The Key Ingredients for

Scaling Test-Time Compute
(@nd what is still missing)

Aviral Kumar

Carnegie Mellon University
School of Computer Science

Test-Time Scaling for

e

\
1

input problem (x)

arge

anguage Models

Test-Time Scaling for

input problem (x)

arge

anguage Models

Test-Time Scaling for Large Language Models

longer responses, “more thinking”, self-correction, etc.

,_——————————————————'————'————'——— —————————————————————

[———

__

input problem (x) input problem (x)

Finetuning LLMSs is Ciritical for Test-Time Scaling

Scaling LLM Test-Time Compute Optimally can

be More Effective than Scaling Model Parameters Key idea: Finetune LLMs
" to enable this behavior!

Charlie Snell*’ 1, Jaehoon Leez, Kelvin Xu® 2 and Aviral Kumar®
’Equal advising, luc Berkeley, 2Google DeepMind, *Work done during an internship at Google DeepMind

ko
S Sequential self-correction
i (Qu et al. 2024, Kumar et al. 2024)
£
E (N (N
C -
| g 1
| Base LLM | | Trained LLM ;
R parallel T sequential

A Family of Test-Time Scaling Algorithms

1 thOUght 1
____________ f

This training has

been done via:
.................. S « RLorSFT
T Dense vs sparse
1 .
oo supervision

« Different “types”
of training data

N\ J
L3 Majority vote

'

(a) Input-Output (c) Chain of Thought (c) Self Consistency

<
-
-
-

Prompting (I0) Prompting (CoT) with.CoT [CoT-SC) (d) Tree of Thoughts (ToT)

Training for test-time scaling: Train LLMs to implement these procedures

Yao et al. Tree of Thoughts. NeurlPS 2023.

’----------------

This Talk: Scaling Test-Time Compute

Desiderata and
Formulation

Learning “how?”: Train algorithm Ag(x) to spend extra test
compute, search over & discover the final answer.

full response y, evaluated by r(x, y)

initial more final
response Ag(x) answer
Ap(x)
Language Model
input tokens (x) extra compute tokens

e.g., self-verification of response

Summary: Pose it as an
adaptation problem

\----------------‘

’---------------~

Ingredient 1:
Dense rewards

Dense
1 reward
% \ outcome
= 0/1 reward
-0
< B
Test compute
budget (H)

Summary: More than
outcome reward needed

----------------’

’---------------~

Ingredient 2:
RL >> SFT
o RL g ? Gap grows
T y | asVH
3 |
i A A
0 A
» SFT/distillation

scaling test-time compute H,
#training data n = Q(H)

Summary: Use reward
signals for training

.---------------’

Yuxiao Qu Amrith Setlur Matthew Yang Nived Rajaraman
(PhD @ CMU) (PhD @ CMU) (MS @ CMU) (PhD @ Berkeley)

~ormulating a
L earning Problem

Formulation

ﬁ----_,

Main paper and blog post covered:

Scaling Test-Time Compute without Verification or RL is Suboptimal
Setlur, Rajaraman, Levine, Kumar. arXiv 2025

Optimizing Test-Time Compute requires Solving a Meta-RL Problem
Setlur, Qu, Yang, Zhang, Smith, Kumar. CMU MLD Blog, 2025.

10

Desiderata: What We Want at Test Time

[Easy input problems]

» Don’t spend too many tokens in arriving at the solution!
(Also referred to as “don’t overthink”)

[Hard input problems]

» Make “progress” on hard problems
» Explore multiple strategies
» Exploit some promising ones, retry in different ways if needed

11

Do Current Models Enjoy these Desiderata?

