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The Power of Resets!
Learning better, one reset at a time.

1The Power of Resets in Online Reinforcement Learning by Mhammedi et al. 2024



Large Language Model

“A large language model is a deep learning model trained on massive text 
datasets to understand and generate human language.”

How do different objectives shape LLM behavior?
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Learning from Human Feedback

Human Win rate 
against SFT 175B

Model Size

Long Ouyang et al. Training language models to follow instructions with human feedback OpenAI 2022
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RL Fine-Tuning

SFT Fine-Tuning

Pre-Training



Learning to reason with LLMs

“We are introducing OpenAI o1, a new large language model trained with 
reinforcement learning to perform complex reasoning.” - Openai
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MinxEnt RL
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J(π) = 𝔼π [r(x, y)]− 1
η 𝔻KL(π ∥ πref)

Maximize reward under Minimal deviation



MinxEnt RL
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When you say, "This is a reinforcement learning problem," you should 
say it with the same excitement as "This is NP-hard."  - Tim Vieira

Sparse or Delayed Rewards

Exploration vs. Exploitation

Credit Assignment

Sample Inefficiency

J(π) = 𝔼π [r(x, y)]− 1
η 𝔻KL(π ∥ πref)



Montezuma Revenge
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Montezuma Revenge
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Montezuma Revenge
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Montezuma Revenge
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+0



Montezuma Revenge
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reset

Go-Explore: a New Approach for Hard-Exploration Problems by Ecoffet et. al 2019  
Learning Montezuma’s Revenge from a Single Demonstration by Salimans et. al 2018



How can we develop efficient algorithms for 
solving the MinxEnt RL objective, assuming 

access to environment resets?
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Outline

- Resetting with reference policy 
- Resetting with demonstration data 
- Resetting with the current policy 
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Resetting with reference policy (to boost exploration)
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Outline



Reset Property
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<Prompt> Two roads diverged to separate paths

1. Sample a prompt from x ∼ D

Reset allows us to rollout a policy 
from partial sentences

?
Inject additional data sources into 

experience collection

̂r(x, y)

2. Sample a response from y ∼ π



Reset Property
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<Prompt> Two roads to separate paths

1. Sample a prompt from x ∼ D

Reset allows us to rollout a policy 
from partial sentences

?
Inject additional data sources into 

experience collection

̂r(x, y)

2. Sample a response from y ∼ π

3. Reset

from the Plan
̂r(x, y)

diverged

and sample a continuation of the response from y ∼ π

Transition: P(s′ |s, a) Deterministic



Rollin and Rollout ’s can be differentπ

Reset Property
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<Prompt> Two roads From The Plan

1. Sample a prompt from x ∼ D

Reset allows us to rollout a policy 
from partial sentences

?
Inject additional data sources into 

experience collection

̂r(x, y)

2. Sample a response from y ∼ π

3. Reset
diverged

and sample a continuation of the response

Transition: P(s′ |s, a) Deterministic

rollin  π rollout  π



Learning to Generate Better Than Your Teacher
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Wen Sun Rajkumar Ramamurthy Dipendra Misra Jonathan D. Chang



Rollin and Rollout
approaches
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Constrains policy to stay near  πref

𝔼π [ ̂r(x, y)] +
1
η

DKL(π | |πref)

• Does not leverage problem-specific structure 
• Samples prompts  
• Scores action with 

x ∼ D
̂r(x, y)

rollout  πrollin π

Proximal Policy Optimization, John Schulman et al., 2017

PPO (RL algorithm)

19
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Constrains policy to stay near  πref

𝔼π [ ̂r(x, y)] +
1
η

DKL(π | |πref)

• Does not leverage problem-specific structure 
• Samples prompts  
• Scores action with 

x ∼ D
̂r(x, y)

rollout  πrollin π

Proximal Policy Optimization, John Schulman et al., 2017

PPO (RL algorithm)
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PPO++

rollout  πrollin πref

• Sample prompts from a mixture  
• Scores actions with  
• Intuition: Richer initial states boost exploration

x ∼ βD + (1 − β)dπref

̂r(x, y)



Theory of PPO++

21Approximately Optimal Approximate Reinforcement Learning Kakade and Langford 2002

Let  be a high quality policy covered by π⋆ πref

Performance gap

Assume bound density ratio and 
 provides coverage for  πref π⋆

𝔼s∼βρπref+(1−β)D [max
a

Aπt(s, a)] ≤ ϵ

Assume that one-step local 
improvement over  is small πt

J(π⋆) − J(πt) ≤ O (H2 max
s ( dπ⋆(s)

dπref(s) ) ϵ)



Experimental Setup
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Given a reddit post, write a TL;DR (short summary).

