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Neural Scaling Laws & Emergence

Neural Scaling Laws [Kaplan et

al. 20] [Hoffmann et al. 22].
Increasing compute and data leads
to power-law decay in the loss.

Functional form: L ∝ D−α +N−β + C .

• D – number of data points.
• N – number of parameters.

Emergent Capabilities [Wei et

al. 22] [Ganguli et al. 22].
Learning of individual tasks (skills)
exhibits sharp transition with scale.

/ Unpredictable skill acquisition time.
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Neural Scaling Laws & Emergence

Question: How do we reconcile the emergent behavior in skill
acquisition and the smooth power-law decay in the cumulative loss?

Hypothesis: Additive Model [Michaud et al. 24] [Nam et al. 24]

❐ Cumulative objective can be decomposed into a large number of
distinct “skills”, the learning of each exhibits abrupt emergence.

❐ Juxtaposition of numerous emergent learning curves at different
timescales results in a predictable power-law rate in the loss.

compute

Cumulative loss

Loss at p-th task

This work: theoretical justification
for the additive model hypothesis in

SGD learning of shallow NN.
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Emergence in Gradient-based Feature Learning

Gaussian single-index model: f∗(x) = σ∗(⟨x ,θ⟩), x ∼ N (0, I d).

❐ Requires learning the direction θ ∈ Rd and link function σ∗ : R → R.
• Learning algorithm should adapt to low-dimensional structure.

Hermite expansion: σ∗(z) =
∑∞

j=0 α
∗
j Hej(z), α∗

j = E[σ∗(z)Hej(z)].

Information exponent [Ben Arous et al. 2021] [Dudeja & Hsu 2018]

The information exponent of σ∗ is k = IE(σ∗) = min{k ∈ N+ : α∗
k ̸= 0}.

Intuition: amount of information in the gradient at random initialization.

Theorem ([Ben Arous et al. 21], [Bietti et al. 22], [Damian et al. 23]...)

A two-layer neural network can learn single-index f∗ with information

exponent k using n ≃ T ≳ dΘ(k) samples and SGD steps.
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Emergence in Gradient-based Feature Learning

Hermite expansion: σ∗(z) =
∑∞

j=0 α
∗
j Hej(z), α∗

j = E[σ∗(z)Hej(z)].

Information exponent [Ben Arous et al. 2021] [Dudeja & Hsu 2018]

The information exponent of σ∗ is k = IE(σ∗) = min{k ∈ N+ : α∗
k ̸= 0}.

Most samples in SGD are used to escape from the high-entropy “equator”.

Emergent learning curve

❐ Search Phase. Online
SGD exhibits loss plateau

up to T ≍ dk−1 steps.

❐ Descent Phase. Loss
sharply decreases in

T = Θ̃(1) steps.
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Learning Extensive-width Neural Network

Target Function: Width-P two-layer neural network

f∗(x) =
P∑

m=1

ap · σ(⟨x ,θp⟩),
∑

a2p = 1, {θp}Pp=1 orthonormal.

Motivation: learning sum of (orthogonal) single-index tasks.

• σ with IE k > 2 ⇒ emergent learning curve for each direction.

• Varying second-layer {ap}Pp=1 ⇒ separation in length of search phase.
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∑

a2p = 1, {θp}Pp=1 orthonormal.

❐ Extensive width. P ≍ dγ for γ ∈ [0, c], c > 0.
• Large number of tasks ⇒ infinite-dimensional effective dynamics.

❐ Large condition number. amax/amin = Θ(Poly(P)) .

• Covers power-law decay in second-layer ap ≍ p−β , β ∈ [0,∞).

❐ Single-phase SGD learning with MSE loss.
• Avoids layer-wise training which alters scaling law.

This work: optimization and sample complexity for SGD training:
• sharp emergence time for each θp, • smooth scaling law for MSE.
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Main Theorem: Complexity of SGD Learning

❐ Student model: 2-homogeneous two-layer NN (matching σ)

f (x) =
m∑
i=1

∥w i∥22 · σ(⟨x ,w i/∥w i∥⟩).

❐ Online SGD training: at time t, compute MSE gradient update

w i (t + 1) = w i (t)− η∇w i (f∗(x t)− f (x t))
2, x t ∼ N (0, I d).

Theorem (Complexity of SGD learning)

Assume P ≪ d0.1, p̄ < P. If we train a student NN with m = Θ̃(p̄)
neurons using online SGD with η ≍ ap̄

dk/2poly(P)
, then w.h.p.,

❐ If p < p̄, alignment with θp emerges at Tp ≍ a−1
p · η−1dk/2−1 .

