Predicting & Optimizing ML Training

Simons “Future of LLMs"” Workshop

April 3,2025

Collaborators

7 /G

Logan Engstrom Ben Chen Axel Feldmann Billy Moses Aleksander Madry

Collaborators

Logan Engstrom Ben Chen Axel Feldmann Billy Moses Aleksander Madry

*

Graduating now!

Collaborators

/ Graduating now (from undergrad)!

Logan Engstrom Ben Chen Axel Feldmann Billy Moses Aleksander Madry

*

Graduating now!

Collaborators

/ Graduating now (from undergrad)!

Logan Engstrom Ben Chen Axel Feldmann Billy Moses

* Optimizing ML Training with Metagradient Descent
Graduating now!

Logan Engstrom* !, Andrew Ilyas* 2", Benjamin Chen*?,
Axel Feldmann! , William Moses?, Aleksander Ma;dry1

*Equal contribution ~ MIT, 2Stanford, *UIUC

Motivation

Training requires many design choices. Making the right choice is hard!

Motivation

Training requires many design choices. Making the right choice is hard!

Model architecture

=TS

Motivation

Training requires many design choices. Making the right choice is hard!

Model architecture Hyperparameters

525 000!

Motivation

Training requires many design choices. Making the right choice is hard!

Model architecture Hyperparameters Training dataset

1 ! 0%'@
p[REE 1000 =

Motivation

Training requires many design choices. Making the right choice is hard!

Model architecture Hyperparameters Training dataset

Sy,

Fundamental Q: Can we predict and the effect of these choices?
E.Q.:

The dream

A framework for optimizing and predicting the
effect of design choices on model training

Example: Training data

Optimizing: Training data curation

Optimizing: Training data curation

Scraped internet data

Optimizing: Training data curation

Scraped internet data +

Optimizing: Training data curation

Scraped internet data + >

Optimizing: Training data curation

Scraped internet data + >

Optimizing: Training data curation

electroniccigarettereviewed.info

prestigedentalproducts.com
brain-dumps.us

Scraped internet data + >

http://ufdc.ufl.edu/AA00010883/00095

ac omplishmnl 'o the mi alon and welR | the men. U (SR 600-17b-I) are
clear enough and cover everybody. iM-be UelrU d at home first.
IDretewr.. NatM WLWr Of Panama. B Aleol B -w s sin,ambas to V). ..
&iZ'" - e A AN A - 1,70 " 1 the eye to
those Europe. like an orlontal: Mrt of the Ch-. te a ter ii wre n capw. to ".
%e anti-trust sutt "I made let of money, but . mg C1 'Y ay With ne shot of
a Lot d Aieles mining and. petrice Wymore is fac9 aur rtl 1 Dalton. Gr at
gag tudS 't come! Mand Jobaim AlMauccessful- M ." y uw? ie House
ar&rkd, "Hold A mtllon yeas? A trillion? t Arrival." Or are they ageless?

Optimizing: Training

electroniccigarettereviewed.info
prestigedentalproducts.com
brain-dumps.us

Scraped internet data + >

http://ufdc.ufl.edu/AA00010883/00095

ac omplishmnl 'o the mi alon and welR | the men. U (SR 600-17b-I) are
clear enough and cover everybody. iM-be UelrU d at home first.
IDretewr.. NatM WLWr Of Panama. B Aleol B -w s sin,ambas to V). ..
&iZ'" - e A AN A - 1,70 " 1 the eye to
those Europe. like an orlontal: Mrt of the Ch-. te a ter ii wre n capw. to ".
%e anti-trust sutt "I made let of money, but . mg C1 'Y ay With ne shot of
a Lot d Aieles mining and. petrice Wymore is fac9 aur rtl 1 Dalton. Gr at
gag tudS 't come! Mand Jobaim AlMauccessful- M ." y uw? ie House
ar&rkd, "Hold A mtllon yeas? A trillion? t Arrival." Or are they ageless?

