Part I: Emergence and scaling laws
for SGD learning

Yunwei Ren*!, Eshaan Nichani*!, Denny Wu?3, Jason D. Lee!

IPrinceton University 2NYU 3Flatiron Institute

April 3, 2025

Neural Scaling Laws & Emergence

Neural Scaling Laws [Kaplan et 6

al. 20] [Hoffmann et al. 22]. 5

Increasing compute and data leads
to power-law decay in the loss.

Test Loss

Functional form: £ o D=*+ N=P + C. L = (Coin/2.3 108)=0.050

® D — number of data points. fo 107 105 107 107! 10!
® N — number of parameters. Compute

2/30

Neural Scaling Laws & Emergence

7

Neural Scaling Laws [Kaplan et 6

al. 20] [Hoffmann et al. 22]. 5

Increasing compute and data leads
to power-law decay in the loss.

Test Loss

Functional form: £ o D=*+ N=P + C. L = (Coin/2.3 108)=0.050

. 2
® D — number of data points. fo 107 105 107 107! 10!

® N — number of parameters. Compute

(A) Mod. arithmetic (B) IPA transliterate

T o 50 50
Emergent Capabilities [Wei et o o
al. 22] [Ganguli et al. 22]. <30 L
. C . g =
Learning of individual tasks (skills) %= 3
exhibits sharp transition with scale. =" ol
1018 1020 1022 1024 1018 1020 1022 1024
® Unpredictable skill acquisition time. Model scale (training FLOPs)

2/30

Neural Scaling Laws & Emergence

Question: How do we reconcile the emergent behavior in skill
acquisition and the smooth power-law decay in the cumulative loss?

3/30

Neural Scaling Laws & Emergence

Question: How do we reconcile the emergent behavior in skill
acquisition and the smooth power-law decay in the cumulative loss?

Hypothesis: [Michaud et al. 24] [Nam et al. 24]

[Cumulative objective can be decomposed into a large number of
distinct “skills”, the learning of each exhibits abrupt emergence.

(O Juxtaposition of numerous emergent learning curves at different
timescales results in a predictable power-law rate in the loss.

Cumulative loss

Loss at p-th task\\

compute

3/30

Neural Scaling Laws & Emergence

Question: How do we reconcile the emergent behavior in skill
acquisition and the smooth power-law decay in the cumulative loss?

Hypothesis: [Michaud et al. 24] [Nam et al. 24]

[Cumulative objective can be decomposed into a large number of
distinct “skills”, the learning of each exhibits abrupt emergence.

(O Juxtaposition of numerous emergent learning curves at different
timescales results in a predictable power-law rate in the loss.

Cumulative loss

Loss at p-th task\\

compute

This work: theoretical justification
for the additive model hypothesis in
SGD learning of shallow NN.

3/30

Emergence in Gradient-based Feature Learning

Gaussian single-index model: f,(x) = 0.({x,0)), x ~ N(0, 1,).

(3 Requires learning the direction & € R? and link function o, : R — R.
® |earning algorithm should adapt to low-dimensional structure.

4/30

Emergence in Gradient-based Feature Learning

Gaussian single-index model: f.(x) = 0.((x,0)), x ~ N(0,).

(3 Requires learning the direction & € R? and link function o, : R — R.
® |earning algorithm should adapt to low-dimensional structure.

Hermite expansion: o0.(z) = ZJ o @fHej(2), of =E[o.(z)He;(2)].

[Ben Arous et al. 2021] [Dudeja & Hsu 2018]

The information exponent of o, is k = IE(0.) = min{k € N} : a # 0}.

Intuition: amount of information in the gradient at random initialization.

4/30

Emergence in Gradient-based Feature Learning

Hermite expansion: 0.(z) = 32 afHej(z), af = E[o.(2)He;(2)].

[Ben Arous et al. 2021] [Dudeja & Hsu 2018]

The information exponent of o, is k = [E(0,) = min{k € N} : a; # 0}.