❐ All directions up to p̄ are learned at n ≍ T ≍ a−2
p̄ dk−1poly(P) .
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❐ All directions up to p̄ are learned at n ≍ T ≍ a−2
p̄ dk−1poly(P) .

Corollary: ignoring logarithmic factors, achieving small population loss (i.e.,
learning all tasks) requires m ≍ P neurons and n ≍ T ≍ a−2

mind
k−1poly(P).

• Prior works required sample size or compute exponentially large in the
condition number: n,P ≍ exp

(
amax

amin

)
[Li et al. 22] [Oko et al. 24].

• Our learning procedure does not involve reinitialization [Ge et al. 21] or
Stiefel constraint [Ben Arous et al. 24].
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Neural Scaling Laws for Feature Learning

Corollary (Emergence & Scaling Laws)

Assume ap ≍ p−β for β > 1/2 and fixed learning rate η, then

1. Emergence: the p-th task is learned at time ηt ∼ dk/2−1pβ .

2. Scaling law: population MSE exhibits power-law decay

L(t) ∼ m1−2β ∨
(
ηtd1−k/2

) 1−2β
β .

Intuition: Assume decoupled learning
of different teacher components,

• Direction θp learned at
Tp ∝ pβη−1dk/2−1.

• L(t) ≈ ∑P
p=1 a

2
pI{t < Tp} ⇒

L(Tp) ≈
∫∞
p

s−2βds ∼ p1−2β .

• m < P student neurons reaches∑
s>m a2s ≍ m1−2β error.

Optimization time t

Cumulative loss

L(t) ∼ t
1−2β

β

Loss at p-th task
(emergence at t ∼ pβ)

...
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Neural Scaling Laws for Feature Learning

❐ m1−2β – approximation barrier.
• Determined by the student network width.

❐
(
ηtd1−k/2

) 1−2β
β – optimization error.

• Determined by the number of online SGD steps.

(a) Theoretical scaling law. (b) Empirical scaling law.
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Remark on Discretization

Note: the continuous-time (or constant-η) rate can be misleading!

/ Exponent does not match known rates for weak ℓp ball [Johnstone 17].

Adaptive learning rate for p-th task. Consider only learning the
top-p neurons.

• “Optimal” step size for the p-th task: η ≍ ap
dk/2poly(P)

, ap ≍ p−β .

• Direction θp now learned at
n = Tp ∼ pβη−1dk/2−1 = p2βdk−1poly(P).

Sample complexity: under this learning rate for the first p neurons,

L(n,m) ∼
(

n

dk−1poly(P)

) 1−2β
2β

+m1−2β

, This now matches the known rates for weak ℓp ball.
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Proof Sketch

• Decoupled gradient dynamics.
Let w ι(p) denote the neuron that eventually converged to direction θp,
and mp,q(t) = ⟨wp(t)/∥wp(t)∥,θq⟩ measures the overlap at time t.

• Claim 1 - decoupling. When all m2
ι(p),q (q ̸= p) are small, the

learning of different directions can be approximately decoupled.

• Claim 2 - sharp transitions. Since the norm of wp grows rapidly
after alignment is achieved, all m2

ι(p),q (q ̸= p) remain small when
the q-th direction is recovered by w ι(q) – after which θq no longer
affects the learning dynamics (“automatic deflation”).

• From gradient flow to online SGD.
• Martingale decomposition in [Ben Arous et al. 21] + a refined

stochastic induction argument from [Ren & Lee 24].

• “Unstable” discretization that couples the online SGD dynamics
for learning the top-p teacher neurons.
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Remarks and Future Directions

❐ Edge Case: information exponent k = 2 (e.g., quadratic σ).

/ Dynamics of different directions cannot be decoupled.

❐ Companion work: introduce algorithmic modification (Stiefel SGD) and
handle the special case of quadratic activation.

• Gerard Ben Arous, Murat A. Erdogdu, N. Mert Vural, Denny Wu.
“Scaling laws for learning quadratic two-layer neural networks
with SGD in high dimensions”.

Future Directions

❐ Anisotropic input: x ∼ N (0,Σ), where Σ =
∑d

i=1 λiv iv⊤
i , λi ≍ i−α.

• Two-parameter scaling law? (source & capacity conditions)

❐ Beyond additive structure ⇒ scaling laws for compositional
generalization? (More on this in Part II)
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Motivation: multi-step reasoning tasks

Large language models exhibits remarkable reasoning capabilities.

• They can solve complex tasks that require combining multiple
reasoning steps. [Wei et al., 2022]

Mathematics Multi-hop QA Coding

Examples (Multi-hop QA)

Prompt: “John is in the playground. [...] Helen is playing with
John. [...] Helen picked up the football. [...] Where is the football?”
Answer: “In the playground.”
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Function composition

Multi-step reasoning tasks can be viewed as function composition.