» Easy problems: Make sure to be efficient
Short answer: not rea//y_l » Hard problems: Make sure to make constant progress

. Full trace . g Partial trace Y

/ \ 1 \
i <think> i i <think> i
1 1 1
1 1 1 1
i Okay, so | have this i i Okay, so | have this i
- i problem where ... | | problem where ... i
,,—[Experiment setup] P 1P i
1 1 1 1 1
! ! i Wait, let’s parse the i i Time is up. i
I . . .1 I problem again ... l I Given the time I've ... [
i Chop the thinking block in i . i
I . ! I Alternativel haos it's | \ </think> |
I DeepSeek-R1 and ask it | e VO PEIMERSTES 1y A
I I i betterto ... !
i to produce best answer | :
') 1 But let me double-check i
[— 4 1
a i
i </think> i
1 1
E **Solution** i **Solution**
i| Step 1: ... x ! Step 1: ... V
l\ **Final Answer** Il **Final Answer™*

12
Qu*, Yang* et al. Optimizing Test-Time Compute via Meta Reinforcement Finetuning. arXiv 2025.

Do Current Models

Short answer: not really!

,,—[Experiment setup]
 Chop the thinking block in' &
' DeepSeek-R1 and ask it | G
i to produce best answer

—njoy these

Desiderata?

» Easy problems: Make sure to be token-efficient!
» Hard problems: Make sure to make constant progress

Majority voting
over solutions
P 2
Average accuracy
after different blocks
10 11 12 13
log tokens

Qu*, Yang* et al. Optimizing Test-Time Compute via Meta Reinforcement Finetuning. arXiv 2025.

Do Current Models Enjoy these Desiderata?

» Easy problems: Make sure to be token-efficient!
Short answer: not really! » Hard problems: Make sure to make constant progress

Majority voting
0.6, over solutions

4)

Takeaway: Can make progress
by implementing the “algorithm”
of running a simple majority
vote, but it does not.

_ J

accuracy
o o
N Ut

o
w

0.2

10 11 12 13
log tokens

Qu*, Yang* et al. Optimizing Test-Time Compute via Meta Reinforcement Finetuning. arXiv 2025.

Formulation: How to Satisfy These Desiderata

Let’s start from the final goal

mgx ‘< [“3ZN7T(-|X) r(x, Z)H

on test problems response sampled Total compute

from model (longer constraint per problem
than typical solution)

15
Qu*, Yang* et al. Optimizing Test-Time Compute via Meta Reinforcement Finetuning. arXiv 2025.

Formulation: How to Satisfy These Desiderata

¥ ¥

max DR [tZNW(,b{) r(x, Z)H s.t. Vx, 437T(,|x)\z\ < (Y

max Exop,... |Ezor(x [1(X,2)]] s.t. ...

Can optimize this via:
» RL (like DeepSeek-R1): outcome-reward RL
» SFT / STaR: collect data, filter by correctness, maximize likelihood

Qu*, Yang* et al. Optimizing Test-Time Compute via Meta Reinforcement Finetuning. arXiv 2025.

Why is Outcome

Allowed budget C,

7
é
7

AN

.

()
Easy problems: Both get

rewarded the same way)

Reward + Fixed Budget Bad”?

Allowed budget C,

T T T T T Hinnt

OO

(never on track)

r

.

Hard problems: Neither
trace gets rewarded

\

J

17

Qu*, Yang* et al. Optimizing Test-Time Compute via Meta Reinforcement Finetuning. arXiv 2025.

~ormulation: "Budget-Agnostic” LLMs

Key idea: Incentivize the LLM to make progress regardless of the compute budget

max Ex.p, .. |Ezur(x) [1(X,2)]] s.t. ...

Qu*, Yang* et al. Optimizing Test-Time Compute via Meta Reinforcement Finetuning. arXiv 2025.

Open Questions: Budget-Agnostic Training

H
T(Xa Z) + Z I'prg (X7 ZO:i)

1=1

,[Concrete design } ,[How to optimize }

What's a good design Should | use RL trainingi
. form,gtouse? § | orjustSFT/STaR? |

__

19

Designing
Dense Rewards

Ingredient 1:
Dense rewards

----_,

Main paper covered:

Optimizing Test-Time Compute via Meta Reinforcement Finetuning.
Qu*, Yang?, Setlur, Tunstall, Beeching, Salakhutdinov, Kumar. arXiv 2025

Also see: Rewarding Progress: Scaling Automated Process Verifiers for LLM Reasoning
Setlur, Nagpal, Fisch, Geng, Eisenstein, R. Agarwal, A. Agarwal, Berant, Kumar. ICLR 2025 (Spotlight).

20

l[dea: What is Good Progress on New Problems”?

