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The heavy tail of factual Knowledge 

• Two factual statements about Napoleon:


• Napoleon had a mother, who gave birth to him  
somewhere.  
(Common knowledge.)


• Napoleon was born on August 15th, 1769 in Ajaccio, Corsica 
to his mother Letizia Bonaparte. 
(Tail knowledge.) 



The heavy tail of factual Knowledge 

• Two factual statements about Napoleon:


• Napoleon had a mother, who gave birth to him  
somewhere.  
(Common knowledge.)


• Napoleon was born on August 15th, 1769 in Ajaccio, Corsica 
to his mother Letizia Bonaparte. 
(Tail knowledge.) 

Low information content (cheap & compressible)

High information content (expensive & not compressible)



What LLMs learn

Napoleon was born on 8/15/1969

Napoleon had a mother
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Factual Tail Knowledge

External  
Database (Napoleon, birthplace) -> Ajaccio, 

Corsica [Encyclopedia Brittanica]

Goal: Separate Tail Knowledge into DB

Napoleon had a mother

Subject-Verb-Object

Pronoun-Antecedent 
Agreement

Language Competency

Proper Punctuation

Factual Common Knowledge

Napoleon had was born

Model weights

Model can be:  
• Smaller  
• Faster to train 
• Cheaper to operate

Data base can be:  
• huge 
• interpretable  
• editable 
• grounded (i.e. link to sources)

(Napoleon, birthdate) -> 8/15/1969 
[Wikipedia]

(Napoleon, mother) -> Letizia 
Bonaparte [Wikipedia]



Napoleon was born on 🔍(“Napoleon", “birthdate”-> August 15th) August 
15th, 1769 in 🔍(“Napoleon", “birthplace”->”Ajaccio, Corsica”) Ajaccio, 
Corsica to his mother 🔍(“Napoleon", “mother”->”Letizia Bonaparte”) Letizia 
Bonaparte.

Pre-Training 
Populate Database and move Tail Knowledge out of pre-training corpus

Napoleon was born on August 15th, 1769 in Ajaccio, Corsica to his mother 
Letizia Bonaparte.

“🔍”: Special token initiates DB lookup



Pre-Training 
Populate Database and move Tail Knowledge out of pre-training corpus

“🔍”: Special token initiates DB lookup

Common knowledge  
(lookup keys)

DB Return Values 
(hidden from user)

Tail Knowledge 
(copied from DB)

Napoleon was born on August 15th, 1769 in Ajaccio, Corsica to his mother 
Letizia Bonaparte.

Napoleon was born on 🔍(“Napoleon", “birthdate”-> August 15th) August 
15th, 1769 in 🔍(“Napoleon", “birthplace”->”Ajaccio, Corsica”) Ajaccio, 
Corsica to his mother 🔍(“Napoleon", “mother”->”Letizia Bonaparte”) Letizia 
Bonaparte.



Data Preparation Pipeline

Finetune

Initial annotator 
- prompted to extract 

factual entities 
- creates initial small 

seed data

Corrector 
- removes references to 

future 
- rewrites text for 

fluency 
- unifies key-names

Fine-tuned annotator 
- fine-tuned on seed 

data 
- much faster / cheaper 
- processes entire pre-

train corpus

Process entire pre-training corpus



Database

“🔍”: Special token initiates DB lookup

Populate Database with all factual tail knowledge triplets

(Entity, Relation, Value) Triplets 
e.g. (“Napoleon", “birthdate”-> 08/15/1769)
Populated (on the fly) from processed corpus. 

Napoleon was born on 🔍(“Napoleon", “birthdate”-> “August 15th”) August 
15th, 1769 in 🔍(“Napoleon", “birthplace”->”Ajaccio, Corsica”) Ajaccio, 
Corsica to his mother 🔍(“Napoleon", “mother”->”Letizia Bonaparte”) Letizia 
Bonaparte.



Napoleon was born on 🔍(“Napoleon", “birthdate”-> “August 15th”) August 
15th, 1769 in 🔍(“Napoleon", “birthplace”->”Ajaccio, Corsica”) Ajaccio, 
Corsica to his mother 🔍(“Napoleon", “mother”->”Letizia Bonaparte”) Letizia 
Bonaparte.