• Prompt: “John is in the playground. [...] Helen is playing with
John. [...] Helen picked up the football. [...] Where is the
football?” Answer: “In the playground.”

• flocation(John) = playground, fwith(Helen) = John,
fhold(football) = Helen

• The model needs to compute flocation ◦ fwith ◦ fhold(football) and
get playground.

• Note: (location, with, hold) are also function inputs.

Abstractly, the model can do the following function composition:

• Inputs: (σ1, σ2, ..., σk , x)

• Outputs: f
(k)
σk ◦ f (k−1)

σk−1 · · · f (1)σ1 (x) where the hidden function is
position dependent.
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How does transformer compose functions?

With Chain-of-Thought (CoT):

• Expressivity [Li et al., 2024]

• Require explicit k inference
steps to compose k functions.

• Inefficient for simple tasks?

Without Chain-of-Thought:

• Limited expressivity
[Merrill and Sabharwal, 2023]

• Only a single inference step.

• Potentially faster?

Focus of this talk:
• Can transformers compose (some) functions internally?

• Can they learn composition efficiently via gradient-based
training?
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Transformers and self-attention

Definition (Self-attention)

The self-attention head attn(·;WKQ ,WOV ) : Rd×T → Rd×T is, with
WKQ ,WOV ∈ Rd×d

attn(X ;WKQ ,WOV ) = X +WOVXS(X⊤WKQX ),

where the softmax function S is applied column-wise.

• Convex combination of all values WOVX with
coefficient S(X⊤WKQX )(i ,j), i.e. attention score.

• A multi-layer transformer composes multiple
self-attention layers.

• We focus on attention-only transformers now.

Scaled Dot-Product Attention Multi-Head Attention

Figure 2: (left) Scaled Dot-Product Attention. (right) Multi-Head Attention consists of several
attention layers running in parallel.

of the values, where the weight assigned to each value is computed by a compatibility function of the
query with the corresponding key.

3.2.1 Scaled Dot-Product Attention

We call our particular attention "Scaled Dot-Product Attention" (Figure 2). The input consists of
queries and keys of dimension dk, and values of dimension dv . We compute the dot products of the
query with all keys, divide each by

p
dk, and apply a softmax function to obtain the weights on the

values.

In practice, we compute the attention function on a set of queries simultaneously, packed together
into a matrix Q. The keys and values are also packed together into matrices K and V . We compute
the matrix of outputs as:

Attention(Q, K, V ) = softmax(
QKT

p
dk

)V (1)

The two most commonly used attention functions are additive attention [2], and dot-product (multi-
plicative) attention. Dot-product attention is identical to our algorithm, except for the scaling factor
of 1p

dk
. Additive attention computes the compatibility function using a feed-forward network with

a single hidden layer. While the two are similar in theoretical complexity, dot-product attention is
much faster and more space-efficient in practice, since it can be implemented using highly optimized
matrix multiplication code.

While for small values of dk the two mechanisms perform similarly, additive attention outperforms
dot product attention without scaling for larger values of dk [3]. We suspect that for large values of
dk, the dot products grow large in magnitude, pushing the softmax function into regions where it has
extremely small gradients 4. To counteract this effect, we scale the dot products by 1p

dk
.

3.2.2 Multi-Head Attention

Instead of performing a single attention function with dmodel-dimensional keys, values and queries,
we found it beneficial to linearly project the queries, keys and values h times with different, learned
linear projections to dk, dk and dv dimensions, respectively. On each of these projected versions of
queries, keys and values we then perform the attention function in parallel, yielding dv-dimensional

4To illustrate why the dot products get large, assume that the components of q and k are independent random
variables with mean 0 and variance 1. Then their dot product, q · k =

Pdk
i=1 qiki, has mean 0 and variance dk.

4
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Transformers parallelize composition

Can transformers compose (some) functions internally?

• Yes! Enabled by parallelism.

• Composing k functions only requires O(log k) layers.

Examples (Efficiently parallelizable tasks)

• k-hop induction head [Sanford et al., 2024]; Finite state
automata [Liu et al., 2023].

4 Transformers for k-hop induction heads
We complement the generality of Section 3 by studying, both empirically and theoretically, a specific toy
sequential modeling task which will also serve (in Section 5) as a problem to separate the representational
capabilities of transformers from that of other neural architectures.

This task, called the k-hop induction heads task, draws inspiration from the original induction heads task
defined and analyzed on trained language models and in synthetic environments by Elhage et al. (2021) (see
also Bietti et al., 2023). The standard induction heads task completes bigrams auto-regressively by predicting
the token that follows the last previous occurrence of the final token in the sequence. For example, given the
input X = baebcabebdea, the standard induction heads task is to complete the final bigram by predicting b
for the final token.