Task Statement

SUBREDDIT: r/dogs 
TITLE: [HELP] Not sure how to deal with new people/dogs and my big ole pup 
POST: I have a three year old Dober/Pit mix named Romulus ("Rome" for short). I live 
with 3 other dogs: a 10 year old labrador, a 2 year old French Bulldog and a 8 year old 
maltese mix. The four of them get along just fine, Rome and the Frenchie are best best 
best best friends. He isn't the best at meeting new people, but not ALWAYS….Then, the 
crux of the matter: I want to have a 4th of July party. Several people want to bring their 
dogs. I doubt I can say "no dogs allowed" and I don’t want to let everyone else bring 
their dog and make mine stay at day care all day. 

Example Post

Learning to summarization from human feedback Stiennon et al. 2017

Example Human Label
TL;DR: HOW do I introduce new people? HOW 
do I introduce new dogs? WHAT do I do 
about 4th of July??



Experimental Setup
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- 210K Prompts total 
- 117K Prompts with Human Labels 
- 93K Prompts with Human Preference Labels

Used to do RL fine-tuning
Used to pre-train a reward model

Given a reddit post, write a TL;DR (short summary).
Task Statement

Dataset Composition



Experimental Results: TL;DR
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GPT4 Winrate Prompt Template
Which of the following summaries does a better job 
of summarizing the most important points in the 
given forum Post? FIRST provide a one-sentence 
comparison of the two summaries, explaining which 
you prefer and why. SECOND, on a new line, state 
only "A" or "B" to indicate your choice. 

Post: <Post> 
A: <TLDR A> 
B: <TLDR B>

0%

18%

35%

53%

70%

GPT-4 Win Rate

64.4%62.3%

47.6%44.29%

REF Best-of-N PPO PPO++



Summary

• PPO++ does not leverage a problem-specific structure.


• The ability to reset is a unique property of MDPs for LLMs.


• PPO is a simple algorithm that leverages resets.
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Can we improve 
performance by mixing in 

a different distribution?
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0%

18%

35%

53%

70%

GPT-4 Win Rate

64.4%62.3%
55.71%

44.29%

REF Human



Can we improve 
performance by mixing in 

a different distribution?
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0%

18%

35%

53%

70%

GPT-4 Win Rate

64.4%62.3%
55.71%

44.29%

REF Human



Outline

• Reset with reference policy 
• Reset with the demonstration data 
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Reset with the demonstration data (to boost exploration)
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Outline



Can we improve  
performance by mixing in  

a different distribution?

30



Reset Property

31

<Prompt> Two roads diverged to separate paths

1. Sample a prompt from and response  from (x, y) ∼ D

Most text generation tasks 
have offline label response

!

2. Reset using the response from D



Reset Property
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<Prompt> Two roads diverged to separate paths

1. Sample a prompt from and response  from (x, y) ∼ D

Most text generation tasks 
have offline label response

!

̂r(x, y)

2. Reset using the response from D

3. Sample a continuation of the response from y ∼ π



Dataset Reset Policy Optimization 
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Jonathan D. Chang Wenhao Zhan Owen Oertell Dipendra Misra Jason Lee Wen Sun



Rollin and Rollout
approaches

34

• Does not leverage problem-specific structure 
• Samples prompts  
• Scores action with 

x ∼ D
̂r(x, y)

rollout  πrollin π

Proximal Policy Optimization, John Schulman et al., 2017

PPO (RL algorithm)

34

DRPO

rollout  πrollin D

• Sample prompts from a mixture  
• Scores actions with  
• Intuition: Richer initial states boost exploration

x ∼ βDx + (1 − β)Dx∥y
̂r(x, y)



Informal Theory of DR-PO
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Informal statement:
When using NPG as the policy optimization oracle, DR-PO learns a policy 

that is at least as good as any policy covered by the offline data D

Coverage assumptions:

dπ*(τ)
dπref(τ)

≤ C1 < ∞
dπ*(x, y)
dπref(x, y)

≤ C2 < ∞

Trajectory-wise density State-action sample-wise density



Experimental Setup
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Given a reddit post, write a TL;DR (short summary).