—E[VwL(fun)] = E[Vw (fun(x)f.(x))]
=0 -E[o.({x,0))d'({x,w))] + w - E[...] Stein’s lemma

4/30

Emergence in Gradient-based Feature Learning

Hermite expansion: 0.(z) = 32 afHej(z), af = E[o.(2)He;(2)].

[Ben Arous et al. 2021] [Dudeja & Hsu 2018]

The information exponent of o, is k = IE(0.) = min{k € N} : a # 0}.

—E[VwL(fun)] = E[Vw(fun(x)f(x))]
=0 -E[o.((x,0))d'({x,w))] + w - E[...] Stein's lemma

oo
=0- Z(j + 1)2af+1ﬂj+1 (w,0) +... Hermite expansion
——

i=0) RO
J d—J/2 at initialization

4/30

Emergence in Gradient-based Feature Learning

Hermite expansion: 0.(z) = 32 afHej(z), af = E[o.(2)He;(2)].

[Ben Arous et al. 2021] [Dudeja & Hsu 2018]

The information exponent of o, is k = IE(0.) = min{k € N} : a # 0}.

—E[VwL(fun)] = E[Vw(fun(x)f(x))]
=0 -E[o.((x,0))d'({x,w))] + w - E[...] Stein's lemma

oo
=0- Z(j + l)2af+1ﬂj+1 (w,0) +... Hermite expansion
——

i=0) RO
J d—J/2 at initialization

Theorem ([Ben Arous et al. 21], [Bietti et al. 22], [Damian et al. 23]...)

A two-layer neural network can learn single-index f, with information

exponent k using n~ T 2 d®¥) samples and SGD steps.

4/30

Emergence in Gradient-based Feature Learning

Hermite expansion: o.(z) = 32 aiHe;(z), af = E[o.(2)Hej(2)].

[Ben Arous et al. 2021] [Dudeja & Hsu 2018]

The information exponent of g, is k = [E(0,) = min{k € N} : a} # 0}.

Most samples in SGD are used to escape from the high-entropy “equator”.

Emergent learning curve

O Search Phase. Online
SGD exhibits loss plateau

0TVL

K upto T =< d* ! steps.
~ g-G-D/2 K

0 Descent Phase. Loss
sharply decreases in

T =6(1) steps.

5/30

Learning Extensive-width Neural Network

Target Function: Width-P two-layer neural network

P
fi(x) = Z ap-o((x,0p)), > a3=1, {6,}F_; orthonormal.
m=1

Motivation: learning sum of (orthogonal) single-index tasks.

® o with I[E k >2 = emergent learning curve for each direction.

® Varying second-layer {ap}ﬁzl = separation in length of search phase.

6/30

Learning Extensive-width Neural Network

Target Function: Width-P two-layer neural network

P
fi(x) = Z ap-o((x,0p)), 23;23 =1, {6,}5_, orthonormal.
m=1

1 Extensive width. P =< d7 for v € [0,¢],c > 0.

® | arge number of tasks = infinite-dimensional effective dynamics.

(O Large condition number. anax/amin = ©(Poly(P)) .
® Covers power-law decay in second-layer a, < p~?, 8 € [0,).

(3 Single-phase SGD learning with MSE loss.

® Avoids layer-wise training which alters scaling law.

6/30

Learning Extensive-width Neural Network

Target Function: Width-P two-layer neural network

P
fi(x) = Z ap-o((x,0p)), > a>=1, {6,}_; orthonormal.
m=1

1 Extensive width. P =< d7 for v € [0,¢],c > 0.
® | arge number of tasks = infinite-dimensional effective dynamics.

(O Large condition number. anax/amin = ©(Poly(P)) .
® Covers power-law decay in second-layer a, = p~?,3€]0,00).

(3 Single-phase SGD learning with MSE loss.

® Avoids layer-wise training which alters scaling law.

This work: optimization and sample complexity for SGD training:
e sharp emergence time for each 8,, e smooth scaling law for MSE.