The k-hop induction heads tasks generalizes this mechanism by repeatedly using the completion of a
bigram to determine the next bigram to complete. In the previous example, the 2-hop induction heads task
is to predict c for the final token:

baebcabebdea.

Definition 4.1. For any finite alphabet �, define the map hopk : �N æ (� fi{‹})N by hopk(X)i = Xfindk
X

(i)

if findkX(i) ”= 0 and ‹ otherwise, where

find1
X(i) = max({0} fi {j œ N : j Æ i, Xj≠1 = Xi});

findkX(i) = find1
X(findk≠1

X (i)) for k Ø 2.

The k-hop induction heads task is to compute, for each i = 1, . . . , N , the value of hopk(X)i from (X1, . . . ,Xi).

We note a similarity to the LEGO tasks of Zhang et al. (2023), who empirically study the ability of
transformers to learn sequential operations on Abelian groups and observe the ability to perform more
operations than the depth of the network.

4.1 Log-depth transformer for k-hop induction heads
Although hopk appears to requires k steps to solve, we show that it is solved by a transformer of depth
O(log k).

Theorem 4.2. For any k œ N and alphabet � with |�| Æ N , there exists T œ MaskTransformerNm,L,H that
computes hopk : �N æ (� fi {‹})N with m = O(1), L = Âlog2 kÊ + 2, and H = 1.

In contrast to Corollary 3.3, this construction has constant embedding dimension and is achieved by a
causally-masked transformer. As such, its proof in Appendix D.1 depends on other techniques that exploit
the simplicity of the problem and build on the induction heads construction of Bietti et al. (2023), rather
than simply applying Theorem 3.1.

We give evidence for the optimality of this construction by proving a conditional lower bound using
Theorem 3.4, as was done in Corollary 3.5.

Corollary 4.3. Assuming Conjecture 2.4, for any constants › œ (0, 1/2] and ‘ œ (0, 1), and any even
k = �(N ›), every transformer T œ MaskTransformerNm,L,H with mH = O(k1≠‘) that computes hopk has depth
L = �(log k).

4.2 Log-depth transformer learned from data
We empirically assess whether the representational trade-o�s elucidated by tasks e�ciently solved by
parallelizable algorithms have implications for optimization and generalization properties of transformers. To
that end, we trained auto-regressive transformer architectures of varying sizes to solve hopk(X) for a variety
of values of k in order to understand how changing depth impacted the performance of the learned models,
the goal being to verify the su�ciency of logarithmic depth, just as in our theory.
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Figure 2: Intuitions for the theoretical constructions. (a) Divide-and-conquer function composition yields
logarithmic-depth shortcuts (Theorem 1). (b) The two “atoms” of the constant-depth Krohn-Rhodes
decomposition (Theorem 2) of a solvable semiautomaton: modular addition and sequentially resettable
memory. (c) Information flow of the cascade product, which is used to glue these atoms together, and easily
implemented with residual connections. (d) An even shorter shortcut solution for gridworld simulation
(Theorem 3; see Appendix C.4).

these networks must be exceptionally wide. There are also solutions which emulate transitions in “chunks”,
letting each of (say)

p
T layers perform

p
T consecutive state transitions; however, without exploiting the

structure of the semiautomaton, this would require width ⌦(|⌃|
p

T ). To rule out these cases and focus on
interesting shortcuts for Transformers, we want the other size parameters (attention and MLP width) to
be small: say, scaling at most polynomially in T , |Q|, and |⌃|. To construct such shortcuts, we need ideas
beyond explicit iteration of state transitions.

3.1 Semiautomata admit shallow parallel shortcuts
We begin by noting that polynomial-width shortcuts always exist. This may seem counterintuitive if we
restrict ourselves to viewing a Transformer’s intermediate activations as representations of states qt, like the
RNN solution. Instead, a Transformer can encode and hierarchically compose transformations �(·, �) : Q! Q
(see Figure 2a), leading to far shallower solutions:

Theorem 1 (Simulation is generically parallelizable; informal). Transformers can simulate all semiautomata
A = (Q,⌃, �) at length T , with depth O(log T ), embedding dimension O(|Q|), attention width O(|Q|), and
MLP width O(|Q|2).
This is proven in Appendix C.2, and leverages the ability of a self-attention head to approximate hard attention
(i.e. concentrate its mixing weights on a single position). However, self-attention heads can also perform soft
attention (i.e. depend on a large number of previous positions), enabling even shallower implementations of
certain sequential computations. For example, the parity automaton can be simulated by a single Transformer
layer (see Lemma 6): soft attention computes prefix sums in parallel, then the MLP computes “mod 2”. This
leads to a significantly more nuanced question: when are there even shallower shortcuts? At first glance,
such solutions may seem rare, and specialized to simple cases such as parity.