Optimizing: Training

electroniccigarettereviewed.info

prestigedentalproducts.com
brain-dumps.us

Scraped internet data +) | 3'

Much of the internet is low-quality: what data should we train on?

Predicting: Training data attribution

Predicting: Training data attribution

Model

ot

Predicting: Training data attribution

Model Predict

% » ‘%;m

Predicting: Training data attribution

o
Model Predict Whah|s -

-

Predicting: Training data attribution

Model Predict

% » ‘%;m

Predicting: Training data attribution

s
Model Predict What is this"

-

Predicting: Training data attribution

. . o

.,
+ % » ‘%'

Predicting: Training data attribution

. . o

.,
+ % » ‘%'

"What examples in the training data caused this behavior?"

Predicting: Training data attribution

What is this?

Data Model Predict

.,
+ % » ‘%'

"What examples in the training data caused this behavior?"

predict

Full problem statement

Problem: Metaparameter selection

Problem: Metaparameter selection

|dea: write model output as a direct function of training setup (“metaparameter”)

Problem: Metaparameter selection

|dea: write model output as a direct function of training setup (“metaparameter”)

Metaparameter
ze7Z cCR?

Problem: Metaparameter selection

|dea: write model output as a direct function of training setup (“metaparameter”)

Metaparameter
ze7Z cCR?

Problem: Metaparameter selection

|dea: write model output as a direct function of training setup (“metaparameter”)

Training routine

A 1 — O _
Metaparameter Trained model
#
zeZ cCR? 0 = A(z)

Problem: Metaparameter selection

|dea: write model output as a direct function of training setup (“metaparameter”)

Training routine

A 1 — O _
Metaparameter Trained model
#
zeZ cCR? 0 = A(z)

Problem: Metaparameter selection

|dea: write model output as a direct function of training setup (“metaparameter”)

Training routine Output function

A 1 — O _ .0 ->R |
Metaparameter Trained model Final output
#
zeZ cCR? 0 = o(z) D (A (z))

Problem: Metaparameter selection

|dea: write model output as a direct function of training setup (“metaparameter”)

Training routine Output function

A 1 — O _ .0 ->R |
Metaparameter Trained model Final output
#
zeZ cCR? 0 = o(z) D (A (z))

Problem: Metaparameter selection

|dea: write model output as a direct function of training setup (“metaparameter”)

Training routine Output function
A7 - 0O | .0 ->R .
Metaparameter Trained model Final output
ﬁ
zeZ cCR? 0 = o(z) D (A (z))

Goals:

Problem: Metaparameter selection

|dea: write model output as a direct function of training setup (“metaparameter”)

Training routine Output function
A7 - 0O | .0 ->R .
Metaparameter Trained model Final output
ﬁ
zeZ cCR? 0 = o(z) D (A (z))

Goals:

Find metaparameter z* = arg min ¢(&f(z)) minimizing output
Z

Problem: Metaparameter selection

|dea: write model output as a direct function of training setup (“metaparameter”)

Training routine Output function
A7 - 0O | .0 ->R .
Metaparameter Trained model Final output
ﬁ
zeZ cCR? 0 = o(z) D (A (z))

Goals:

Find metaparameter z* = arg min ¢(&f(z)) minimizing output
Z

Prediction: Find f(z) ~ P(f(z)), direct model output estimator

Problem: Metaparameter selection

|dea: write model output as a direct function of training setup (“metaparameter”)

Training routine Output function
A7 - 0O | .0 ->R .
Metaparameter Trained model Final output
ﬁ
zeZ cCR? 0 = o(z) D (A (z))

Goals:

Find metaparameter z* = arg min ¢(&f(z)) minimizing output
Z

Prediction: Find f(z) ~ P(f(z)), direct model output estimator

Captures data & attribution but also many established ML challenges

Problem: Metaparameter selection

|dea: write model output as a direct function of training setup (“metaparameter”)