6/30

Main Theorem: Complexity of SGD Learning

(3 Student model: 2-homogeneous two-layer NN (matching o)

F(x) =D llwill3 - o((x, wi/ | wil)).
i=1

7/30

Main Theorem: Complexity of SGD Learning

(3 Student model: 2-homogeneous two-layer NN (matching o)
m
2
f(x) =D llwillz - o((x, wi/ [wi})).
i=1

(3 Online SGD training: at time t, compute MSE gradient update

wi(t+1) = wi(t) =V, (fi(xe) = F(xe)), xe ~ N(0,1a).

7/30

Main Theorem: Complexity of SGD Learning

(3 Student model: 2-homogeneous two-layer NN (matching o)

= w3 o({x, wi/||lwil)).
i=1

(3 Online SGD training: at time t, compute MSE gradient update

wi(t+1) = wi(t) =V, (fi(xe) = F(xe)), xe ~ N(0,1a).

Theorem (Complexity of SGD learning)

Assume P < d%!, p < P. If we train a student NN with m = &(p)

neurons using online SGD with n < m then w.h.p.,

O If p < p, alignment with 8, emerges at T, < a;l . n_ldk/2_1 :

7/30

Main Theorem: Complexity of SGD Learning

(3 Student model: 2-homogeneous two-layer NN (matching o)

= w3 o({x, wi/||lwil)).
i=1

(3 Online SGD training: at time t, compute MSE gradient update

wi(t+1) = wi(t) =V, (fi(xe) = F(xe)), xe ~ N(0,1a).

Theorem (Complexity of SGD learning)

Assume P < d%!, p < P. If we train a student NN with m = &(p)

neurons using online SGD with n < m then w.h.p.,

O If p < p, alignment with 8, emerges at T, < a;l . n_ldk/2_1 :
O3 All directions up to p are learned at n =< T < az ~2d*poly(P) .

7/30

Main Theorem: Complexity of SGD Learning

Theorem (Complexity of SGD learning)

Assume P < d%!, p < P. If we train a student NN with m = &(p)

neurons using online SGD with 1 < dk/2—1(P) then w.h.p.,

O If p < p, alignment with 8, emerges at T, < a;l o LatdE L

O3 All directions up to p are learned at n< T < a; ~2d*poly(P) .

Corollary: ignoring logarithmic factors, achieving small population loss (i.e.,
learning all tasks) requires m =< P neurons and n < T < a_2 d*~poly(P).

8/30

Main Theorem: Complexity of SGD Learning

Theorem (Complexity of SGD learning)

Assume P < d%!, p < P. If we train a student NN with m = &(p)
neurons using onI/ne SGD with n =< dk/2—1(P) then w.h.p.,

O If p < p, alignment with 8, emerges at T, < a;l o LatdE L

O3 All directions up to p are learned at n< T < a; ~2d*poly(P) .

Corollary: ignoring logarithmic factors, achieving small population loss (i.e.,
learning all tasks) requires m =< P neurons and n < T < a_2 d*~poly(P).

® Prior works required sample size or compute exponentially large in the
condition number: n, P < exp (22=) [Li et al. 22] [Oko et al. 24].

® Our learning procedure does not involve reinitialization [Ge et al. 21] or
Stiefel constraint [Ben Arous et al. 24].

8/30

Neural Scaling Laws for Feature Learning

Corollary (Emergence & Scaling Laws)

Assume a, < p~? for § > 1/2 and fixed learning rate 7, then
1. Emergence: the p-th task is learned at time nt ~ dk/2-1p8
2. Scaling law: population MSE exhibits power-law decay

1-28
L(t) ~ mi=28 v (ntdlfk/z) CI

Cumulative loss
1-283
L(t)~t 7

\ N

Loss at p-th task \
(emergence at t ~ p”)

Optimization time t 0/

Neural Scaling Laws for Feature Learning

Corollary (Emergence & Scaling Laws)

Assume a, < p~? for § > 1/2 and fixed learning rate 7, then

1. Emergence: the p-th task is learned at time nt ~ dk/2-1p8

2. Scaling law: population MSE exhibits power-law decay

1-2
ﬁ(t) ~ mi=28 v (ntdlfk/z)T

Intuition: Assume decoupled learning
of different teacher components,

® Direction 8, learned at
T, x pPp~tdk/2=1,

o L(t)~ Zp 1 p]I{t < Tp} =
L(Ty) ~ [3°5720ds ~ =20,

® m < P student neurons reaches
2 _ . 1-283
Yoeomds X m error.

