
The Key Ingredients for
Scaling Test-Time Compute

(and what is still missing)

Aviral Kumar

1

Test-Time Scaling for Large Language Models

prediction

2

Language model

input problem (x)

Test-Time Scaling for Large Language Models

prediction

3

Bigger language model

input problem (x)

Test-Time Scaling for Large Language Models

prediction

4

input problem (x)

Language model

longer responses, “more thinking”, self-correction, etc.

Bigger language model

input problem (x)

Finetuning LLMs is Critical for Test-Time Scaling

prediction

5

Base LLM

…

Ra
nk

 u
si

ng
 a

 v
er

ifi
er

Trained LLM

…

Sequential self-correction
(Qu et al. 2024, Kumar et al. 2024)

parallel sequential

Key idea: Finetune LLMs
to enable this behavior!

A Family of Test-Time Scaling Algorithms

6
Yao et al. Tree of Thoughts. NeurIPS 2023.

Training for test-time scaling: Train LLMs to implement these procedures

This training has
been done via:
• RL or SFT
• Dense vs sparse

supervision
• Different “types”

of training data
• ….

This Talk: Scaling Test-Time Compute

Summary: Pose it as an
adaptation problem

Desiderata and
Formulation

7

Summary: Use reward
signals for training

Ingredient 2:
RL >> SFT

Summary: More than
outcome reward needed

Ingredient 1:
Dense rewards

8

Yuxiao Qu
(PhD @ CMU)

Amrith Setlur
(PhD @ CMU)

Matthew Yang
(MS @ CMU)

Nived Rajaraman
(PhD @ Berkeley)

Formulating a
Learning Problem

Main paper and blog post covered:
• Scaling Test-Time Compute without Verification or RL is Suboptimal

Setlur, Rajaraman, Levine, Kumar. arXiv 2025

• Optimizing Test-Time Compute requires Solving a Meta-RL Problem
Setlur, Qu, Yang, Zhang, Smith, Kumar. CMU MLD Blog, 2025.

10

Formulation

11

Desiderata: What We Want at Test Time

Ø Don’t spend too many tokens in arriving at the solution!
(Also referred to as “don’t overthink”)

Easy input problems

Hard input problems

Ø Make “progress” on hard problems
Ø Explore multiple strategies
Ø Exploit some promising ones, retry in different ways if needed

12

Do Current Models Enjoy these Desiderata?
Ø Easy problems: Make sure to be efficient
Ø Hard problems: Make sure to make constant progressShort answer: not really!

Qu*, Yang* et al. Optimizing Test-Time Compute via Meta Reinforcement Finetuning. arXiv 2025.

Experiment setup

Chop the thinking block in
DeepSeek-R1 and ask it
to produce best answer

13

Do Current Models Enjoy these Desiderata?
Ø Easy problems: Make sure to be token-efficient!
Ø Hard problems: Make sure to make constant progressShort answer: not really!

Majority voting
over solutions

Average accuracy
after different blocks

Experiment setup

Chop the thinking block in
DeepSeek-R1 and ask it
to produce best answer

Qu*, Yang* et al. Optimizing Test-Time Compute via Meta Reinforcement Finetuning. arXiv 2025.

14

Do Current Models Enjoy these Desiderata?
Ø Easy problems: Make sure to be token-efficient!
Ø Hard problems: Make sure to make constant progressShort answer: not really!

Majority voting
over solutions

Average accuracy
after different blocks Takeaway: Can make progress

by implementing the “algorithm”
of running a simple majority

vote, but it does not.

Qu*, Yang* et al. Optimizing Test-Time Compute via Meta Reinforcement Finetuning. arXiv 2025.

15

Formulation: How to Satisfy These Desiderata

Let’s start from the final goal

on test problems response sampled
from model (longer
than typical solution)

Total compute
constraint per problem

Qu*, Yang* et al. Optimizing Test-Time Compute via Meta Reinforcement Finetuning. arXiv 2025.

16

Formulation: How to Satisfy These Desiderata

But this compute
budget is fixed!

Can optimize this via:
Ø RL (like DeepSeek-R1): outcome-reward RL
Ø SFT / STaR: collect data, filter by correctness, maximize likelihood

Qu*, Yang* et al. Optimizing Test-Time Compute via Meta Reinforcement Finetuning. arXiv 2025.

17

Why is Outcome Reward + Fixed Budget Bad?
Allowed budget C0 Allowed budget C0

Easy problems: Both get
rewarded the same way

Hard problems: Neither
trace gets rewarded

(never on track)

Qu*, Yang* et al. Optimizing Test-Time Compute via Meta Reinforcement Finetuning. arXiv 2025.

18

Formulation: “Budget-Agnostic” LLMs
Key idea: Incentivize the LLM to make progress regardless of the compute budget

Some segment of
the entire trace

Some dense reward to incentivize progress

Qu*, Yang* et al. Optimizing Test-Time Compute via Meta Reinforcement Finetuning. arXiv 2025.