Most progress (an oracle)

A

7))) Partial trace
2ol 1 N
5 8 | <think> i
g 8 a i
o I | Okay, so | have this :
9 n O | problem where ... i
b 1 1
A. O i i
I Time is up. i
< > | Given the time I've ... E
Test-time token budget (H) \ <fhink>

—————————————————————————

Majority
Voting

Solution
Step 1: ... V
Final Answer 21

Qu*, Yang* et al. Optimizing Test-Time Compute via Meta Reinforcement Finetuning. arXiv 2025.

l[dea: What is Good Progress on New Problems?

Most progress (an oracle)

—h

)

Probability
of success

Test-time token budget (H)

We want this area to be as low as possible!
(i.e., a notion of cumulative regret)

24
Qu*, Yang* et al. Optimizing Test-Time Compute via Meta Reinforcement Finetuning. arXiv 2025.

Inducing a Good Curve That Makes Progress

We do not know this oracle

Z Zo 713

“Episodes” in the test-time stream

Key idea: Can still push up the
performance after every episode!

Qu*, Yang* et al. Optimizing Test-Time Compute via Meta Reinforcement Finetuning. arXiv 2025.

25

Inducing a Good Curve That Makes Progress

We do not know this oracle

“Episodes” in the test-time stream

Key idea: Can still push up the
performance after every episode!

Qu*, Yang* et al. Optimizing Test-Time Compute via Meta Reinforcement Finetuning. arXiv 2025.

26

Inducing a Goo Curve That Makes Progress

We do not know this oracle

“Episodes” in the test-time stream

Key idea: Can still push up the
performance after every episode!

Qu*, Yang* et al. Optimizing Test-Time Compute via Meta Reinforcement Finetuning. arXiv 2025.

27

Concrete ldea: Progress Reward Design

Imax
7

ExnDirain,z~m(-|x)

i~ Dipain 2z~ () Z Vilogm(z;|x,20.;-1) - (X,)

B~ Divain | Bzor () (X, 2)]| s.t. ...

Convert to policy gradient

J

Add progress reward to the_ gradient

Z \z logﬂ(zj\x, ZOij—l) ' (T(X, Z) + Q- Tprg(Xa ZO:j))

J

Progress revygfd

Qu*, Yang* et al. Optimizing Test-Time Compute via Meta Reinforcement Finetuning. arXiv 2025.

Concrete ldea: Progress Reward Design

ExaDyvain iz (x) | O Vi logm(z5]%, 20:5-1) - (r(X,2) + & - prg (X, Z0:5))

J

So far, we were using accuracy of the model
that aims to write out the solution given the episodes so far

Progress reward

A “prover” policy that guesses the best answer

Tprg(Xa ZO:j) . J’P(M('|X7 ZO:j)) - JT(M("XyzO:j—l))

_

J

29
Qu*, Yang* et al. Optimizing Test-Time Compute via Meta Reinforcement Finetuning. arXiv 2025.

Concrete ldea: Progress Reward Design

lorg 1S the difference

‘// of these two accuracies

19 7 J /
7 1 / /
,I ,I ,[,,/
il
I/ /,/
] /’/
I' l:/
Z1, 495 Z3
X e -® ——@ > An on-policy rollout
N
AS\J
‘\\\\ \::E-' -------
\ ' Smmm———ms N TE=sg N
\\ _____ N\ x\\\\
N W

Qu*, Yang* et al. Optimizing Test-Time Compute via Meta Reinforcement Finetuning. arXiv 2025.

(Subset of) Results: Our Approach (MRT)

DeepScaleR-1.5B (RL’d) DeepSeek-R1-Distill-1.5B
(trained on hard AIME-difficulty problems) (trained on general NuminaMATH data)
g 5
©
(20 4
O T
S8 5 AMC 2023
S €
©
£ 02 AMC 2023
S ©
QO -
Q9o I— I— I— D
% o AIME 2024 AIME 2025 AIME 2024 AIME 2025
o -
X
-2 - Outcome-reward RL (GRPO)
- MRT (Our approach)
Qu*, Yang* et al. Optimizing Test-Time Compute via Meta Reinforcement Finetuning. arXiv 2025. 32

Luo*, Tan* et al. DeepScaleR: Surpassing O1-Preview with a 1.5B Model by Scaling RL. 2025.