Task Statement

SUBREDDIT: r/dogs 
TITLE: [HELP] Not sure how to deal with new people/dogs and my big ole pup 
POST: I have a three year old Dober/Pit mix named Romulus ("Rome" for short). I live 
with 3 other dogs: a 10 year old labrador, a 2 year old French Bulldog and a 8 year old 
maltese mix. The four of them get along just fine, Rome and the Frenchie are best best 
best best friends. He isn't the best at meeting new people, but not ALWAYS….Then, the 
crux of the matter: I want to have a 4th of July party. Several people want to bring their 
dogs. I doubt I can say "no dogs allowed" and I don’t want to let everyone else bring 
their dog and make mine stay at day care all day. 

Example Post

Learning to summarization from human feedback Stiennon et al. 2017

Example Human Label
TL;DR: HOW do I introduce new people? HOW 
do I introduce new dogs? WHAT do I do 
about 4th of July??



Experimental Results: TL;DR

37

0%

20%

40%

60%

80%

GPT-4 Win Rate

70.2%
64.4%62.3%

47.6%44.29%

REF Best-of-N PPO PPO++ DR-PO

Takeaways:

1. Algorithms that use resets perform 
better than those that do not.


2. DR-PO consistently outperforms all 
baseline algorithms.



Experimental Results: TL;DR
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Takeaways:

Algorithms TL;DR Summarization
Win Rate RM Score KL(ω||ωref ) Rouge 1 Rouge 2 RougeL

(→) (→) (↑) (→) (→) (→)

SFT 31.6 ± 0.2% -0.51 ± 0.04 - 32.17 ± 1.01 12.27 ± 0.67 24.87 ± 1.22
DPO 52.6 ± 0.4% - 37.33 ± 2.01 30.03 ± 3.23 7.93 ± 1.02 22.05 ± 0.83
PPO 62.3 ± 2.5% 1.17 ± 0.13 16.32 ± 1.46 33.73 ± 2.34 11.97 ± 0.91 24.97 ± 1.03
DR-PO 70.2 ± 1.7% 1.52 ± 0.09 16.84 ± 0.83 33.68 ± 1.78 11.90 ± 0.06 25.12 ± 0.76

Table 1: TL;DR Summarization Results: Our RM Score is under our trained preference reward model and the win rate is
evaluated by GPT4. All evaluated policies except for SFT are models with LoRA adapters. We present results across 3 seeds.

0 20 40
KL(�||�ref ) (�)

0

1

2

R
M

S
co

re
(�

)

TL;DR Summarization

DR-PO PPO SFT Reference

Figure 1: Reward vs KL-Divergence Frontier: Plotting the regularized optimization tradeoff between DR-PO and our
baselines over the entire test set. DR-PO is able to achieve a much better tradeoff by learning higher reward generations with
lower KL. The average reference and SFT scores under the RM are shown as dashed lines.

more detailed frontier of the reward and KL tradeoff for DR-PO and PPO. We generate this plot by binning the test scores
according to KL. We see that for most KL values, DR-PO is able to achieve a higher score than PPO.

6.2 Analysis of Dataset Reset Proportion
Next, we investigate how sensitive DR-PO is to the amount of dataset resets done during online generation. We define ε as
the proportion of generations in a given online batch of generations with dataset resets. More specifically, our main results
are with ε = 1.0 which translates to all generations during online training of DR-PO starting from a randomly sampled reset
from the human references. Note that a ε value of 0 recovers the baseline PPO (e.g., all generations start from initial prompts).
Table 2 shows the expected RM score, KL, and win rate of DR-PO as we increase the mixing proportion from 0% (PPO) to
100% (DR-PO) after 2 epochs of training. Notably, even with a small amount of dataset resets DR-PO is able to learn higher
scoring generations with a lower KL than PPO. Moreover, we see that DR-PO with any amount of reference resets leads to
higher win rates than PPO. Figure 2 plots the RM score/KL-divergence frontier of our learned policies on the test set. Note that
DR-PO is robust to the amount of dataset resets in optimizing the regularized RLHF objective. Finally, supporting our analysis
from Section 5, DR-PO generally performs better the more online data we gather from resets with a 100% reset proportion
performing the best.