Backprop

“🔍”: Special token initiates DB lookup

Next word prediction, except exclude DB return values from backprop

Train model to:

- know common knowledge 

- use common knowledge to look up tail knowledge

- copy tail knowledge from DB return values  



Inference

• Let model generate text


• Special token 🔍 triggers database lookup


• Inject value into context

Toolformer: [Schick et al. 2023]

Napoleon was born on 🔍(“Napoleon", “birthdate”-> 08/15/1769) August 15th …



Key Mismatch problem
Generated lookup keys might not match database

Napoleon, Birthday

Napoleon, Birth Date

Mozart, Birth Date

Napoleon, Mother

Solution 1: Fuzzy lookup  
(embed keys, find closest match)

Solution 2: Prefix Tree  
(Force only valid keys at decoding)

 
+ Very fast 
+ Almost overhead free 
- No explicit DB misses

+ More forgiving 
+ Better retrieval accuracy 
+ Allows for Misses (i.e. unknown) 
- Large memory requirement 
- Missmatch hard to recover from



Perplexity
LMLM (Large Memory Language Model)
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Standard LMLM

• Model: OPENAI/GPT2-124M 


• Data: OLMo2 Wiki corpus


• Evaluation on 245 held-out tokens


• Normalized for length (to account for 
extra tokens)



FactScore
LMLM pre-training doubles factual precision 

Under review as a conference paper at COLM 2025

In Table 1, we report the perplexity of STANDARD and LMLM on the validation set with265

various model sizes. As model size increases, all evaluation perplexity decreases, which266

is consistent with general observations of LLM pretraining. Across all model sizes, static,267

dynamic and normalized perplexities of LMLM all improve upon STANDARD perplexity,268

suggesting our memory augmented model improves knowledge understanding. Notably,269

the gap between the static and dynamic settings suggests the potential room of improvement270

for retrieval formatting errors and execution mismatches. These findings suggest that271

refining retrieval mechanisms further could enhance model performance.272

Downstream NLU performance We evaluate and compare the natural language under-273

standing (NLU) performance across six common tasks of LMLM and STANDARD in Table 4.274

This evaluation serves as a sanity check to ensure that LMLM maintains strong performance275

on non-knowledge-intensive tasks. The results indicate that LMLM performs on par with276

its STANDARD counterpart across a range of commonsense reasoning and language under-277

standing benchmarks, confirming that separating factual knowledge during pretraining278

does not degrade overall model utility.279

Table 2: Evaluations on FactScore metrics for open-ended text generation. We evaluate
models on generating biographies using prompts such as ‘Tell me a bio of Kang Ji-hwan.
Kang Ji-hwan is”. All models achieved 100% respond ratio. LMLM significantly improves
factual precision over models and off-the-shelf LLMs of comparable size. The subscripts
indicate the absolute difference compared to their respective GPT2 baselines.

Metrics
Model Memory Type FActScore (%) FActScore w/o length penalty (%) # Atomic facts per valid response
OPENAI/GPT2-124M→ STANDARD 14.6 14.7 24.2
GPT2-124M STANDARD 10.7↑3.9 11.3↑3.4 36.7+12.5
GPT2-124M LMLM 20.0+5.4 25.3+10.6 32.3+8.1

LLAMA2-176M STANDARD 12.8↑1.8 13.8↑0.9 31.1+6.9
LLAMA2-176M LMLM 27.8+13.2 32.3+17.6 22.1↑2.1

OPENAI/GPT2-355M→ STANDARD 15.2 15.2 24.6
OPENAI/GPT2-774M STANDARD 17.4 17.4 49.4
TINYLLAMA-1.1B* STANDARD 16.4 16.4 44.1
LLAMA2-7B* STANDARD 34.0 35.1 33.9
LLAMA3.1-8B* STANDARD 40.3 40.5 38.5

* Models marked with an asterisk (*) are off-the-shelf models with no additional training.

Table 3: Evaluation results on the T-REx dataset, where the task is to complete statements
with missing facts. The metrics include Exact Match (checking if the correct word appears
in the next five words) and Precision @1 (measuring the precision of the top-1 prediction).
Subscripts indicate the absolute difference compared to the corresponding GPT2 baselines.

Metrics
Model Memory Type Exact Match ↑ Precision @1 ↑
OPENAI/GPT2-124M→ STANDARD 20.09 20.31
LLAMA2-176M STANDARD 21.00↑0.9 19.03↑1.3
LLAMA2-176M LMLM 41.86+21.8 34.76+14.5

OPENAI/GPT2-355M→ STANDARD 28.41 29.59
OPENAI/GPT2-774M* STANDARD 35.63 31.93
TINYLLAMA-1.1B* STANDARD 35.55 26.06
LLAMA2-7B* STANDARD 60.51 44.40
Llama-3.1-8B STANDARD 60.58 67.33

* Models marked with an asterisk (*) are off-the-shelf models with no additional training.