Open Questions: Dense Rewards ----gzz=z-=======zmmm-- .

See: RL on Incorrect
Synthetic Data Scales the
Efficiency of LLM Math
_Reasoning 8x. NeurlPS 2024. |

---~

[Computational cost]

» Estimating dense rewards requires rollouts, which are costly.
» Can we get more juice out of the same total FLOPs??

[The choice of the prover policy]

. _ | See: Rewarding Progress: \
» The policy u determines the progress reward. | Scaling Automated Process i
> How should you choose this policy?? | Verifiers. ICLR2025.

[Other ways of implementing the same principle]

» Length curriculum and iterative training could be one other way
» Many open-source implementations kinda do this!

34
Qu*, Yang* et al. Optimizing Test-Time Compute via Meta Reinforcement Finetuning. arXiv 2025.

Ingredient 2:
RL >> SFT

Comparing RL to SFT
for test-time scaling

,—-----
ﬁ----_,

——————————————————————

Main paper covered:

« Scaling Test-Time Compute without Verification or RL is Suboptimal
Setlur, Rajaraman, Levine, Kumar. arXiv 2025

35

Goal: Scaling Test-Time Compute Effectively

For this analysis, we use a simple notion of binary 0/1 (step) progress

38

Theory: Using rewards via RL > cloning via SFT

When pre-trained LLM satisfies certain criteria

. Reward,(RL) — Reward,(SFT) > 0
A
A 1 I

I o 4 N\
SFT or verifier- Result 1: Gap between
free methods using rewards vs. not is

_ positive at big H values y

Rewardy

test-time compute H,
#training prompts n is arbitrary

39
Setlur et al. Scaling Test-Time Compute Without Verification or RL is Suboptimal. arXiv 2025.

Theory: Using rewards via RL > cloning via SFT

When pre-trained LLM satisfies certain criteria

A
& Reward,(RL) — Reward,,(SFT) = Q(VH)
T A o
5)
5 ' e : A
e SFT or verifier Result 2: If we scale test
free methods compute and number of
test-time compute . prompts, RL will do lot
#training prompts n = Q(H) _ better than SFT J

40
Setlur et al. Scaling Test-Time Compute Without Verification or RL is Suboptimal. arXiv 2025.

Criterion 1: Base LLM is Heterogeneous

[Intuition: Diversity of traces under dense reward, per problem]

—

All of these solve the problem...

— ..but make progress at different rates

Problem x

N

This hurts SFT
(or verifier-free) methods.

- H

Setlur et al. Scaling Test-Time Compute Without Verification or RL is Suboptimal. arXiv 2025.

41

Criterion 2: Base LLM is “Anticoncentrated”

[Intuition: High enough (constant) coverage of better traces]

Sample a bunch of traces and plot the reward histogram:

Anticoncentration:

/ >= constant probability in “better” regions.
This enables RL to

explore to find a good
policy with training.

Frequency

| |
Higher than mean
Setlur et al. Scaling Test-Time Compute Without Verification or RL is Suboptimal. arXiv 2025.

Reward

42

Theory: Putting It Together

[Informal] Separation b/w verifier-based & verifier-free

For the notion of step-level progress reward, when training with
compute-budget H and data size n, we see:

1. Lower bound for VF (SFT): SubOpty(VF) = Q (%) ,o =~ Q(H)

Variance of dense rewards
on a given problem

43
Setlur et al. Scaling Test-Time Compute Without Verification or RL is Suboptimal. arXiv 2025.

Theory: Putting It Together

[Informal] Separation b/w verifier-based & verifier-free

For the notion of step-level progress reward, when training with
compute-budget H and data size n, we see:

1. Lower bound for VF (SFT): SubOpt,(VF) = Q (%) ,o = Q(H)

2. Upper bound for VB (RL): SubOpt,(VB) =0 (- 'ﬂ)

Chase N
Anti-concentration Error in learning
probability mass the reward signal

44
Setlur et al. Scaling Test-Time Compute Without Verification or RL is Suboptimal. arXiv 2025.

Theory: Putting It Together

[Informal] Separation b/w verifier-based & verifier-free

For the notion of step-level progress reward, when training with
compute-budget H and data size n, we see:

1. Lower bound for VF (SFT): SubOpt,(VF) = Q (%) ,o= Q(H)

2. Upper bound for VB (RL): SubOpt,(VB) =0 (: 'ﬂ)

Chase N

3. Gap b/w RL and SFT scales as () (%) . Setn=0(H).

Setlur et al. Scaling Test-Time Compute Without Verification or RL is Suboptimal. arXiv 2025.