6.3 DR-PO Transfer Performance
Finally, we investigate DR-PO’s ability to do zero-shot transfer to another summarization task, ensuring that learning a policy by
reseting from human references does not diminish the generalization observed with PPO in Stiennon et al. (2020). Specifically,
we investigate whether leveraging human references on TL;DR has the unintended consequence of overfitting to the specific
dataset rather than learning more generally to summarize. For our baselines, we test the zero-shot capabilities of both PPO and

9

DR-PO consistently achieves better RM 
scores with lower KL than PPO.



Experimental Setup
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Anthropic's Helpful Harmful task where our model tries to produce an engaging and helpful

response to dialogue sequences.

Task Statement

Human: What do I do if I crack a molar?


Chosen Assistant: If you cracked a molar, I imagine you’re quite 
concerned, but there’s no need to panic, you just need to schedule an 
appointment with your dentist. 

Rejected Assistant: I’m sorry to hear that.

Example Dialogue



Experimental Results
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Takeaways:

1. Online methods outperform 
offline baselines.


2. DR-PO outperforms all 
baselines at every model 
scale.

and DR-PO scaling better from 1B to 6.9B parameters. Figure 3 shows that DR-PO has similar scaling improvements as PPO,
but performs strictly better and produces generations that are more preferred than those from all of our baselines.
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Figure 3: Scaling on Anthropic HH: The GPT4 win rate of DR-PO when tested across 3 model scales: 125M, 1B, and 6.9B.
Reported winrates are mean and std across 3 seeds.

7 Conclusion
We present DR-PO, a provably efficient algorithm that exploits a generative model’s ability to reset from offline data to enhance
RLHF from preference-based feedback. Both in theory and in practice, we demonstrate the effectiveness of incorporating
dataset resets into online RL. While in our experiments we specifically demonstrate dataset resets on a PPO style policy
optimizer, the idea of dataset reset is both general and simple to implement into any online data collection component of other
RL algorithms. We leave it to exciting future work to test the full capabilities of dataset resets in other RLHF methods.
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Summary

• Resetting from offline demonstration data enhances performance.


• DR-PO is provably efficient and improves upon PPO++ in theory.


• DR-PO is as simple as PPO and requires no additional computation.
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• Resetting DR-PO from offline demonstration data enhances performance.


• DR-PO is provably efficient and improves upon PPO++ in theory.


• DR-PO is as simple as PPO and requires no additional computation.



Outline

- Resetting with reference policy 
- Resetting with demonstration data 
- Resetting with the current policy 

43



Resetting with the current policy (to reduce computation)

44

Outline



How can resets be used to  
make RL algorithms more efficient 

 in computation and memory?

45



MinXent RL

46

πi+1 = arg max
π∈Π

𝔼
x ∼ D
y ∼ π

[r(x, y)] −
1
η

DKL(π ∥ πt)

∀x, y : πt+1(y ∣ x) =
πt exp(ηr(x, y))

Z(x)
Closed-form solution 
[Ziebart et al., 2008]:

∀x, y : r(x, y) =
1
η (ln Z(x) + ln( πt+1(y ∣ x)

πt(y ∣ x) ))
Rewrite the reward in terms 
of the policy 
[Rafailov et al., 2023]:

Maximum Entropy Inverse Reinforcement Learning by Ziebart et al. 2010
Direct Preference Optimization: Your Language Model is Secretly a Reward Model by Rafailov et al. 2023

L(r, D) = − 𝔼(x,yw,yl)∼D [log σ (r(x, yw) − r(x, yl))] Assume reward follows Bradley Terry



MinXent RL
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πi+1 = arg max
π∈Π

𝔼
x ∼ D
y ∼ π

[r(x, y)] −
1
η

DKL(π ∥ πt)

∀x, y : πt+1(y ∣ x) =
πt exp(ηr(x, y))

Z(x)
Closed-form solution 
[Ziebart et al., 2008]:

∀x, y : r(x, y) =
1
η (ln Z(x) + ln( πt+1(y ∣ x)

πt(y ∣ x) ))
Rewrite the reward in terms 
of the policy 
[Rafailov et al., 2023]:

Maximum Entropy Inverse Reinforcement Learning by Ziebart et al. 2010
Direct Preference Optimization: Your Language Model is Secretly a Reward Model by Rafailov et al. 2023

Assume nothing about the reward 
structure, but instead assume access 
to environment resets.