Training routine Output function

A 1 — O _ .0 ->R |
Metaparameter Trained model Final output
#
zeZ cCR? 0 = o(z) D (A (z))

Problem: Metaparameter selection

ldea: write model output as a direct function of training setup (“metaparameter”)

Training routine Output function

A 1 — O _ .0 ->R |
Metaparameter Trained model Final output
#
zeZ cCR? 0 = o(z) D (A (z))

Problem: Metaparameter selection

ldea: write model output as a direct function of training setup (“metaparameter”)

Training routine Output function

A 1 — O _ .0 ->R |
Metaparameter Trained model Final output
#
zeZ cCR? 0 = o(z) D (A (z))

Problem: Metaparameter selection

|dea: write model output as a direct function of training setup (“metaparameter”)

The aspect(s) of the

training setup that Training routine Output function
we want to study oA 7 — O ¢ O o> R
Metaparameter Trained model Final output
#
z e /1 C Rd Map from metaparameter 0 = Q[(Z) The loss/target ¢(:Q[(Z))
to model, all else fixed metric of interest

Model trained on

Data selection selected data

This will be the output of the model trained on z

]
]
i
Might be the loss on a specific fixed target :
example, or performance on a fixed test set r

]

Problem: Metaparameter selection

ldea: write model output as a direct function of training setup (“metaparameter”)

Training routine Output function
A L — O _ $:0->R .
Metaparameter Trained model Final output
ﬁ
zeZ cCR? 0 = o(z) D (A (z))

Goal (Data curation)

Find the selection Z that minimizes the resulting
model’s test loss

Problem: Metaparameter selection

|dea: write model output as a direct function of training setup (“metaparameter”)

The aspect(s) of the

training setup that Training routine Output function
we want to study oA 7 — O ¢ 0 > R
Metaparameter Trained model Final output
#
A=V e Rd Map from metaparameter 0 = Qf(Z) The loss/target ¢(<Q[(Z))
to model, all else fixed metric of interest

Model trained on

Data selection selected data

Final model output

Goal (Data curation) Goal (Data attribution)

Find the selection Z that minimizes the resulting Predict how changing the selection z will change
model’s test loss resulting model’s output

Roadmap

Main idea: The metagradient
Prequel: Two challenges

Looking forward

Roadmap

Main idea: The metagradient
Prequel: Two challenges

Looking forward

Main idea: The metagradient

Z 0= d(z) Pp(0)

Training Trained Model
setup model output

Main idea: The metagradient

In many cases, metaparameter Z is a continuous variable

Z 0= d(z) Pp(0)

Training Trained Model
setup model output

Main idea: The metagradient

In many cases, metaparameter Z is a continuous variable

We will show how to compute and use the metagradient:

Z 0= d(z) Pp(0)

Training Trained Model
setup model output

Main idea: The metagradient

In many cases, metaparameter Z is a continuous variable

We will show how to compute and use the metagradient:

Metagradient V, (< (z))

I B N .

- pally
- ~
- "~
- ~
- ~
e ” ~.
S N

Z 0 = 9 (z)

Training Trained
setup model

Main idea: The metagradient

In many cases, metaparameter Z is a continuous variable

We will show how to compute and use the metagradient:

Metagradient V, (< (z))

I B N .

- y
- - .
- "~
- ~
- ~
e ” ~.
S N

Z 0 = 9 (z)
Training Trained
setup model

Cost: In practice, "only” 3-5x the cost of model training!