45

Results: Scaling Data and Compute Both

Didactic task (GPT2-xI) MATH 500 (3B)
0.80 2 0.40 Verifier-free (SFT)
' Verifier-based (BoN) a
A
A 42%
0.65 | ° 037 20%
| 37% To1%
| gt 0.34 9% |
0.31
—e— V' (SFT) 70 (RL) Super linear increase in gap
0.35 0.28
25 2% 2> 26 of 8 DY 29 210 o1l o2 213
Horizon H (test compute), data size n = H test compute (tokens), n = H

[Finding: Gap between verifier-based and verifier-free methods increases]

46

Setlur et al. Scaling Test-Time Compute Without Verification or RL is Suboptimal. arXiv 2025.

Results: Scaling Compute, Not

MATH 500
+00 0.64
0.90 0.54
>
© 5 0.44
3 0.80 =
S :
a < 0.34
0.70
sl: Verifier-free 0.24
Distillation
0.60 Verifier-based 0.14
512 1024 2048 4096 1024

test compute (tokens)

Data (w/ s1-32

AIME24

sl: Verifier-free
Distillation

Verifier-based

4096 16384
test compute (tokens)

[Finding: Gap between using reward verification and SFT is positive]

Setlur et al. Scaling Test-Time Compute Without Verification or RL is Suboptimal. arXiv 2025.

47

RL Training

-----—I

lakeaways

,_-----

——————————————————————

»Key idea: RL (using reward signal) scales test-time compute
better than SFT, with a notion of dense rewards.

»Main findings:
»\When data is scaled linearly in H, performance gap grows
»\When data is kept the same, RL performs better still.
»Base LLMs tend to be heterogeneous & anti-concentrated.

49

Thank You! Questions?

Scaling Test-Time Compute Without Verification
or RL is Suboptimal

Amrith Setlur!, Nived Rajaraman?, Sergey Levine® and Aviral Kumar!
LCarnegie Mellon University, 2UC Berkeley

Optimizing Test-Time Compute via Meta
Reinforcement Fine-Tuning

Yuxiao Qu'!, Matthew Y. R. Yang'!, Amrith Setlur!, Lewis Tunstall?>, Edward Emanuel Beeching?, Ruslan

Salakhutdinov' and Aviral Kumar'
1Carnegie Mellon University, 2Hugging Face, “Equal contribution

50

’----------------

summary: Scaling Test-Time Compute

----------------------- N ,’----------------------\ ,’----------------------\
: \) \ \
Budget-agnostic i | MRT Incorporates i ' RL scales much i

- | |
formulation ! denserewards ! Dbetter that SFT |
11 ! 1

| |
e e oot s sy 1§ Dense | | . i
full response y, evaluated by r(x, y) : i 1 reward : i ’ :
initial more inal I o Al‘ I
respor:se Ag(x) anfswelar i : g \ Outcome : : -E RL i Gap g}OWS :
Aol | : = 0/1 reward | 1 E o | asvH !
i1 =0 - | o I
Language Model : : : : 4 5 - :
""""" A ! < > ! « SFT/distillation |
(L I B I Test compute g I
input tokens (x) extra compute tokens : I budget F(:)H) : 1 scaling test-time compute H, :
e.g., self-verification of response : i : i #training data n = Q(H) :
Summary: Budget- i I Summary: Use dense E I Summary: Use reward E
agnostic training ! l\ rewards w/ progress | I\ signals with RL / verifiers !
e e e e o — — — — — ———— e N e e — e — — — — ——————_——_——_——_——_—_ e 2 N e e o — — — e — — ————_———_— R4