19

Open Questions: Budget-Agnostic Training

Concrete design

What’s a good design
for 𝑟!"# to use?

How to optimize

Should I use RL training
or just SFT / STaR?

Designing
Dense Rewards

20

Ingredient 1:
Dense rewards

Main paper covered:
• Optimizing Test-Time Compute via Meta Reinforcement Finetuning.

Qu*, Yang*, Setlur, Tunstall, Beeching, Salakhutdinov, Kumar. arXiv 2025

• Also see: Rewarding Progress: Scaling Automated Process Verifiers for LLM Reasoning
Setlur, Nagpal, Fisch, Geng, Eisenstein, R. Agarwal, A. Agarwal, Berant, Kumar. ICLR 2025 (Spotlight).

21

Idea: What is Good Progress on New Problems?

Test-time token budget (H)

Pr
ob

ab
ilit

y
of

 s
uc

ce
ss

0

1

Most progress (an oracle)

Qu*, Yang* et al. Optimizing Test-Time Compute via Meta Reinforcement Finetuning. arXiv 2025.

24

Idea: What is Good Progress on New Problems?
Pr

ob
ab

ilit
y

of
 s

uc
ce

ss

0

1

Most progress (an oracle)

We want this area to be as low as possible!
(i.e., a notion of cumulative regret)

Qu*, Yang* et al. Optimizing Test-Time Compute via Meta Reinforcement Finetuning. arXiv 2025.

Test-time token budget (H)

25

Inducing a Good Curve That Makes Progress

“Episodes” in the test-time stream

re
w

ar
d

0

1

We do not know this oracle

Key idea: Can still push up the
performance after every episode!

Qu*, Yang* et al. Optimizing Test-Time Compute via Meta Reinforcement Finetuning. arXiv 2025.

26

Inducing a Good Curve That Makes Progress

“Episodes” in the test-time stream

re
w

ar
d

0

1

We do not know this oracle

Key idea: Can still push up the
performance after every episode!

Qu*, Yang* et al. Optimizing Test-Time Compute via Meta Reinforcement Finetuning. arXiv 2025.

27

Inducing a Good Curve That Makes Progress

“Episodes” in the test-time stream

re
w

ar
d

0

1

We do not know this oracle

Key idea: Can still push up the
performance after every episode!

Qu*, Yang* et al. Optimizing Test-Time Compute via Meta Reinforcement Finetuning. arXiv 2025.

28

Concrete Idea: Progress Reward Design

c

Qu*, Yang* et al. Optimizing Test-Time Compute via Meta Reinforcement Finetuning. arXiv 2025.

Convert to policy gradientover episodes

c Add progress reward to the gradient

Progress reward

29

Concrete Idea: Progress Reward Design

A “prover” policy that guesses the best answer

Qu*, Yang* et al. Optimizing Test-Time Compute via Meta Reinforcement Finetuning. arXiv 2025.

So far, we were using accuracy of the model
that aims to write out the solution given the episodes so far

Progress reward

Concrete Idea: Progress Reward Design

An on-policy rollout

rprg is the difference
of these two accuracies

𝜇

Qu*, Yang* et al. Optimizing Test-Time Compute via Meta Reinforcement Finetuning. arXiv 2025.

32

-2
-1
0
1
2
3
4
5

%
ag

e
pe

rf
or

m
an

ce
 g

ai
ns

ov

er
 b

as
e

m
od

el

Qu*, Yang* et al. Optimizing Test-Time Compute via Meta Reinforcement Finetuning. arXiv 2025.
Luo*, Tan* et al. DeepScaleR: Surpassing O1-Preview with a 1.5B Model by Scaling RL. 2025.

(Subset of) Results: Our Approach (MRT)
DeepSeek-R1-Distill-1.5B

(trained on general NuminaMATH data)
DeepScaleR-1.5B (RL’d)
(trained on hard AIME-difficulty problems)

AIME 2024 AIME 2025

AMC 2023

AMC 2023

AIME 2024 AIME 2025

Outcome-reward RL (GRPO)
MRT (Our approach)

34

Open Questions: Dense Rewards

Ø Estimating dense rewards requires rollouts, which are costly.
Ø Can we get more juice out of the same total FLOPs??

Computational cost

The choice of the prover policy
Ø The policy 𝜇 determines the progress reward.

Ø How should you choose this policy??

Other ways of implementing the same principle

Ø Length curriculum and iterative training could be one other way
Ø Many open-source implementations kinda do this!

See: RL on Incorrect
Synthetic Data Scales the

Efficiency of LLM Math
Reasoning 8x. NeurIPS 2024.

See: Rewarding Progress:
Scaling Automated Process

Verifiers. ICLR 2025.

Qu*, Yang* et al. Optimizing Test-Time Compute via Meta Reinforcement Finetuning. arXiv 2025.