Cumulative loss
1-283
L(t)~t 7

\ N

Loss at p-th task \
(emergence at t ~ p”)

Optimization time t

9/30

Neural Scaling Laws for Feature Learning

3 m'—27 — approximation barrier.

® Determined by the student network width.

1-28
A (ntd=*/2) # - optimization error.
® Determined by the number of online SGD steps.

Population loss

H

—— Small width
Large width
===+ Optimal slope

100 10 o

10™ 10"
Total compute

(a) Theoretical scaling law.

Population loss

—e— Small width
Large width <

==+ Optimal slope

107 10°

width);sGD steps
(b) Empirical scaling law.

Remark on Discretization

Note: the continuous-time (or constant-n) rate can be misleading!
©® Exponent does not match known rates for weak ¢, ball [Johnstone 17].

Adaptive learning rate for p-th task. Consider only learning the
top-p neurons.
e “Optimal” step size for the p-th task: n =< ngy(P)’ ap < ph.

® Direction 8, now learned at
n= Ty~ p’n td¥/?>1 = p?’d*Ipoly(P).
Sample complexity: under this learning rate for the first p neurons,

1-28

n 20 1-28
com~(Gne) 7

©® This now matches the known rates for weak ¢, ball.

11/30

Proof Sketch

¢ Decoupled gradient dynamics.
Let w,(,) denote the neuron that eventually converged to direction 6,
and mp o(t) = (wp(t)/||wp(t)]], 04) measures the overlap at time t.
® Claim 1 - decoupling. When all mf(p)_’q (g # p) are small, the
learning of different directions can be approximately decoupled.

® Claim 2 - sharp transitions. Since the norm of w, grows rapidly
after alignment is achieved, all m()a (g # p) remain small when
the g-th direction is recovered by w,(,) — after which 6, no longer
affects the learning dynamics (“automatic deflation™).

12/30

Proof Sketch

¢ Decoupled gradient dynamics.
Let w,(,) denote the neuron that eventually converged to direction 6,
and mp o(t) = (wp(t)/||wp(t)]], 04) measures the overlap at time t.
® Claim 1 - decoupling. When all mf(p)_’q (g # p) are small, the
learning of different directions can be approximately decoupled.

® Claim 2 - sharp transitions. Since the norm of w, grows rapidly
after alignment is achieved, all m()a (g # p) remain small when
the g-th direction is recovered by w,(,) — after which 6, no longer
affects the learning dynamics (“automatic deflation™).

® From gradient flow to online SGD.

® Martingale decomposition in [Ben Arous et al. 21] + a refined
stochastic induction argument from [Ren & Lee 24].

® “Unstable” discretization that couples the online SGD dynamics
for learning the top-p teacher neurons.

12/30

Remarks and Future Directions

(O Edge Case: information exponent k =2 (e.g., quadratic o).
® Dynamics of different directions cannot be decoupled.

(O Companion work: introduce algorithmic modification (Stiefel SGD) and
handle the special case of quadratic activation.
® Gerard Ben Arous, Murat A. Erdogdu, N. Mert Vural, Denny Wu.
“Scaling laws for learning quadratic two-layer neural networks
with SGD in high dimensions”.

13/30

Remarks and Future Directions

(O Edge Case: information exponent k =2 (e.g., quadratic o).
® Dynamics of different directions cannot be decoupled.

(O Companion work: introduce algorithmic modification (Stiefel SGD) and
handle the special case of quadratic activation.