Main idea: The metagradient

Metagradients offer a powerful way to
and predict (aspects of) model behavior

Optimizing with metagradients

Optimizing with metagradients

Given a task:

Optimizing with metagradients

Given a task:

1. Rewrite problem in terms of model outputs (as a function of a metaparameter)

Optimizing with metagradients

Given a task:

1. Rewrite problem in terms of model outputs (as a function of a metaparameter)

Optimizing with metagradients

Given a task:

1. Rewrite problem in terms of model outputs (as a function of a metaparameter)

2. Solve via (meta)gradient descent:

Optimizing with metagradients
Given a task:

1. Rewrite problem in terms of model outputs (as a function of a metaparameter)

2. Solve via (meta)gradient descent:
A. Pick a starting z\¥) and number of steps T

Optimizing with metagradients

Given a task:

1. Rewrite problem in terms of model outputs (as a function of a metaparameter)

2. Solve via (meta)gradient descent:
A. Pick a starting z\¥) and number of steps T
B. Fori =1...T :Compute g := Vng(ﬁi(z(i_l))) and descend

Optimizing with metagradients

Given a task:

1. Rewrite problem in terms of model outputs (as a function of a metaparameter)

2. Solve via (meta)gradient descent:
A. Pick a starting z\¥) and number of steps T
B. Fori =1...T :Compute g := Vng(ﬁi(z(i_l))) and descend

Task: Data selection

Task: Data selection

Choose train subset

VKX

Task: Data selection

Choose train subset Train a model

KX — %

Task: Data selection

Measure loss on a
target/test set:

TN

Choose train subset Train a model

cwx - 5 -

Task: Data selection

Choose train subset Train a model Measure loss on a
target/test set:

Goal: Select the training data subset minimizing loss on the target set

Task: Data selection

Choose train subset Train a model Measure loss on a
target/test set:

/M’x — % — TR

Goal: Select the training data subset minimizing loss on the target set

Equivalent goal: Find the training data weighting minimizing loss on the target set

Task: Data selection

Choose train subset Train a model Measure loss on a
target/test set:

/M’x — % — TR

Goal: Select the training data subset minimizing loss on the target set

Equivalent goal: Find the training data weighting minimizing loss on the target set

Task: Data selection

Choose train subset Train a model Measure loss on a
target/test set:

7M X — % —> TR

Goal: Select the training data subset minimizing loss on the target set

Equivalent goal: Find the training data weighting minimizing loss on the target set

Increasingly recognized as a critical step in large-scale ML pipeline

Task: Selecting CLIP data

Approach

Task: Selecting CLIP data

Approach

N

Metaparameter Z: vector Z € R st., Z; is the weight on i-th training example

Task: Selecting CLIP data

Approach

N

Metaparameter Z: vector Z € R st., Z; is the weight on i-th training example

Learning algorithm &/: standardized CLIP training routine

Task: Selecting CLIP data

Approach

N

Metaparameter Z: vector Z € R st., Z; is the weight on i-th training example
Learning algorithm &/: standardized CLIP training routine

Output function: Loss function Liy 4 evaluated on target tasks

Task: Selecting CLIP data

Approach

N

Metaparameter Z: vector Z € R st., Z; is the weight on i-th training example
Learning algorithm &/: standardized CLIP training routine

Output function: Loss function Liy 4 evaluated on target tasks

Repeat, starting fromz = 1y;

Task: Selecting CLIP data

Approach

N

Metaparameter Z: vector Z € R st., Z; is the weight on i-th training example
Learning algorithm &/: standardized CLIP training routine

Output function: Loss function Liy 4 evaluated on target tasks

Repeat, starting fromz = 1y;
1. Train model weighting the training points by z

Task: Selecting CLIP data

Approach

N

Metaparameter Z: vector Z € R st., Z; is the weight on i-th training example
Learning algorithm &/: standardized CLIP training routine

Output function: Loss function Liy 4 evaluated on target tasks

Repeat, starting fromz = 1y;
1. Train model weighting the training points by z
2. Calculate metagradientg = V_¢(A(z))

Task: Selecting CLIP data

Approach

N

Metaparameter Z: vector Z € R st., Z; is the weight on i-th training example
Learning algorithm &/: standardized CLIP training routine

Output function: Loss function Liy 4 evaluated on target tasks

Repeat, starting fromz = 1y;
1. Train model weighting the training points by z

2. Calculate metagradientg = V_¢(A(z))
3. Updatez < z — sign(g)

Task: Selecting CLIP data

Approach

N

Metaparameter Z: vector Z € R st., Z; is the weight on i-th training example
Learning algorithm &/: standardized CLIP training routine

