterministic.γ = 1
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Computing the Advantage At

On average, how well we already perform in st

On average, how well we perform after 
i.e. sampling from 
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*Given that  and the environment is fully deterministic.γ = 1
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Computing the Advantage At

On average, how well we already perform in st

On average, how well we perform after 
i.e. sampling from 

at
st+1 = [st; at]

*Given that  and the environment is fully deterministic.γ = 1

• A formulation used in many RL optimization algorithms like PPO
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1. Combining the fractions on the left gives 

.

2. Multiply both sides by  to clear the 
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3. Distribute the 5 on the right side: 
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• PPO as in RLHF pipeline (Ouyang et 
al. 2022) is the SOTA algorithm for RL-
based finetuning of LLMs. 

• PPO uses a value network to tackle 
credit assignment. 

• ValNet is the same size as and 
initialized from LLM itself.

PPO
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1. Combining the fractions on the left gives 

.

2. Multiply both sides by  to clear the 
fraction: .

3. Distribute the 5 on the right side: 
.

4. Rearrange to solve for x: 

.

1 + 2x
x − 1

= 5

x − 1
1 + 2x = 5(x − 1)

1 + 2x = 5x − 5

1 + 5 = 5x − 2x ⟹ 6 = 3x ⟹ x = 2

✅

Value Network 
(Initialized from LLM itself)

Vϕ

0.84

x y<t

Scalar Head

PPO uses value network to predict values
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• RQ1:  
How accurately do value networks actually perform for LLM post-training?  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• RQ1:  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• RQ1:  
How accurately do value networks actually perform for LLM post-training?  
 
(a) They provide inaccurate estimates.  
 
 
 

• RQ2: 
If we improve credit assignment, to what extent would it enhance LLM performance?  
 
(a) We introduce VinePPO that uses MC samples to improve credit assignment. 
(b) It outperforms standard PPO and RL-free methods (e.g. DPO) 
(c) The effect of enhanced credit assignment is so important that it surpasses PPO  
     in fewer steps (9x), less wall-clock time (3x), and lower KL. 
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• Datasets:
• MATH and GSM8K 
• Final answer is given but not proofs 

• Models
• DeepSeekMath 7B and RhoMath 1.1B 

• Baselines
• GRPO, Standard PPO, and RL-free methods: DPO+, RestEM 

• Hyperparameters
• Search done on PPO.  
• VinePPO shares the exact same ones; K=9

Experimental Setup
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Ground Truth

Pr
ed

ic
te

d 
Va

lu
e

ValNet 

Accuracy of Value Networks is poor
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1. Combining the fractions on the left gives 

.
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Our VinePPO uses Monte Carlo Estimation
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Trajectory τ

Our VinePPO uses Monte Carlo Estimation
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Ground Truth

Pr
ed
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te
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Va
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e

PPO ValNet VinePPO
(9 rollouts per step) 

Ground Truth

Pr
ed
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d 
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e

Our VinePPO uses Monte Carlo Estimation
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The effect of Improved Credit Assignment
Task Performance (ablating the number of MC samples)

• Increasing more compute leads to more accurate value estimate and better task performance
• In some cases even K=1 perform better or on par with PPO.
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Summary

• Credit assignment has a profound impact on reasoning 

• VinePPO provides a better performance in the same budget.  

• A promising alternative for post-training frontier LLMs. 

• VinePPO also provides a straightforward scaling axis — training-time search 
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DeepSeek-R1 Thoughtology

Many more findings in paper



https://github.com/McGill-NLP/nano-aha-moment

https://www.youtube.com/watch?v=ZMO5tv30ri8


https://github.com/McGill-NLP/nano-aha-moment

https://www.youtube.com/watch?v=ZMO5tv30ri8
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The effect of Improved Credit Assignment
Computational Efficiency

• VinePPO and PPO require different resources: GPU memory vs More LLM Inferences
• VinePPO is generally slower per iteration (5x for 1.1B and 2x for 7B).
• VinePPO is faster in wall-clock time, is the only option if memory is constrained.
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The effect of Improved Credit Assignment
Temperature Tolerance

• Value network in Standard PPO cannot tolerate more diverse trajectories in higher 
temperatures
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Value Prediction Analysis 
Why such performance gap exists?



58

Value Prediction Analysis 
Distribution
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Value Prediction Analysis 
Accuracy
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Value Prediction Analysis 
Accuracy
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Value Prediction Analysis 
Accuracy
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Fixing length budget