® Gerard Ben Arous, Murat A. Erdogdu, N. Mert Vural, Denny Wu.
“Scaling laws for learning quadratic two-layer neural networks

with SGD in high dimensions”.
Future Directions

(3 Anisotropic input: x ~ N(0,X), where ¥ = Z:-jzl Nviv] o xiTe

® Two-parameter scaling law? (source & capacity conditions)

(0 Beyond additive structure = scaling laws for compositional
generalization? (More on this in Part II)

13/30

Part Il: Learning Compositional
Functions with Transformers

Zixuan Wang*! Eshaan Nichani*!, Alberto Bietti3, Alex
Damian?!, Daniel Hsu*, Jason D. Lee!, Denny Wu?3

IPrinceton University 2NYU 3Flatiron Institute *Columbia University

April 3, 2025

14 /30

Motivation: multi-step reasoning tasks

Large language models exhibits remarkable reasoning capabilities.

® They can solve complex tasks that require combining multiple
reasoning steps. [Wei et al., 2022]
Mathematics

Multi-hop QA
John -

Coding

John is in the playground.
Helen is playing with John.

&

0/

4
Helen picked up the football.

Answer: “In the playground.”

Prompt: “John is in the playground. [...] Helen is playing with
John. [...] Helen picked up the football. [...] Where is the football?"

15/30

Function composition

Multi-step reasoning tasks can be viewed as function composition.

e Prompt: “John is in the playground. [...] Helen is playing with
John. [...] Helen picked up the football. [...] Where is the
football?” Answer: “In the playground.”

® fiscation(John) = playground, fyitn(Helen) = John,
frold (football) = Helen

® The model needs to compute fipcation © fwith © frold(football) and
get playground.

¢ Note: (location, with, hold) are also function inputs.

16 /30

Function composition

Multi-step reasoning tasks can be viewed as function composition.

e Prompt: “John is in the playground. [...] Helen is playing with
John. [...] Helen picked up the football. [...] Where is the
football?” Answer: “In the playground.”

® fiscation(John) = playground, fyitn(Helen) = John,
frold (football) = Helen

® The model needs to compute fipcation © fwith © frold(football) and
get playground.

¢ Note: (location, with, hold) are also function inputs.

Abstractly, the model can do the following function composition:

e Inputs: (01,02, ...,0k, X)
e Qutputs: fg(kk) o fg(kl:l) e fg(ll)(x) where the hidden function is
position dependent.

16 /30

How does transformer compose functions?

With Chain-of-Thought (CoT):
® Expressivity [Li et al., 2024]

® Require explicit k inference
steps to compose k functions.

® |nefficient for simple tasks?

17/30

How does transformer compose functions?

With Chain-of-Thought (CoT): Without Chain-of-Thought:
® Expressivity [Li et al., 2024] ® Limited expressivity
® Require explicit k inference [Merrill and Sabharwal, 2023]
steps to compose k functions. ® Only a single inference step.
® |nefficient for simple tasks? ® Potentially faster?

17/30

How does transformer compose functions?

With Chain-of-Thought (CoT): Without Chain-of-Thought:
® Expressivity [Li et al., 2024] ® Limited expressivity
® Require explicit k inference [Merrill and Sabharwal, 2023]
steps to compose k functions. ® Only a single inference step.
o |nefficient for simple tasks? ® Potentially faster?

Focus of this talk:

e Can transformers compose (some) functions internally?

® Can they learn composition efficiently via gradient-based
training?

17/30

Transformers and self-attention

Definition ()

The self-attention head attn(-; Wkg, Wov) : RIXT — RIXT is, with
Wkaq, Wov € Rdxd

attn(X; Wk, Wov) = X + Woy XS(X T WkeoX),

where the softmax function S is applied column-wise.

e Convex combination of all values Wpy X with
coefficient S(X " WkqgX)(; ;). i-. attention score.

e A multi-layer transformer composes multiple
self-attention layers.

® \We focus on attention-only transformers now.