Comparing RL to SFT
for test-time scaling

35

Ingredient 2:
RL >> SFT

Main paper covered:
• Scaling Test-Time Compute without Verification or RL is Suboptimal

Setlur, Rajaraman, Levine, Kumar. arXiv 2025

38

Goal: Scaling Test-Time Compute Effectively
Good performance as we allow the model to use more compute

For this analysis, we use a simple notion of binary 0/1 (step) progress

39

Theory: Using rewards via RL > cloning via SFT

When pre-trained LLM satisfies certain criteria

Setlur et al. Scaling Test-Time Compute Without Verification or RL is Suboptimal. arXiv 2025.

test-time compute 𝐻,
#training prompts 𝑛 is arbitrary

Re
w

ar
d H

SFT or verifier-
free methods

RL or verifier-
based methods RewardH 𝑅𝐿 − RewardH 𝑆𝐹𝑇 > 0

Result 1: Gap between
using rewards vs. not is
positive at big H values

40

Theory: Using rewards via RL > cloning via SFT

When pre-trained LLM satisfies certain criteria

Setlur et al. Scaling Test-Time Compute Without Verification or RL is Suboptimal. arXiv 2025.

test-time compute 𝐻,
#training prompts 𝑛 = Ω(𝐻)

Re
w

ar
d H

SFT or verifier-
free methods

RewardH 𝑅𝐿 − RewardH 𝑆𝐹𝑇 = Ω(𝐻)

Result 2: If we scale test
compute and number of
prompts, RL will do lot

better than SFT

41

Criterion 1: Base LLM is Heterogeneous
Intuition: Diversity of traces under dense reward, per problem

All of these solve the problem…

..but make progress at different rates

Pr
ob

le
m

 x

H

This hurts SFT
(or verifier-free) methods.

Setlur et al. Scaling Test-Time Compute Without Verification or RL is Suboptimal. arXiv 2025.

42

Criterion 2: Base LLM is “Anticoncentrated”
Intuition: High enough (constant) coverage of better traces

Reward

Fr
eq

ue
nc

y

Sample a bunch of traces and plot the reward histogram:

Anticoncentration:
>= constant probability in “better” regions.

This enables RL to
explore to find a good

policy with training.

Setlur et al. Scaling Test-Time Compute Without Verification or RL is Suboptimal. arXiv 2025.
Higher than mean

43

Theory: Putting It Together
[Informal] Separation b/w verifier-based & verifier-free
For the notion of step-level progress reward, when training with
compute-budget H and data size n, we see:

1. Lower bound for VF (SFT): SubOptH(VF) = Ω !
"
, 𝜎 ≈ Ω 𝐻

Setlur et al. Scaling Test-Time Compute Without Verification or RL is Suboptimal. arXiv 2025.

Variance of dense rewards
on a given problem

44

Theory: Putting It Together
[Informal] Separation b/w verifier-based & verifier-free

For the notion of step-level progress reward, when training with
compute-budget H and data size n, we see:

1. Lower bound for VF (SFT): SubOptH(VF) = Ω !
"
, 𝜎 ≈ Ω 𝐻

2. Upper bound for VB (RL): SubOptH(VB) = O #
$!"#$

⋅ %
"

Setlur et al. Scaling Test-Time Compute Without Verification or RL is Suboptimal. arXiv 2025.

Anti-concentration
probability mass

Error in learning
the reward signal

45

Theory: Putting It Together
[Informal] Separation b/w verifier-based & verifier-free
For the notion of step-level progress reward, when training with
compute-budget H and data size n, we see:

1. Lower bound for VF (SFT): SubOptH(VF) = Ω !
"
, 𝜎 ≈ Ω 𝐻

2. Upper bound for VB (RL): SubOptH(VB) = O #
$!"#$

⋅ %
"

3. Gap b/w RL and SFT scales as Ω %
"
.

Setlur et al. Scaling Test-Time Compute Without Verification or RL is Suboptimal. arXiv 2025.

Set 𝑛 = O 𝐻 .

46

Results: Scaling Data and Compute Both

Setlur et al. Scaling Test-Time Compute Without Verification or RL is Suboptimal. arXiv 2025.

MATH 500 (3B)Didactic task (GPT2-xl)

Finding: Gap between verifier-based and verifier-free methods increases

47

Results: Scaling Compute, Not Data (w/ s1-32B)

Finding: Gap between using reward verification and SFT is positive

Setlur et al. Scaling Test-Time Compute Without Verification or RL is Suboptimal. arXiv 2025.

ØKey idea: RL (using reward signal) scales test-time compute
better than SFT, with a notion of dense rewards.

ØMain findings:
ØWhen data is scaled linearly in H, performance gap grows
ØWhen data is kept the same, RL performs better still.
ØBase LLMs tend to be heterogeneous & anti-concentrated.

49

TakeawaysRL Training

50

Thank You! Questions?

Summary: Scaling Test-Time Compute

Summary: Budget-
agnostic training

Budget-agnostic
formulation

51

Summary: Use reward
signals with RL / verifiers

RL scales much
better that SFT

Summary: Use dense
rewards w/ progress

MRT incorporates
dense rewards