Rebel: Reinforcement learning via regressing relative rewards

48

Jonathan D. ChangZhaolin Gao

Wenhao Zhan

Owen Oertell

Gokul Swamy Thorsten Joachims  J. Andrew Bagnel

Jason Lee Wen Sun



REBEL
algorithm overiew

At iteration  with policy  

1. Sample (hybrid) data using resets: 

2. Regressing the relative rewards (least squares regression):

t πt

49

Dt : {x, y, y′ } x ∼ D, y ∼ πt( ⋅ ∣ x), y′ ∼ μ( ⋅ ∣ x)

πt+1 = arg min
π

𝔼Dt

1
η (ln

π(y ∣ x)
πt(y ∣ x)

− ln
π(y′ ∣ x)
πt(y′ ∣ x) ) − (r(x, y) − r(x, y′ ))

2

Predictor Relative reward

e.g., offline data or 
reference policy or 
best-of-N of πt



Informal Theory of REBEL
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Informal statement:
If we can solve each regression problem well (in-distribution),

πt+1 = arg min
π

𝔼Dt

1
η (ln

π(y ∣ x)
πt(y ∣ x)

− ln
π(y′ ∣ x)
πt(y′ ∣ x) ) − (r(x, y) − r(x, y′ ))

2

then we can do as well as any policy that is 
covered by the training data distributions

∀t, max
x,y

π⋆(y ∣ x)
πt(y ∣ x) + μ(y ∣ x)

≤ C < ∞



Experimental Setup
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Given a reddit post, write a TL;DR (short summary).

Task Statement

SUBREDDIT: r/dogs 
TITLE: [HELP] Not sure how to deal with new people/dogs and my big ole pup 
POST: I have a three year old Dober/Pit mix named Romulus ("Rome" for short). I live 
with 3 other dogs: a 10 year old labrador, a 2 year old French Bulldog and a 8 year old 
maltese mix. The four of them get along just fine, Rome and the Frenchie are best best 
best best friends. He isn't the best at meeting new people, but not ALWAYS….Then, the 
crux of the matter: I want to have a 4th of July party. Several people want to bring their 
dogs. I doubt I can say "no dogs allowed" and I don’t want to let everyone else bring 
their dog and make mine stay at day care all day. 

Example Post

Learning to summarization from human feedback Stiennon et al. 2017

Example Human Label
TL;DR: HOW do I introduce new people? HOW 
do I introduce new dogs? WHAT do I do 
about 4th of July??



Experimental Results: TL;DR
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0%

20%

40%

60%

80%

1.4B 2.8B

70.2%

55.1%

67.4%

51.7%

63.1%

47.2%
53.7%

42.7%

28.2%24.9%

REF DPO Iterative DPO PPO REBEL

Takeaways:

1. Online methods 
outperform offline methods


2. REBEL consistently 
outperforms all baseline 
methods across scales.
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Experimental Results

40

Model size Algorithm Winrate (→) RM Score (→) KL(ω||ωref ) (↑)

1.4B

SFT 24.9 (±2.73) -0.51 (±0.05) -
DPO 42.7 (±1.79) 0.10 (±0.02) 29.6 (±0.63)

Iterative DPO 47.2 (±1.34) 1.73 (±0.05) 29.7 (±0.57)
PPO 51.7 (±1.42) 1.74 (±0.04) 29.3 (±0.61)
REBEL 55.1 (±1.35) 1.84 (±0.04) 32.6 (±0.59)

2.8B

SFT 28.2 (±2.31) -0.38 (±0.06) -
DPO 53.7 (±1.63) 2.40 (±0.02) 64.3 (±1.25)

Iterative DPO 63.1 (±1.41) 2.37 (±0.03) 28.1 (±0.51)
PPO 67.4 (±1.30) 2.37 (±0.03) 27.2 (±0.55)
REBEL 70.2 (±1.32) 2.44 (±0.02) 29.0 (±0.60)

Model size Algorithm Winrate (→)

6.9B

SFT 45.2 (±2.49)
DPO 68.4 (±2.01)

REINFORCE 70.7→
PPO 77.6‡

RLOO (k = 2) 74.2→
RLOO (k = 4) 77.9→

REBEL 78.1 (±1.74)

* directly obtained from Ahmadian et al. (2024)
‡ directly obtained from Huang et al. (2024)

Table 1: Results on TL;DR Summarization. Results are averaged over three seed and the standard
deviations across seeds are in parentheses. The best-performing method for each size and metric is
highlighted in bold and the second best is underlined. REBEL outperforms all baselines on winrate.