Output function: Loss function Liy 4 evaluated on target tasks

Repeat, starting fromz = 1y;
1. Train model weighting the training points by z

2. Calculate metagradientg = V_¢(A(z))
3. Updatez < z — sign(g)

Task: Selecting CLIP data

Setup

Task: Selecting CLIP data

Setup

DATACOMP:
In search of the next generation of multimodal datasets

Samir Yitzhak Gadre*2, Gabriel Ilharco*!, Alex Fang*!, Jonathan Hayase',
Georgios Smyrnis®, Thao Nguyen', Ryan Marten”-°, Mitchell Wortsman',
Dhruba Ghosh!, Jieyu Zhang', Eyal Orgad®, Rahim Entezari'’, Giannis Daras®,
Sarah Pratt!, Vivek Ramanujan!, Yonatan Bitton'!, Kalyani Marathe!,
Stephen Mussmann', Richard Vencu®, Mehdi Cherti®®, Ranjay Krishna®,
Pang Wei Koh'''2, Olga Saukh'?, Alexander Ratner'''2, Shuran Song?,
Hannaneh Hajishirzi':", Ali Farhadi', Romain Beaumont®,

Sewoong Oh', Alex Dimakis®, Jenia Jitsev®?®,

Yair Carmon?®, Vaishaal Shankar*, Ludwig Schmidt'-®”

Task: Selecting CLIP data

Setup

DATACOMP:
In search of the next generation of multimodal datasets

Samir Yitzhak Gadre*2, Gabriel Ilharco*!, Alex Fang*!, Jonathan Hayase',
Georgios Smyrnis®, Thao Nguyen', Ryan Marten”-°, Mitchell Wortsman',
Dhruba Ghosh!, Jieyu Zhang', Eyal Orgad®, Rahim Entezari'’, Giannis Daras®,
Sarah Pratt!, Vivek Ramanujan!, Yonatan Bitton'!, Kalyani Marathe!,
Stephen Mussmann', Richard Vencu®, Mehdi Cherti®®, Ranjay Krishna®,
Pang Wei Koh'''2, Olga Saukh'?, Alexander Ratner'''2, Shuran Song?,
Hannaneh Hajishirzi':", Ali Farhadi', Romain Beaumont®,

Sewoong Oh', Alex Dimakis®, Jenia Jitsev®?®,

Yair Carmon?®, Vaishaal Shankar?, Ludwig Schmidt!-%7

Data selection task where the learning
algorithm (CLIP training) and evaluation
(zero-shot classification) are fixed

Task: Selecting CLIP data

Setup

DATACOMP:
In search of the next generation of multimodal datasets

Samir Yitzhak Gadre*2, Gabriel Ilharco*!, Alex Fang*!, Jonathan Hayase',
Georgios Smyrnis®, Thao Nguyen', Ryan Marten”-°, Mitchell Wortsman',
Dhruba Ghosh!, Jieyu Zhang', Eyal Orgad®, Rahim Entezari'’, Giannis Daras®,
Sarah Pratt!, Vivek Ramanujan!, Yonatan Bitton'!, Kalyani Marathe!,
Stephen Mussmann', Richard Vencu®, Mehdi Cherti®®, Ranjay Krishna®,
Pang Wei Koh'''2, Olga Saukh'?, Alexander Ratner'''2, Shuran Song?,
Hannaneh Hajishirzi':", Ali Farhadi', Romain Beaumont®,

Sewoong Oh', Alex Dimakis®, Jenia Jitsev®?®,

Yair Carmon?®, Vaishaal Shankar?, Ludwig Schmidt!-%7

Data selection task where the learning
algorithm (CLIP training) and evaluation
(zero-shot classification) are fixed

Goal: Curate the best possible dataset

Task: Selecting CLIP data

Setup
Example leaderboard (small):