Our resolution to this question comes from the Krohn-Rhodes decomposition theorem (Krohn and Rhodes,
1965), a landmark result which vastly generalizes the uniqueness of prime integer factorizations, and created
the mathematical field of algebraic automata theory (Rhodes et al., 2010). The conclusion is quite unintuitive:
allowing for both hard and soft modes of attention, constant-depth shortcuts are surprisingly common!

Theorem 2 (Transformer Krohn-Rhodes; informal). Transformers can simulate all solvable3 semiautomata
A = (Q,⌃, �), with depth O(|Q|2 log |Q|), embedding dimension 2O(|Q| log |Q|), attention width 2O(|Q| log |Q|),
and MLP width |Q|O(2|Q|) + 2O(|Q| log |Q|) · T .
3See Definition 6. Intuitively, the only obstructions are when the semiautomata contain non-solvable groups such as S5, the
group of all permutations of 5 elements.

5

(Finite state automata)
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Transformers parallelize composition

Can transformers compose (some) functions internally?

• Yes! Enabled by parallelism.

• Composing k functions only requires O(log k) layers.

Examples (Efficiently parallelizable tasks)

• k-hop induction head [Sanford et al., 2024]; Finite state
automata [Liu et al., 2023].

4 Transformers for k-hop induction heads
We complement the generality of Section 3 by studying, both empirically and theoretically, a specific toy
sequential modeling task which will also serve (in Section 5) as a problem to separate the representational
capabilities of transformers from that of other neural architectures.

This task, called the k-hop induction heads task, draws inspiration from the original induction heads task
defined and analyzed on trained language models and in synthetic environments by Elhage et al. (2021) (see
also Bietti et al., 2023). The standard induction heads task completes bigrams auto-regressively by predicting
the token that follows the last previous occurrence of the final token in the sequence. For example, given the
input X = baebcabebdea, the standard induction heads task is to complete the final bigram by predicting b
for the final token.

The k-hop induction heads tasks generalizes this mechanism by repeatedly using the completion of a
bigram to determine the next bigram to complete. In the previous example, the 2-hop induction heads task
is to predict c for the final token:

baebcabebdea.

Definition 4.1. For any finite alphabet �, define the map hopk : �N æ (� fi{‹})N by hopk(X)i = Xfindk
X

(i)

if findkX(i) ”= 0 and ‹ otherwise, where

find1
X(i) = max({0} fi {j œ N : j Æ i, Xj≠1 = Xi});

findkX(i) = find1
X(findk≠1

X (i)) for k Ø 2.

The k-hop induction heads task is to compute, for each i = 1, . . . , N , the value of hopk(X)i from (X1, . . . ,Xi).

We note a similarity to the LEGO tasks of Zhang et al. (2023), who empirically study the ability of
transformers to learn sequential operations on Abelian groups and observe the ability to perform more
operations than the depth of the network.

4.1 Log-depth transformer for k-hop induction heads
Although hopk appears to requires k steps to solve, we show that it is solved by a transformer of depth
O(log k).

Theorem 4.2. For any k œ N and alphabet � with |�| Æ N , there exists T œ MaskTransformerNm,L,H that
computes hopk : �N æ (� fi {‹})N with m = O(1), L = Âlog2 kÊ + 2, and H = 1.

In contrast to Corollary 3.3, this construction has constant embedding dimension and is achieved by a
causally-masked transformer. As such, its proof in Appendix D.1 depends on other techniques that exploit
the simplicity of the problem and build on the induction heads construction of Bietti et al. (2023), rather
than simply applying Theorem 3.1.

We give evidence for the optimality of this construction by proving a conditional lower bound using
Theorem 3.4, as was done in Corollary 3.5.

Corollary 4.3. Assuming Conjecture 2.4, for any constants › œ (0, 1/2] and ‘ œ (0, 1), and any even
k = �(N ›), every transformer T œ MaskTransformerNm,L,H with mH = O(k1≠‘) that computes hopk has depth
L = �(log k).

4.2 Log-depth transformer learned from data
We empirically assess whether the representational trade-o�s elucidated by tasks e�ciently solved by
parallelizable algorithms have implications for optimization and generalization properties of transformers. To
that end, we trained auto-regressive transformer architectures of varying sizes to solve hopk(X) for a variety
of values of k in order to understand how changing depth impacted the performance of the learned models,
the goal being to verify the su�ciency of logarithmic depth, just as in our theory.