REBEL optimizes the least squares regression problem in Eq. 1 through gradient descent with AdamW
(Loshchilov and Hutter, 2017). We choose µ = ωt such that both y and y↑ are generated by the
current policy. We empirically assess REBEL’s performance on both natural language generation and
text-guided image generation. Additional experiment details are in Appendix F.

5.1 Summarization

Task. We use the TL;DR dataset (Stiennon et al., 2020) where x is a forum post from Reddit and y is a
summary generated by the policy. The dataset comprises human reference summaries and preference
data. We compare REBEL with baseline RL algorithms, REINFORCE (Williams, 1992) and its
multi-sample extension, REINFORCE Leave-One-Out (RLOO) (Kool et al., 2019), PPO (Schulman
et al., 2017), Direct Preference Optimization (DPO) (Rafailov et al., 2023), and Iterative DPO (Guo
et al., 2024). Our implementation of Iterative DPO replaces our square regression objective with
the DPO objective where the binary preference labels are obtained based on the reward difference.
The implementation detail of the baseline methods is provided in Appendix F.1.3. Following prior
work (Stiennon et al., 2020; Rafailov et al., 2023; Ahmadian et al., 2024), we train DPO on the
preference dataset, while conducting online RL (RLOO, PPO, Iterative DPO, REBEL) on the human
reference dataset. We include results with three different model sizes: 1.4B, 2.8B, and 6.9B based on
the pre-trained models from Pythia (Biderman et al., 2023). Each model is trained from a supervised
fine-tuned (SFT) model using a reward model (RM) of the same size.

Evaluation. We evaluate each method by its balance between reward model score and KL-divergence
with the SFT policy, testing the effectiveness of the algorithm in optimizing the regularized RL
objective. To evaluate the quality of the generation, we compute the winrate (Rafailov et al., 2023)
against human references using GPT4 (OpenAI, 2023). The winrate is computed from a randomly
sampled subset (10%) of the test set with 600 samples. We report the average results over three seeds.

Figure 2: Plot of runtime and memory usage. Base-
lines on the left-hand side of the dashed line have lower
winrates. Methods on the right-hand side of the dashed
line have similar winrates to REBEL.

Quality Analysis. Table 1 presents a com-
parison between REBEL and baseline meth-
ods. Notably, REBEL outperforms all the
baselines on RM score with 1.4B and 2.8B
parameters with a slightly larger KL than
PPO. In addition, REBEL achieves the high-
est winrate under GPT4 when evaluated
against human references, indicating the
benefit of regressing the relative rewards.
An ablation analysis on parameter ε is in
Appendix H and the trade-off between the
reward model score and KL-divergence is
discussed in Appendix I.

Runtime & Memory Analysis. We ana-
lyze the runtime and peak memory usage
for 2.8B models with REINFORCE, RLOO, PPO, DPO, Iterative DPO, and REBEL. The runtime
includes both the generation time and the time required for policy updates. Both runtime and
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Model size Algorithm Winrate (→) RM Score (→) KL(ω||ωref ) (↑)

1.4B

SFT 24.9 (±2.73) -0.51 (±0.05) -
DPO 42.7 (±1.79) 0.10 (±0.02) 29.6 (±0.63)

Iterative DPO 47.2 (±1.34) 1.73 (±0.05) 29.7 (±0.57)
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REBEL optimizes the least squares regression problem in Eq. 1 through gradient descent with AdamW
(Loshchilov and Hutter, 2017). We choose µ = ωt such that both y and y↑ are generated by the
current policy. We empirically assess REBEL’s performance on both natural language generation and
text-guided image generation. Additional experiment details are in Appendix F.