DATACOMP:
In search of the next generation of multimodal datasets 1 03-14-2025 M-FLYT + SCS (alpha=0.5) 0.080
2 08-18-2024 EcoDatum 0.053
Samir Yitzhak Gadre*2, Gabriel Ilharco*!, Alex Fang*!, Jonathan Hayase', 3 08-12-2023 >w < 0.056
Georgios Smyrnis®, Thao Nguyen', Ryan Marten”-°, Mitchell Wortsman', 4 11-04-2023 Hype Sampler 0.063
Dhruba Ghosh!, Jieyu Zhang', Eyal Orgad®, Rahim Entezari'’, Giannis Daras®,
Sarah Pratt!, Vivek Ramanujan!, Yonatan Bitton'!, Kalyani Marathe!, 5 01-08-2024 Content Alignment Model n Flipped CLIP Score 0.064
Stephen Mussmann', Richard Vencu®, Mehdi Cherti®®, Ranjay Krishna®, _
Pang Wei K0h1’12, Olga Saukhlo, Alexander Ratner1=13, Shuran SOIng, 6 09-07-2023 Detection n CLIP score 0.053
Hannaneh Hajishirzi':", Ali Farhadi!, Romain Beaumont® : N
¢ ’ -06- B - -f -35% :
Sewoong Oh!, Alex Dimakis’, Jenia Jitsev®", 7 09-06-2023 BLIP2-COCO-finetuned_similarity_top-35% 0.053
Yair Carmon?, Vaishaal Shankar?, Ludwig Schmidt' %7 8 08-03-2023 WS (baselines) 0.059
9 04-28-2023 Baseline: CLIP score (L/14 30%) 0.051
Data Selection task Where the Iea rning 10 09-07-2023 OCR and Naive english filtering 0.057
11 08-05-2024 MoDO 0.051
a Ig Orlt h m (C L I P t ra I n I n g) a n d eva I u at I O n 12 08-25-2023 Fondant baseline, CLIP score (L/14 1%-30%), ascii>4 0.053
I . o 13 08-25-2023 text masked CLIP 30% 0.048
(zero-shot classification) are fixed 14 08022023 GLIP score (L14 30%) baseline 0.049
15 04-28-2023 Baseline: Image-based 0.043

Goal: Curate the best possible dataset

Task: Selecting CLIP data

Results (DataComp-small)

Task: Selecting CLIP data

Results (DataComp-small)

0.21

0.18

DataComp Score

0.15

0 20 40
Metagradient steps

Task: Selecting CLIP data

Results (DataComp-small)

o

—

o 0.21

ﬁ Method Score A
% Baseline: No filtering 0.13 —
= 0.18 Best baseline from [GIF+24] 0.17 +0.04
Lcé Previous SOTA [Eco24] 0.18 +0.05
g 015 MGD-DS (ours) 0.22 +0.09

0 20 40
Metagradient steps

Task: Selecting CLIP data

Results (DataComp-small)

&
p—
O1

Q

T

o 0.21

ﬁ Method Score A
% Baseline: No filtering 0.13 —
= 0.18 Best baseline from [GIF+24] 017 +0.04
W, Previous SOTA [Eco24] 0.18 +0.05
i MGD-DS (ours) 0.22 +0.09
o

Best existing method

0 20 40
Metagradient steps

Task: Selecting CLIP data

Results (DataComp-small)

MGD improvement

(relative to no selection) is

/ double existing methods

&
p—
O1

Q

T

o 0.21

ﬁ Method Score A
% Baseline: No filtering 0.13 —
= 0.18 Best baseline from [GIF+24] 017 +0.04
W, Previous SOTA [Eco24] 0.18 +0.05
i MGD-DS (ours) 0.22 +0.09
o

Best existing method

0 20 40
Metagradient steps

Task: Selecting CLIP data

Results (DataComp-small)
MGD improvement

(relative to no selection) is

/ double existing methods

&
p—
O1

Q
=
c 0.21 —

ﬁ Method Score A
g" _______________________ Baseline: No filtering 0.13 —
= 0.18 - - Best baseline from [GIF+24] 017 +0.04

O - - - Previous SOTA [Eco24] 0.18 +0.05
% —o— MGD-DS (ours) 0.22 +0.09
o

Best existing method

Metagradient steps

Now working on DataComp-medium (already #1!)