18/30

Transformers parallelize composition

Can transformers compose (some) functions internally?

® Yes! Enabled by parallelism.
e Composing k functions only requires O(log k) layers.

19/30

Transformers parallelize composition

Can transformers compose (some) functions internally?

® Yes! Enabled by parallelism.

e Composing k functions only requires O(log k) layers.

Examples (Efficiently parallelizable tasks)

® k-hop induction head [Sanford et al., 2024]; Finite state
automata [Liu et al., 2023].

8- o1
ttot 4ottt

baeblabebdex.

-
(2-hop Induction head) /‘yl‘ /+)%‘ /+

Tt

Oy 0y 03 04 05 O 07 Oy

(Finite state automata)

19/30

Our task: k-fold composition

o 7:=(m1,...,m) € (Sn)" is a tuple of k hidden permutations.

® Input: (0,x) € X := (Sy)¥ x [N], where o = (01, ...,0k), x is
an index in [N].

e OQutput f; : X — [N] is defined as

fr(0,x) == (0k 0Tk © Of—1 0 Tk_1 0+ 001 0m1)(x).

o1 Input permutations ¢ Ok
— N,
OG-V T TT T T T T - LTI I T T T O IV
_/ ~— ~~ 7 \
o Hidden permutations 7 e Ho.x)
Remark: 7 := (mq,...,7k) € (SN)k induces a function class F.

20/30

Construction for k-fold composition

Theorem (Expressivity of Transformers)

Assume k is a power of 2. For any € (Sy)¥, there exists an
L = log, k + 1 layer transformer with embedding dimension O(kN)
that expresses k-fold composition.

21/30

Construction for k-fold composition

Theorem (Expressivity of Transformers)

Assume k is a power of 2. For any € (Sy)¥, there exists an
L = log, k + 1 layer transformer with embedding dimension O(kN)
that expresses k-fold composition.

® Layer 1 encodes hidden 7;'s.

® |ayer 2 composes g1 O Mit1 Layer 4:

and o; o m; to get
Layer 2:

2.
hopi ‘= 0j+10Tj41 00 0T, Layer 1:

-2
® Layer £ composes hop; = and

hop,?:;,_2 and get hop%/_l.

21/30

The parallel solution (Layer 1)

® Embedding for each (/,j) € [N] x [k] stores one-hot embedding of (i,)

and (i, o;(j))

Input X©:
4] o; oy
ay | ay | - fam @y | G2 (@) & || ®2) (*.N)
a() || &) aN) |["*°]| o) || 6(2) G(N) a(l) || a@ a(N)
0kNL okNL o 0I(NL okNL OkNL 0I(NL OkNL 0I(NL 0kNL
® The key-query matrix makes position Layer 1: attends to (via WD)
(i,j) attend to position (i, 7(j)). o .
. . (i, () ()]
® The value matrix copies
hop; (j) := (om;)(j) into the residual (om)) o))
stream of (/) copies via Wiy |{HEC)
0kN(L—l)

® The first layer computes 1-hop!

22/30

The parallel solution (Layer ¢ + 1)

® Assume that the previous layer £ computes hop?ei1
£—1
of (i, /) contains hop? (j)).

(I + 26_17 hop,‘ﬂ*l (J))

o1
i

® Value matrix copies hopj, 51

(i.e residual stream

The key-query matrix makes position (i, /) attend to position

(hop?éil(j)) into residual stream of (i,).

attends to (via W}\,’g’) when

m = hop?”'(j)

Layer £ + 1:

® Thus the (¢ + 1)th layer computes % [an
o))

{2 (=1l (=1, —

hop? = hopf, 51 ohop; . e
hop?™' ()

® Finally, the L-th layer outputs k-hop. [
0kN(Lft’]

Gy 0-1(m)

hop}, ,,_.(m)

vx]
| [hopfiomitm)
— icopies (via
(£+1)y
WD)

/_\ i+ 2071 m)| O

23/30

Computational hardness of k-fold composition

Is this parallel construction for the k-fold composition efficiently
learnable by GD?