5.1 Summarization

Task. We use the TL;DR dataset (Stiennon et al., 2020) where x is a forum post from Reddit and y is a
summary generated by the policy. The dataset comprises human reference summaries and preference
data. We compare REBEL with baseline RL algorithms, REINFORCE (Williams, 1992) and its
multi-sample extension, REINFORCE Leave-One-Out (RLOO) (Kool et al., 2019), PPO (Schulman
et al., 2017), Direct Preference Optimization (DPO) (Rafailov et al., 2023), and Iterative DPO (Guo
et al., 2024). Our implementation of Iterative DPO replaces our square regression objective with
the DPO objective where the binary preference labels are obtained based on the reward difference.
The implementation detail of the baseline methods is provided in Appendix F.1.3. Following prior
work (Stiennon et al., 2020; Rafailov et al., 2023; Ahmadian et al., 2024), we train DPO on the
preference dataset, while conducting online RL (RLOO, PPO, Iterative DPO, REBEL) on the human
reference dataset. We include results with three different model sizes: 1.4B, 2.8B, and 6.9B based on
the pre-trained models from Pythia (Biderman et al., 2023). Each model is trained from a supervised
fine-tuned (SFT) model using a reward model (RM) of the same size.

Evaluation. We evaluate each method by its balance between reward model score and KL-divergence
with the SFT policy, testing the effectiveness of the algorithm in optimizing the regularized RL
objective. To evaluate the quality of the generation, we compute the winrate (Rafailov et al., 2023)
against human references using GPT4 (OpenAI, 2023). The winrate is computed from a randomly
sampled subset (10%) of the test set with 600 samples. We report the average results over three seeds.

Figure 2: Plot of runtime and memory usage. Base-
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winrates. Methods on the right-hand side of the dashed
line have similar winrates to REBEL.

Quality Analysis. Table 1 presents a com-
parison between REBEL and baseline meth-
ods. Notably, REBEL outperforms all the
baselines on RM score with 1.4B and 2.8B
parameters with a slightly larger KL than
PPO. In addition, REBEL achieves the high-
est winrate under GPT4 when evaluated
against human references, indicating the
benefit of regressing the relative rewards.
An ablation analysis on parameter ε is in
Appendix H and the trade-off between the
reward model score and KL-divergence is
discussed in Appendix I.

Runtime & Memory Analysis. We ana-
lyze the runtime and peak memory usage
for 2.8B models with REINFORCE, RLOO, PPO, DPO, Iterative DPO, and REBEL. The runtime
includes both the generation time and the time required for policy updates. Both runtime and
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parameters with a slightly larger KL than
PPO. In addition, REBEL achieves the high-
est winrate under GPT4 when evaluated
against human references, indicating the
benefit of regressing the relative rewards.
An ablation analysis on parameter ε is in
Appendix H and the trade-off between the
reward model score and KL-divergence is
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baselines on RM score with 1.4B and 2.8B
parameters with a slightly larger KL than
PPO. In addition, REBEL achieves the high-
est winrate under GPT4 when evaluated
against human references, indicating the
benefit of regressing the relative rewards.
An ablation analysis on parameter ε is in
Appendix H and the trade-off between the
reward model score and KL-divergence is
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includes both the generation time and the time required for policy updates. Both runtime and

9

Model size Algorithm Winrate (→) RM Score (→) KL(ω||ωref ) (↑)

1.4B

SFT 24.9 (±2.73) -0.51 (±0.05) -
DPO 42.7 (±1.79) 0.10 (±0.02) 29.6 (±0.63)

Iterative DPO 47.2 (±1.34) 1.73 (±0.05) 29.7 (±0.57)
PPO 51.7 (±1.42) 1.74 (±0.04) 29.3 (±0.61)
REBEL 55.1 (±1.35) 1.84 (±0.04) 32.6 (±0.59)

2.8B

SFT 28.2 (±2.31) -0.38 (±0.06) -
DPO 53.7 (±1.63) 2.40 (±0.02) 64.3 (±1.25)

Iterative DPO 63.1 (±1.41) 2.37 (±0.03) 28.1 (±0.51)
PPO 67.4 (±1.30) 2.37 (±0.03) 27.2 (±0.55)
REBEL 70.2 (±1.32) 2.44 (±0.02) 29.0 (±0.60)

Model size Algorithm Winrate (→)

6.9B

SFT 45.2 (±2.49)
DPO 68.4 (±2.01)

REINFORCE 70.7→
PPO 77.6‡

RLOO (k = 2) 74.2→
RLOO (k = 4) 77.9→

REBEL 78.1 (±1.74)

* directly obtained from Ahmadian et al. (2024)
‡ directly obtained from Huang et al. (2024)

Table 1: Results on TL;DR Summarization. Results are averaged over three seed and the standard
deviations across seeds are in parentheses. The best-performing method for each size and metric is
highlighted in bold and the second best is underlined. REBEL outperforms all baselines on winrate.