7

(2-hop Induction head)
�1 �2 �3 �4 �5 �6 �7 �8

�( � , �1:8)

�

� � �

��

�

+p

z1 z2 z3 z4 z5 z6 z7 z8

sum(z1:6) mod p

� � � � � � � �

�

(a) (b) (c) (d)
� � � � � � � �

M +
(sin, cos)

distinct
boundary

q7

Figure 2: Intuitions for the theoretical constructions. (a) Divide-and-conquer function composition yields
logarithmic-depth shortcuts (Theorem 1). (b) The two “atoms” of the constant-depth Krohn-Rhodes
decomposition (Theorem 2) of a solvable semiautomaton: modular addition and sequentially resettable
memory. (c) Information flow of the cascade product, which is used to glue these atoms together, and easily
implemented with residual connections. (d) An even shorter shortcut solution for gridworld simulation
(Theorem 3; see Appendix C.4).

these networks must be exceptionally wide. There are also solutions which emulate transitions in “chunks”,
letting each of (say)

p
T layers perform

p
T consecutive state transitions; however, without exploiting the

structure of the semiautomaton, this would require width ⌦(|⌃|
p

T ). To rule out these cases and focus on
interesting shortcuts for Transformers, we want the other size parameters (attention and MLP width) to
be small: say, scaling at most polynomially in T , |Q|, and |⌃|. To construct such shortcuts, we need ideas
beyond explicit iteration of state transitions.

3.1 Semiautomata admit shallow parallel shortcuts
We begin by noting that polynomial-width shortcuts always exist. This may seem counterintuitive if we
restrict ourselves to viewing a Transformer’s intermediate activations as representations of states qt, like the
RNN solution. Instead, a Transformer can encode and hierarchically compose transformations �(·, �) : Q! Q
(see Figure 2a), leading to far shallower solutions:

Theorem 1 (Simulation is generically parallelizable; informal). Transformers can simulate all semiautomata
A = (Q,⌃, �) at length T , with depth O(log T ), embedding dimension O(|Q|), attention width O(|Q|), and
MLP width O(|Q|2).
This is proven in Appendix C.2, and leverages the ability of a self-attention head to approximate hard attention
(i.e. concentrate its mixing weights on a single position). However, self-attention heads can also perform soft
attention (i.e. depend on a large number of previous positions), enabling even shallower implementations of
certain sequential computations. For example, the parity automaton can be simulated by a single Transformer
layer (see Lemma 6): soft attention computes prefix sums in parallel, then the MLP computes “mod 2”. This
leads to a significantly more nuanced question: when are there even shallower shortcuts? At first glance,
such solutions may seem rare, and specialized to simple cases such as parity.

Our resolution to this question comes from the Krohn-Rhodes decomposition theorem (Krohn and Rhodes,
1965), a landmark result which vastly generalizes the uniqueness of prime integer factorizations, and created
the mathematical field of algebraic automata theory (Rhodes et al., 2010). The conclusion is quite unintuitive:
allowing for both hard and soft modes of attention, constant-depth shortcuts are surprisingly common!

Theorem 2 (Transformer Krohn-Rhodes; informal). Transformers can simulate all solvable3 semiautomata
A = (Q,⌃, �), with depth O(|Q|2 log |Q|), embedding dimension 2O(|Q| log |Q|), attention width 2O(|Q| log |Q|),
and MLP width |Q|O(2|Q|) + 2O(|Q| log |Q|) · T .
3See Definition 6. Intuitively, the only obstructions are when the semiautomata contain non-solvable groups such as S5, the
group of all permutations of 5 elements.

5

(Finite state automata)

19 / 30



Our task: k-fold composition

Definition. (k-fold composition)

• π := (π1, . . . , πk) ∈ (SN)
k is a tuple of k hidden permutations.

• Input: (σ, x) ∈ X := (SN)
k × [N], where σ = (σ1, . . . , σk), x is

an index in [N].

• Output fπ : X → [N] is defined as

fπ(σ, x) := (σk ◦ πk ◦ σk−1 ◦ πk−1 ◦ · · · ◦ σ1 ◦ π1)(x).

x1 ⋯ ⋯ N ⋯
σ1

π1 πk

σkInput permutations σ

Hidden permutations π fπ(σ, x)
1 y⋯ ⋯ N

Remark: π := (π1, . . . , πk) ∈ (SN)
k induces a function class F .
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Construction for k-fold composition

Theorem (Expressivity of Transformers)

Assume k is a power of 2. For any π ∈ (SN)
k , there exists an

L = log2 k + 1 layer transformer with embedding dimension Õ(kN)
that expresses k-fold composition.

• Layer 1 encodes hidden πi ’s.