24 /30

Computational hardness of k-fold composition

Is this parallel construction for the k-fold composition efficiently
learnable by GD?

® Negative result: Statistical Query lower bound.

® SQ framework: Learner specifies query g : X x [N] = R and
tolerance 7. SQ oracle responds with G, a noisy estimate of g

|a - Eo,x[q(o—v)(? fﬂ'(av X)):H S T

24/30

Computational hardness of k-fold composition

Is this parallel construction for the k-fold composition efficiently
learnable by GD?

® Negative result: Statistical Query lower bound.

® SQ framework: Learner specifies query g : X x [N] = R and
tolerance 7. SQ oracle responds with G, a noisy estimate of g

|a - Eo,x[Q(U,X7 fﬂ'(av X)):H S T

Theorem (SQ lower bound for k-fold composition)

Any SQ learner for the k-fold composition function class F must
either make q > Nk queries or use a tolerance T < N~k to
output a predictor f with loss L(f) < 1.

® 7~ n /2 by i.i.d. concentration heuristic, where n is the sample size.
= Either runtime (> number of queries) or sample size must be N(¥).
24/30

Easy-to-hard: efficiency of curriculum learning

However, a curriculum can guide the transformer to learn the solution
efficiently!

e Stage 1: GD on the data with label hop} = o;7; for i € [K].

e Stage /: GD on the data with label hop%eil.
® We can learn the k-fold function with poly(N, k) samples!

25/30

Easy-to-hard: efficiency of curriculum learning

However, a curriculum can guide the transformer to learn the solution
efficiently!
e Stage 1: GD on the data with label hop} = o;7; for i € [K].

e Stage /: GD on the data with label hop?eil.
® We can learn the k-fold function with poly(N, k) samples!

Theorem (GD upper bound with curriculum)

Assume k = 2L=1 if the sample size n > Q(k*N®) , the output of
gradient descent with curriculum learning learns the k-fold
composition function.

25/30

Easy-to-hard: efficiency of curriculum learning

However, a curriculum can guide the transformer to learn the solution
efficiently!
e Stage 1: GD on the data with label hop} = o;7; for i € [K].

e Stage /: GD on the data with label hop?eil.
® We can learn the k-fold function with poly(N, k) samples!

Theorem (GD upper bound with curriculum)

Assume k = 2L=1 if the sample size n > Q(k*N®) , the output of
gradient descent with curriculum learning learns the k-fold
composition function.

Takeaway: n =< Nk) (Exponential) = n = poly(N, k) (Polynomial).
© Easy examples/intermediate supervision is essential for complex tasks!

25/30

Learning with curriculum

Stage 1:

® In the construction, the first layer makes the (/,j) position
attend to (7, m;(j)) position.
e With 1-hop data, learning this first layer is easy!

® Gradient descent can correctly learn the constructed attention
pattern, i.e. recover the hidden permutations 7;'s.

26/30

Learning with curriculum

Stage 1:

® In the construction, the first layer makes the (/,j) position
attend to (7, m;(j)) position.
e With 1-hop data, learning this first layer is easy!

® Gradient descent can correctly learn the constructed attention
pattern, i.e. recover the hidden permutations 7;'s.

Stage ¢ (¢ > 2):

0—2 0—2 .
® /(th layer learns to compose hop,2 and hop?+2e,2 computed in
the previous layer.

e With 2~ 1-hop data, GD correctly makes (i,) position attend to
(i +22, hop?eiz(j)) position, thus matching the construction.

26/30

Learning with data mixture

In practice, designing explicit curriculum is challenging:

® Hard to ensure increasing difficulty; facing catastrophic forgetting

® Instead, practitioners use data mixture with different difficulties

27/30

Learning with data mixture

In practice, designing explicit curriculum is challenging:

® Hard to ensure increasing difficulty; facing catastrophic forgetting

® Instead, practitioners use data mixture with different difficulties

Training on data mixture also works!