Task: Selecting instruction fine-tuning data
Results (LESS IFT setting)

Task: Selecting instruction fine-tuning data
Results (LESS IFT setting)

New goal: Select instruction fine-tuning data for LM benchmarks (2B param model)

Task: Selecting instruction fine-tuning data
Results (LESS IFT setting)

New goal: Select instruction fine-tuning data for LM benchmarks (2B param model)

15
3
>~ 1
©
-
0 0.5
<
<)

BBH MMLU

Task: Selecting instruction fine-tuning data

Results (LESS IFT setting)

New goal: Select instruction fine-tuning data for LM benchmarks (2B param model)

A Accuracy (%)

—
Q1

p—

-
O

-

BBH [SS5+22] MMLU [HBB+20]
Acc. JAY Acc. A
All Data 35.2% — 41.2% —
LESS 35.2% —0.0% 41.8% +0.5%
MGD-DS 36.7% +1.5% 42.5% +1.3%

BBH

MMLU

Task: Selecting instruction fine-tuning data
Results (LESS IFT setting)

New goal: Select instruction fine-tuning data for LM benchmarks (2B param model)

1.5
BBH [SS5+22] MMLU [HBB+20]
1 Acc. JAY Acc. A
All Data 35.2% — 41.2% —
0.5 LESS 35.2% —0.0% 41.8% +0.5%
MGD-DS 36.7% +1.5% 42.5% +1.3%
0

A Accuracy (%)

BBH MMLU

Previous methods harm performance in BBH

Task: Selecting instruction fine-tuning data
Results (LESS IFT setting)

New goal: Select instruction fine-tuning data for LM benchmarks (2B param model)

A Accuracy (%)

—
Q1

p—

-
O

-

/ 2X the improvement in MMLU

BBH [S55+22] MMLU [HBB+20]

Acc. JAY Acc. A

All Data 35.2% — 41.2% —
LESS 35.2% —0.0% 41.8% +0.5%
MGD-DS 36.7% +1.5% 42.5% +1.3%

BBH

MMLU

Previous methods harm performance in BBH

Task: Poisoning CIFAR-10 training data

Setup

Task: Poisoning CIFAR-10 training data

Setup

Insert poison data z
%

& &

Task: Poisoning CIFAR-10 training data

Setup

Insert poison data z Train model using fixed
learning algorithm

— &

Task: Poisoning CIFAR-10 training data

Setup

Insert poison data z Train model using fixed Goal: reduce overall
learning algorithm test accuracy

— %@ —— CIFAR10: 85%
2 Iy

Iy

Task: Poisoning CIFAR-10 training data

Setup

Insert poison data z Train model using fixed Goal: reduce overall
learning algorithm test accuracy

— %:O —— CIFAR10: 85%

Goal: Insert poison datapoints that maximize overall test loss

Task: Poisoning CIFAR-10 training data

Setup

Insert poison data z Train model using fixed Goal: reduce overall
learning algorithm test accuracy

— %@ —— CIFAR10: 85%

“However, in the setting of indiscriminate data poisoning, where an attacker aims to
decrease the overall test accuracy by adding a small fraction of corrupted data, the
effectiveness of existing attacks remains underwhelming.”