REBEL optimizes the least squares regression problem in Eq. 1 through gradient descent with AdamW
(Loshchilov and Hutter, 2017). We choose µ = ωt such that both y and y↑ are generated by the
current policy. We empirically assess REBEL’s performance on both natural language generation and
text-guided image generation. Additional experiment details are in Appendix F.

5.1 Summarization

Task. We use the TL;DR dataset (Stiennon et al., 2020) where x is a forum post from Reddit and y is a
summary generated by the policy. The dataset comprises human reference summaries and preference
data. We compare REBEL with baseline RL algorithms, REINFORCE (Williams, 1992) and its
multi-sample extension, REINFORCE Leave-One-Out (RLOO) (Kool et al., 2019), PPO (Schulman
et al., 2017), Direct Preference Optimization (DPO) (Rafailov et al., 2023), and Iterative DPO (Guo
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objective. To evaluate the quality of the generation, we compute the winrate (Rafailov et al., 2023)
against human references using GPT4 (OpenAI, 2023). The winrate is computed from a randomly
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Quality Analysis. Table 1 presents a com-
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baselines on RM score with 1.4B and 2.8B
parameters with a slightly larger KL than
PPO. In addition, REBEL achieves the high-
est winrate under GPT4 when evaluated
against human references, indicating the
benefit of regressing the relative rewards.
An ablation analysis on parameter ε is in
Appendix H and the trade-off between the
reward model score and KL-divergence is
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the DPO objective where the binary preference labels are obtained based on the reward difference.
The implementation detail of the baseline methods is provided in Appendix F.1.3. Following prior
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the pre-trained models from Pythia (Biderman et al., 2023). Each model is trained from a supervised
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Evaluation. We evaluate each method by its balance between reward model score and KL-divergence
with the SFT policy, testing the effectiveness of the algorithm in optimizing the regularized RL
objective. To evaluate the quality of the generation, we compute the winrate (Rafailov et al., 2023)
against human references using GPT4 (OpenAI, 2023). The winrate is computed from a randomly
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parameters with a slightly larger KL than
PPO. In addition, REBEL achieves the high-
est winrate under GPT4 when evaluated
against human references, indicating the
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An ablation analysis on parameter ε is in
Appendix H and the trade-off between the
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fine-tuned (SFT) model using a reward model (RM) of the same size.

Evaluation. We evaluate each method by its balance between reward model score and KL-divergence
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parameters with a slightly larger KL than
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for 2.8B models with REINFORCE, RLOO, PPO, DPO, Iterative DPO, and REBEL. The runtime
includes both the generation time and the time required for policy updates. Both runtime and

9

1. Offline methods take less 
time and memory, but they 
result in lower win rates.


2. REBEL performs better than 
PPO in both win-rate and 
efficiency in computation and 
memory usage.

Takeaways:

Takeaways:
1. Offline methods are more 

efficient but yield lower win rates.


2. REBEL outperforms PPO in both 
win rate and resource efficiency.


3. REBEL outperforms iterative DPO 
in win rate while matching its 
efficiency.
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Dataset: ultrafeedback [Cui et al]; Reward Model: ArMo [Wang et al]
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Scaling to Reasoning Tasks
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Experimental Results
Fine-tuning Qwen-2.5B model
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Dataset: Math and GSM8K; Reward Model: Verifiable Reward
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Summary

• REBEL reduces the RL problem to a sequence of relative reward regression 
tasks.


• Empirically, REBEL outperforms PPO in performance, computational 
efficiency, and memory usage.


• REBEL achieves strong results on standard LLM benchmarks.
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How can we develop efficient algorithms for 
solving the MinxEnt RL objective, assuming 

access to environment resets?
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- Resetting with reference policy (to boost exploration) 
- Resetting with demonstration data (to boost exploration) 
- Resetting with the current policy (to reduce computation)
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