4.5 Factual Precision280

FactScore FactScore (Min et al., 2023a) is a factual precision benchmark for open-ended281

generation tasks. To calculate the FactScore metric, it breaks the generations into a series of282

atomic facts and computes the percentage of atomic facts supported by a reliable knowledge283

source. Since it only measures precision but not recall, we also reports number of Atomic284

facts per valid response. Following Min et al. (2023a), we adopt the first 100 people biogra-285

phies queries as evaluation set and validate it on retrieval+ChatGPT setting. All model286

outputs are generated using greedy decoding with a maximum length of 256 tokens.287

8

FactScore: [Min et al. 2023]

FS Task: Open ended biography generation, e.g. “Tell me a bio of Kang Ji-hwan. 
Kang Ji-hwan is …”; check for factual accuracy



T-REX
LMLM pre-training doubles factual precision 

Under review as a conference paper at COLM 2025

In Table 1, we report the perplexity of STANDARD and LMLM on the validation set with265

various model sizes. As model size increases, all evaluation perplexity decreases, which266

is consistent with general observations of LLM pretraining. Across all model sizes, static,267

dynamic and normalized perplexities of LMLM all improve upon STANDARD perplexity,268

suggesting our memory augmented model improves knowledge understanding. Notably,269

the gap between the static and dynamic settings suggests the potential room of improvement270

for retrieval formatting errors and execution mismatches. These findings suggest that271

refining retrieval mechanisms further could enhance model performance.272

Downstream NLU performance We evaluate and compare the natural language under-273

standing (NLU) performance across six common tasks of LMLM and STANDARD in Table 4.274

This evaluation serves as a sanity check to ensure that LMLM maintains strong performance275

on non-knowledge-intensive tasks. The results indicate that LMLM performs on par with276

its STANDARD counterpart across a range of commonsense reasoning and language under-277

standing benchmarks, confirming that separating factual knowledge during pretraining278

does not degrade overall model utility.279

Table 2: Evaluations on FactScore metrics for open-ended text generation. We evaluate
models on generating biographies using prompts such as ‘Tell me a bio of Kang Ji-hwan.
Kang Ji-hwan is”. All models achieved 100% respond ratio. LMLM significantly improves
factual precision over models and off-the-shelf LLMs of comparable size. The subscripts
indicate the absolute difference compared to their respective GPT2 baselines.

Metrics
Model Memory Type FActScore (%) FActScore w/o length penalty (%) # Atomic facts per valid response
OPENAI/GPT2-124M→ STANDARD 14.6 14.7 24.2
GPT2-124M STANDARD 10.7↑3.9 11.3↑3.4 36.7+12.5
GPT2-124M LMLM 20.0+5.4 25.3+10.6 32.3+8.1

LLAMA2-176M STANDARD 12.8↑1.8 13.8↑0.9 31.1+6.9
LLAMA2-176M LMLM 27.8+13.2 32.3+17.6 22.1↑2.1

OPENAI/GPT2-355M→ STANDARD 15.2 15.2 24.6
OPENAI/GPT2-774M STANDARD 17.4 17.4 49.4
TINYLLAMA-1.1B* STANDARD 16.4 16.4 44.1
LLAMA2-7B* STANDARD 34.0 35.1 33.9
LLAMA3.1-8B* STANDARD 40.3 40.5 38.5

* Models marked with an asterisk (*) are off-the-shelf models with no additional training.

Table 3: Evaluation results on the T-REx dataset, where the task is to complete statements
with missing facts. The metrics include Exact Match (checking if the correct word appears
in the next five words) and Precision @1 (measuring the precision of the top-1 prediction).
Subscripts indicate the absolute difference compared to the corresponding GPT2 baselines.

Metrics
Model Memory Type Exact Match ↑ Precision @1 ↑
OPENAI/GPT2-124M→ STANDARD 20.09 20.31
LLAMA2-176M STANDARD 21.00↑0.9 19.03↑1.3
LLAMA2-176M LMLM 41.86+21.8 34.76+14.5

OPENAI/GPT2-355M→ STANDARD 28.41 29.59
OPENAI/GPT2-774M* STANDARD 35.63 31.93
TINYLLAMA-1.1B* STANDARD 35.55 26.06
LLAMA2-7B* STANDARD 60.51 44.40
Llama-3.1-8B STANDARD 60.58 67.33

* Models marked with an asterisk (*) are off-the-shelf models with no additional training.