• Layer 2 composes σi+1 ◦ πi+1

and σi ◦ πi to get

hop2i := σi+1 ◦ πi+1 ◦ σi ◦ πi
• Layer ℓ composes hop2

l−2

i and

hop2
l−2

i+2l−2 and get hop2
l−1

i .

attends to σi+1

σ1
π1

σ2

Layer :1

Input:

σ1π1 σ2π2

σ3 σ4

σ3π3 σ4π4
π2 π4π3

Layer :2 hop2
1 hop2

2 hop2
3 hop2

4

⋯
Layer :4 hop4

1 hop4
2 hop4

3 hop4
4

⋯

attends to σi+2

⋯ ⋯
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The parallel solution (Layer 1)

• Embedding for each (i , j) ∈ [N]× [k] stores one-hot embedding of (i , j)

and (i , σi (j))

(σiπi)( j)
(i, πi( j))

σi( j) hop1
i+2ℓ−1(m)

(i, j)⋯
⋯

⋯
⋯

⋯
⋯

(σiπi)( j)
copies (via )W(1)

OV

σi+2ℓ−1(m)
(i + 2ℓ−1, m)

⋯
hop2ℓ−1

i+2ℓ−1(m)

hop1
i ( j)

σi( j)
(i, j)

⋯
hop2ℓ−1

i ( j)
hop2ℓ

i ( j)

σi(2)
(i,2)

σ1(1)
(1,1)

σ1(2)
(1,2)

σ1(N )
(1,N )

⋯ σi(1)
(i,1)⋯

⋯ σi(N )
(i, N )⋯

⋯ ⋯ σk(1)
(k,1)

σk(2)
(k,2)

σk(N )
(k, N )⋯

⋯

Input :X(0)

σ1

0kNL0kNL0kNL ⋯ 0kNL0kNL0kNL ⋯ 0kNL0kNL0kNL ⋯

σi σk

Layer : 1
σi

0kN(L−1)

σi σi+2ℓ−1

⋯ ⋯ ⋯ ⋯ ⋯

copies (via 
)W(ℓ+1)

OV

Layer :ℓ + 1

0kN(L−ℓ)

attends to (via )W(1)
KQ

attends to (via ) when W(ℓ+1)
KQ

m = hop2ℓ−1
i ( j)• The key-query matrix makes position

(i , j) attend to position (i , π(j)).

• The value matrix copies
hop1i (j) := (σiπi )(j) into the residual
stream of (i , j)

• The first layer computes 1-hop!

(σiπi)( j)
(i, πi( j))

σi( j) hop1
i+2ℓ−1(m)

(i, j)⋯
⋯

⋯
⋯

⋯
⋯

(σiπi)( j)
copies (via )W(1)

OV

σi+2ℓ−1(m)
(i + 2ℓ−1, m)

⋯
hop2ℓ−1

i+2ℓ−1(m)

hop1
i ( j)

σi( j)
(i, j)

⋯
hop2ℓ−1

i ( j)
hop2ℓ

i ( j)

σi(2)
(i,2)

σ1(1)
(1,1)

σ1(2)
(1,2)

σ1(N )
(1,N )

⋯ σi(1)
(i,1)⋯

⋯ σi(N )
(i, N )⋯

⋯ ⋯ σk(1)
(k,1)

σk(2)
(k,2)

σk(N )
(k, N )⋯

⋯

Input :X(0)

σ1

0kNL0kNL0kNL ⋯ 0kNL0kNL0kNL ⋯ 0kNL0kNL0kNL ⋯

σi σk
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σi

0kN(L−1)
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)W(ℓ+1)

OV
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attends to (via ) when W(ℓ+1)
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m = hop2ℓ−1
i ( j)
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The parallel solution (Layer ℓ+ 1)

• Assume that the previous layer ℓ computes hop2
ℓ−1

i (i.e residual stream

of (i , j) contains hop2
ℓ−1

i (j)).

• The key-query matrix makes position (i , j) attend to position
(i + 2ℓ−1, hopi2ℓ−1 (j)).

• Value matrix copies hop2
ℓ−1

i+2ℓ−1(hop
2ℓ−1

i (j)) into residual stream of (i , j).

• Thus the (ℓ+ 1)th layer computes

hop2
ℓ

i = hop2
ℓ−1

i+2ℓ−1 ◦ hop2
ℓ−1

i .

• Finally, the L-th layer outputs k-hop.

(σiπi)( j)
(i, πi( j))

σi( j) hop1
i+2ℓ−1(m)

(i, j)⋯
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⋯
⋯

⋯
⋯
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Computational hardness of k-fold composition

Is this parallel construction for the k-fold composition efficiently
learnable by GD?

• Negative result: Statistical Query lower bound.