Theorem (Upper bound on mixed data, informal)

Assume k = 2171 if the sample size n > Q(k4N6) , the output of
gradient descent training on the mixture of {1,2,4,...,k}-fold data
learns the k-fold composition function.

27/30

Learning with data mixture

In practice, designing explicit curriculum is challenging:

® Hard to ensure increasing difficulty; facing catastrophic forgetting

® Instead, practitioners use data mixture with different difficulties

Training on data mixture also works!

Theorem (Upper bound on mixed data, informal)

Assume k = 2171 if the sample size n > Q(k4N6) , the output of
gradient descent training on the mixture of {1,2,4,...,k}-fold data
learns the k-fold composition function.

® Intuition: if layer £ (the 2~1-fold function) is not learned, GD cannot
learn later layers with ¢/ > ¢ — It is essential to learn from easy to hard!

® Data mixture implicitly induces curriculum learning.

27/30

Experiments

Simulation on normal transformers with MLP:

e Without data mixture: Transformer cannot learn the 4-hop task.
e With mixture: Transformer learns from easy to hard!
® Learning sequentially from easy (1-hop) to hard tasks (4-hop).

—— Test Loss (4-hop)
Test Loss (2-hop)
—— Test Loss (1-hop)
—== Test Loss (4-hop) (No Mixing)

0 100 200 300 400 500 600
Epoch

28/30

Remarks

Connection to k-sparse parity

® k-fold composition exhibits a statistical-computational gap.
Information theoretic sample complexity is n < kN log N, while a
computationally efficient SQ learner requires n > N2(K).

® Mirrors k-parity in d dimensions (requires d* samples/compute).

29/30

Remarks

Connection to k-sparse parity

® k-fold composition exhibits a statistical-computational gap.
Information theoretic sample complexity is n < kN log N, while a
computationally efficient SQ learner requires n > N2(K).

® Mirrors k-parity in d dimensions (requires d* samples/compute).

® |n both settings, efficient gradient-based learning requires
curriculum/intermediate supervision
[Abbe et al., 2023, Wen et al., 2024, Kim and Suzuki, 2024].

® Unlike k-parity, k-fold composition cannot be expressed by a
shallow neural network.

29/30

Remarks

Connection to k-sparse parity

® k-fold composition exhibits a statistical-computational gap.
Information theoretic sample complexity is n < kN log N, while a
computationally efficient SQ learner requires n > N2(K).

® Mirrors k-parity in d dimensions (requires d* samples/compute).

® |n both settings, efficient gradient-based learning requires
curriculum/intermediate supervision
[Abbe et al., 2023, Wen et al., 2024, Kim and Suzuki, 2024].

® Unlike k-parity, k-fold composition cannot be expressed by a
shallow neural network.

Future directions

® How to learn general compositions?
® Learning a more efficient embedding.

29/30

References

[d Abbe, E., Cornacchia, E., and Lotfi, A. (2023).

Provable advantage of curriculum learning on parity targets with mixed
inputs.
Advances in Neural Information Processing Systems, 36:24291-24321.

@ Kim, J. and Suzuki, T. (2024).
Transformers provably solve parity efficiently with chain of thought.
arXiv preprint arXiv:2410.08633.

[§ Li, Z., Liu, H., Zhou, D., and Ma, T. (2024).
Chain of thought empowers transformers to solve inherently serial problems.

arXiv preprint arXiv:2402.12875.

@ Liu, B., Ash, J. T., Goel, S., Krishnamurthy, A., and Zhang, C. (2023).
Transformers learn shortcuts to automata.
In The Eleventh International Conference on Learning Representations.

[§ Merrill, W. and Sabharwal, A. (2023).
The parallelism tradeoff: Limitations of log-precision transformers.
Transactions of the Association for Computational Linguistics, 11:531-545.

@ Sanford, C., Hsu, D., and Telgarsky, M. (2024). 30/30

	Transformer and function compositions
	Learning function composition: from easy to hard