4.5 Factual Precision280

FactScore FactScore (Min et al., 2023a) is a factual precision benchmark for open-ended281

generation tasks. To calculate the FactScore metric, it breaks the generations into a series of282

atomic facts and computes the percentage of atomic facts supported by a reliable knowledge283

source. Since it only measures precision but not recall, we also reports number of Atomic284

facts per valid response. Following Min et al. (2023a), we adopt the first 100 people biogra-285

phies queries as evaluation set and validate it on retrieval+ChatGPT setting. All model286

outputs are generated using greedy decoding with a maximum length of 256 tokens.287

8

T-REX: [Elsehara et al. 2018]



Facts vs. Natural Language Understanding
NLU does not suffer 

• Data: Factscore [Min et al. 2023]


• Model: LLAMA2-176M / GPT2-124M


• NLU Tasks: Language Understanding


• NLU slightly improves while FactScore 
doubles 
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Summary

• LMLM is a simple Pre-Training method to


• Separates tail knowledge and common knowledge


• Creates an external data base


• Many advantages:


• LLM can be smaller


• Memory interpretable / editable


• Can cite references


• Napoleon was born on April 15th, 1769 External  
DatabaseModel weights



Latent Diffusion



LLM are amazing … but hard to control



Diffusion Models are amazing …



… and (maybe too) easy to control.



A 3 minute introduction to 
Diffusion Models

without all the dizzying math



Diffusion Models

• Draw a sample of Gaussian noise 

• Transform it to obtain a natural image

xT ∼ 𝒩(0,1) x0 ∼ p(x)

[Sohl-Dickstein et al. 2015]

?



The U-Net
[Ronneberger et al. 2015]

Image Source: https://miro.medium.com/v2/resize:fit:1400/1*VUS2cCaPB45wcHHFp_fQZQ.png



The U-Net
[Ronneberger et al. 2015]

Image Source: https://miro.medium.com/v2/resize:fit:1400/1*VUS2cCaPB45wcHHFp_fQZQ.png

σ = 0.1



The U-Net
[Ronneberger et al. 2015]

Image Source: https://miro.medium.com/v2/resize:fit:1400/1*VUS2cCaPB45wcHHFp_fQZQ.png

σ = 0.75



The U-Net
[Ronneberger et al. 2015]

Image Source: https://miro.medium.com/v2/resize:fit:1400/1*VUS2cCaPB45wcHHFp_fQZQ.png

σ = 0.75

c=“An oil painting of a old white man with a white shirt, black hat, and gray side burns.”



Diffusion Sampling

Denoising 
Network

xT = σTϵT
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“An astronaut 
riding a horse”
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ϵT ∼ 𝒩(0,1)
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Diffusion Models

An astronaut riding a horse

Photo Credit: Lin, Shanchuan, et al. "Common diffusion noise schedules and sample steps are flawed." Proceedings of the IEEE/CVF winter conference on applications of computer vision. 2024.



Controlling Diffusion Models

Brown horse
 classi

fier d
ecision boundary



Controlling Diffusion Models
Use classifier  to guide noise!P(y |x)

Brown horse
 classi

fier d
ecision boundary

xt−1 = x̂θ(xt) + σt−1ϵt−1 + α∇xt
log (P(y |xt))

de-noise

add noise

guide noise



Let’s use diffusion models for text …
… but how do you add noise to text?

The brown fox 
jumps over
the lazy dog



From U-Net to Auto-Encoder

Image Source: https://miro.medium.com/v2/resize:fit:1400/1*VUS2cCaPB45wcHHFp_fQZQ.png

❌

❌

❌



From U-Net to Auto-Encoder

Image Source: https://miro.medium.com/v2/resize:fit:1400/1*VUS2cCaPB45wcHHFp_fQZQ.png



AutoEncoder

latent

Image Encoder Image Decoder



Stable Diffusion

Denoising 
Network

xT = σTϵT

x̂θ(xT, σT, c)

xT−1 = x̂θ + σT−1ϵT−1

Denoising 
Network

x̂θ(xT−1, σT−1, c)

Denoising 
Network

xT−2

Denoising 
Network

x̂θ(xT−2σT−2, c)