• SQ framework: Learner specifies query q : X × [N] → R and
tolerance τ . SQ oracle responds with q̂, a noisy estimate of q

|q̂ − Eσ,x [q(σ, x , fπ(σ, x))]| ≤ τ

Theorem (SQ lower bound for k-fold composition)

Any SQ learner for the k-fold composition function class F must

either make q ≥ NΩ(k) queries or use a tolerance τ ≤ N−Ω(k) to

output a predictor f̂ with loss L(f̂ ) ≲ 1.

• τ ≈ n−1/2 by i.i.d. concentration heuristic, where n is the sample size.
⇒ Either runtime (≥ number of queries) or sample size must be NΩ(k).
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either make q ≥ NΩ(k) queries or use a tolerance τ ≤ N−Ω(k) to

output a predictor f̂ with loss L(f̂ ) ≲ 1.

• τ ≈ n−1/2 by i.i.d. concentration heuristic, where n is the sample size.
⇒ Either runtime (≥ number of queries) or sample size must be NΩ(k).
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Easy-to-hard: efficiency of curriculum learning

However, a curriculum can guide the transformer to learn the solution
efficiently!

• Stage 1: GD on the data with label hop1i = σiπi for i ∈ [k].

• Stage ℓ: GD on the data with label hop2
ℓ−1

i .

• We can learn the k-fold function with poly(N, k) samples!

Theorem (GD upper bound with curriculum)

Assume k = 2L−1, if the sample size n ≥ Ω̃(k4N6) , the output of
gradient descent with curriculum learning learns the k-fold
composition function.

Takeaway: n ≍ NΩ(k) (Exponential) ⇒ n ≍ poly(N, k) (Polynomial).

, Easy examples/intermediate supervision is essential for complex tasks!
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Learning with curriculum

Stage 1:

• In the construction, the first layer makes the (i , j) position
attend to (i , πi (j)) position.

• With 1-hop data, learning this first layer is easy!

• Gradient descent can correctly learn the constructed attention
pattern, i.e. recover the hidden permutations πi ’s.

Stage ℓ (ℓ ≥ 2):

• ℓth layer learns to compose hop2
ℓ−2

i and hop2
ℓ−2

i+2ℓ−2 computed in
the previous layer.

• With 2ℓ−1-hop data, GD correctly makes (i , j) position attend to

(i + 2ℓ−2, hop2
ℓ−2

i (j)) position, thus matching the construction.

26 / 30



Learning with curriculum

Stage 1:

• In the construction, the first layer makes the (i , j) position
attend to (i , πi (j)) position.

• With 1-hop data, learning this first layer is easy!

• Gradient descent can correctly learn the constructed attention
pattern, i.e. recover the hidden permutations πi ’s.

Stage ℓ (ℓ ≥ 2):

• ℓth layer learns to compose hop2
ℓ−2

i and hop2
ℓ−2

i+2ℓ−2 computed in
the previous layer.

• With 2ℓ−1-hop data, GD correctly makes (i , j) position attend to

(i + 2ℓ−2, hop2
ℓ−2

i (j)) position, thus matching the construction.

26 / 30



Learning with data mixture

In practice, designing explicit curriculum is challenging:

• Hard to ensure increasing difficulty; facing catastrophic forgetting

• Instead, practitioners use data mixture with different difficulties

Training on data mixture also works!

Theorem (Upper bound on mixed data, informal)

Assume k = 2L−1, if the sample size n ≥ Ω̃(k4N6) , the output of

gradient descent training on the mixture of {1,2,4,...,k}-fold data
learns the k-fold composition function.

• Intuition: if layer ℓ (the 2ℓ−1-fold function) is not learned, GD cannot
learn later layers with ℓ′ > ℓ — It is essential to learn from easy to hard!

• Data mixture implicitly induces curriculum learning.
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Experiments

Simulation on normal transformers with MLP:

• Without data mixture: Transformer cannot learn the 4-hop task.

• With mixture: Transformer learns from easy to hard!

• Learning sequentially from easy (1-hop) to hard tasks (4-hop).
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Remarks

Connection to k-sparse parity

• k-fold composition exhibits a statistical-computational gap.
Information theoretic sample complexity is n ≍ kN logN, while a
computationally efficient SQ learner requires n ≥ NΩ(k).

• Mirrors k-parity in d dimensions (requires dk samples/compute).

• In both settings, efficient gradient-based learning requires
curriculum/intermediate supervision
[Abbe et al., 2023, Wen et al., 2024, Kim and Suzuki, 2024].

• Unlike k-parity, k-fold composition cannot be expressed by a
shallow neural network.

Future directions

• How to learn general compositions?

• Learning a more efficient embedding.
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