Denoising 
Network

xT−3

x̂θ(xT−3, σT−3, c)

Denoising 
Network

x1

x̂θ(x1,1,c)x̂θ(xT−4, σT−4, c)

xT−4

c

“An astronaut 
riding a horse”

c c c c c c

ϵT ∼ 𝒩(0,1)

[Rombach et al. 2022]



Stable Diffusion

1. Generate latent image features with diffusion model 

2. Decode to pixel space with pre-trained decoder

[Rombach et al. 2022]

Denoising 
U-Net

Latent Image
Features

Image 
Decoder

Input Noise



Latent Diffusion for Language

Adapt latent diffusion to language: 

1. Generate continuous language representation with diffusion 

2. Decode latent features to discrete tokens autoregressively

Text 
Decoder

Denoising 
U-Net

Latent Text
Features

The old clock on the wall ticked…

Input Noise



• Start with pre-trained encoder-decoder language models (T5, BART, etc.) 

• Gives us a strong text encoder and decoder 

• Doesn’t quite get us there…

Language Autoencoder

T5 
Encoder

T5 
Decoder

T5 Encoder Features



1. Length of encoder features varies with the input sequence length 

• Don’t know this at generation time! 

2. Language model features are very high-dimensional

Language Autoencoder

T5 
Encoder

Main Challenges



• Compress T5 encoder features with a small transformer  

• Read variable-length encoder features into a fixed set of latent vectors

Language Autoencoder
Compression

T5 
Encoder

T5 Encoder Features



• Compress T5 encoder features with a small transformer  

• Read variable-length encoder features into a fixed set of latent vectors

Language Autoencoder
Compression

Compression 
Transformer

T5 
Encoder

Learnable Latents 
(32 × 64)

Cross-attention

Latent Text Features 
(32 × 64)

T5 Encoder Features



• Compress T5 encoder features with a small transformer  

• Read variable-length encoder features into a fixed set of latent vectors

Language Autoencoder
Compression

Compression 
Transformer

T5 
Encoder

Learnable Latents 
(32 × 64)

Latent Text Features 
(32 × 64)

T5 Encoder Features

Cross-attention

Fixed Size



T5 
Decoder

The old clock on 
the wall ticked…

Language Autoencoder
Final Design

T5 
Encoder

The old clock on 
the wall ticked…

Compression 
Transformer

Learnable Latents 

Latent Text Features 

T5 Encoder Features

• Compress variable-length encoder features to a fixed-size latent space 

• Train decoder to reconstruct the input text 

• Achieve near-perfect reconstruction



• Freeze pre-trained Encoder/Decoder 

• Only learn compression transformer

Language Autoencoder
Final Design

T5 
Encoder

T5 
Decoder

T5 Encoder Features

The old clock on 
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Compression 
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• Gives us a compact latent space well-suited for diffusion
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Decoder

• Gives us a compact latent space well-suited for diffusion
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1. Generate continuous language representation with diffusion 

2. Decode latent features to discrete tokens autoregressively

Latent Diffusion for Language Generation

The old clock on 
the wall ticked…

Denoising 
Transformer

(32 × 64)
(32 × 64)Noise Vectors

fixed length
Latent Text Features 
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Unconditional Language Generation

• ROCStories Dataset [Mostafazadeh et al. 2016] 

• Simple 5-sentence stories

The boy went to a video arcade.  
He played his favorite machine.  
His games didn't go very well.  
He told the owner about his experience.  
The owner explained that he had made the game settings harder.

Dataset Sample



Unconditional Language Generation

• ROCStories Dataset [Mostafazadeh et al. 2016] 

• Simple 5-sentence stories

Fred had always wanted to learn how to play tennis.  
He decided to start taking tennis lessons.  
At his first tennis lesson, he found it very difficult.  
However, eventually he was a great tennis player.  
He was glad that he found a hobby.

Denoising Network

Noise Vectors

T5 
Decoder

The boy went to a video arcade.  
He played his favorite machine.  
His games didn't go very well.  
He told the owner about his experience.  
The owner explained that he had made the game settings harder. Latent Text 

Features Dataset Sample



Unconditional Language Generation

• ROCStories Dataset 

• Simple 5-sentence stories 

• More effective than prior text diffusion approaches 

• Diffusion-LM: word embedding diffusion

Fred had always wanted to learn how to play tennis.  
He decided to start taking tennis lessons.  
At his first tennis lesson, he found it very difficult.  
However, eventually he was a great tennis player.  
He was glad that he found a hobby.

Denoising Network

Noise Vectors

T5 
Decoder

Latent Text 
Features 

Li, Xiang, et al. "Diffusion-lm improves controllable text generation." Advances in Neural Information Processing Systems 35 (2022): 4328-4343.
Pillutla, Krishna, et al. "Mauve: Measuring the gap between neural text and human text using divergence frontiers." Advances in Neural Information Processing Systems 34 (2021): 4816-4828.



Class-Conditional Language Generation

• AGNews Dataset 

• Descriptions from news articles across four classes: 
“World”, “Sports”, “Business”, “Sci/Tech”

Latent Text 
Features 

Pillutla, Krishna, et al. "Mauve: Measuring the gap between neural text and human text using divergence frontiers." Advances in Neural Information Processing Systems 34 (2021): 4816-4828.

Denoising Network

Noise Vectors

Topic
P(y |x)



• AGNews Dataset 

• Descriptions from news articles across four classes: 
“World”, “Sports”, “Business”, “Sci/Tech” 

• Better alignment with topic distributions than class-conditional GPT-2

Pillutla, Krishna, et al. "Mauve: Measuring the gap between neural text and human text using divergence frontiers." Advances in Neural Information Processing Systems 34 (2021): 4816-4828.

Class-Conditional Language Generation

Latent Text 
Features 

Denoising Network

Noise Vectors

Topic
P(y |x)



Takeaways

• Latent diffusion is viable for language generation 

• Generate continuous text features with diffusion 

• Offload modeling a discrete distribution to an autoregressive decoder 

• Caveat: challenging to match quality of autoregressive LMs 

• Some evidence for advantages of diffusion for controllable generation  

• Next question: Can we use DMs to control AutoRegressive Models?



How to control an elephant?

LLM

DM



Diffusion Guided Language Modeling
[ACL 2024]

GPT-2

The old clock on the 
wall ticked

loudly as Sarah anxiously glanced at the time.

T-5 Sentence 
Encoder

loudly as Sarah nervously glanced at the time.

During Training of GPT-2:

Noise ϵ

+σtϵ

T5 Sentence encoder [Ni et al. 2021]



Diffusion Guided Language Modeling
[ACL 2024]

GPT-2

The old clock on the wall ticked

Topic

Style Sentiment
Toxicity

Logistic Regression 
Classifiers

relentlessly and really got on my nerves. 

Denoising 
Transformer

Semantic 
Proposal

Noise

At Inference:

σt

loudly as Sarah anxiously glanced at the time.

T5 Sentence encoder [Ni et al. 2021]



Diffusion Guided Language Modeling
Sentiment Control

Prefix: 
Cycle, published by the CTC, is running…  

Control Condition (Sentiment=Positive) 

… its 10th edition and it is getting better every time I see 
the contents! It’s also very… 

Control Condition (Sentiment=Negative) 
… its ‘news’ section, with no substance at all and zero 
interest in the subject it...



• Reduce toxicity with minimal loss of fluency 

• Outperform prior plug-and-play methods (DExperts)

Toxicity Logistic Regression

Diffusion Guided Language Modeling
Toxicity Mitigation

Liu, Alisa, et al. "DExperts: Decoding-Time Controlled Text Generation with Experts and Anti-Experts." ACL, 2021.

Embedding Space

Toxic

Non-toxic

GPT-2

The old clock on the wall ticked

relentlessly and really got on my nerves. 

Denoising 
Transformer

Semantic 
Proposal

Noise

σt



Stop Think AutoRegress (STAR)



Stop Think AutoRegress (STAR): Transfusion

Diffusion
Refinement

The

Diffusion Loss
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Sentence
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Sentence Embedding

Auto-regressive Generation

STAR-LDM Training STAR-LDM Generation
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as

as

...

Gaussian
Noise

...

DiT

DiT
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as

Autoregressive Decoder
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relentlessly

Under submission at COLM, inspired by [Zhou et al. 2024] DiT: [Peebles & Xie, 2022)]



LLM judge Claude 3.7Data: StoryCloze [Mostafazadeh et al., 2016] 5th sentence completion of 4 sentence stories.





Conclusion

• DMs are awesome and easy to control. 

• Autoencoder with fixed-length latent enables Latent Diffusion 

• Allows control of text generation with simple classifier 

• We can guide Auto-Regressive models with DMs 

• STAR Transfusion integrates diffusion into autoregressive process
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