& O

Goal: Insert poison datapoints that maximize overall test loss

Task: Poisoning CIFAR-10 training data

Approach

Task: Poisoning CIFAR-10 training data

Approach

Metaparameter z: tensorz € |

eNX32x32%3 % |

eNx10

of poison pixels and labels

Task: Poisoning CIFAR-10 training data

Approach

eNX32x32%3 % | eNx10

Metaparameter z: tensor z € | of poison pixels and labels

Learning algorithm &f: standardized CIFAR-10 training (ResNet)

Task: Poisoning CIFAR-10 training data

Approach

Metaparameter z: tensorz € |

eNX32x32%3 % |

eNx10

of poison pixels and labels

Learning algorithm &f: standardized CIFAR-10 training (ResNet)

Output function: Loss L,,,| evaluated on a heldout validation set

Task: Poisoning CIFAR-10 training data

Approach

eNX32x32%3 % | eNx10

Metaparameter z: tensor z € | of poison pixels and labels

Learning algorithm &f: standardized CIFAR-10 training (ResNet)
Output function: Loss L,,,| evaluated on a heldout validation set

Repeat, starting from Z being the first €-fraction of the training data:

Task: Poisoning CIFAR-10 training data

Approach

eNX32x32%3 % | eNx10

Metaparameter z: tensor z € | of poison pixels and labels

Learning algorithm &f: standardized CIFAR-10 training (ResNet)
Output function: Loss L,,,| evaluated on a heldout validation set

Repeat, starting from Z being the first €-fraction of the training data:

1. Train model, replacing the first e-fraction of the training set with z

Task: Poisoning CIFAR-10 training data

Approach

eNX32x32%3 % | eNx10

Metaparameter z: tensor z € | of poison pixels and labels

Learning algorithm &f: standardized CIFAR-10 training (ResNet)
Output function: Loss L,,,| evaluated on a heldout validation set

Repeat, starting from Z being the first €-fraction of the training data:
1. Train model, replacing the first e-fraction of the training set with z
2. Calculate metagradientg = V_ (A (z))

Task: Poisoning CIFAR-10 training data

Approach

eNX32x32%3 % | eNx10

Metaparameter z: tensor z € | of poison pixels and labels

Learning algorithm &f: standardized CIFAR-10 training (ResNet)
Output function: Loss L,,,| evaluated on a heldout validation set

Repeat, starting from Z being the first €-fraction of the training data:
1. Train model, replacing the first e-fraction of the training set with z
2. Calculate metagradientg = V_ (A (z))
3. UpdateZ <~ z+1n-g

Task: Poisoning CIFAR-10 training data

Approach

eNX32x32%3 % | eNx10

Metaparameter z: tensor z € | of poison pixels and labels

Learning algorithm &f: standardized CIFAR-10 training (ResNet)
Output function: Loss L,,,| evaluated on a heldout validation set

Repeat, starting from Z being the first €-fraction of the training data:
1. Train model, replacing the first e-fraction of the training set with z
2. Calculate metagradientg = V_ (A (z))
3. UpdateZ <~ z+1n-g

Task: Poisoning CIFAR-10 training data

Results

Task: Poisoning CIFAR-10 training data

Results

0.93

y
&
o
S

0.87
0.84
0.81
0.78
0.75

Test Accurac

0 200 400 600 800
Metagradient steps

Task: Poisoning CIFAR-10 training data

Results

0.93

> 0.90

< 0.87 Model Acc. A

= 0 — :

o 0.84 Original model 92.0% —

< .81 GradCancel [LKY23] 91.2% —0.80%

é’ 0.78 MGD-DP (ours) 78.1% —13.9%
0.75

0 200 400 600 800
Metagradient steps

Task: Poisoning CIFAR-10 training data

Results

093 - - ol i o
> 090L\
S 087 wp oo IO L - Model Acc. A
§ 0-84"5 ————— : ——————E——————i— ————— - - = = Original model 92.0% _
< o081l WA A - L - - GradCancel [LKY23] 91.2% —0.80%
S 078 k- T A L —— MGD-DP (ours) 781% —13.9%

0.75H------d4------4-———-L L -1

0 200 400 600 800
Metagradient steps
deer
Poisoned

samples: =*

Task: Poisoning CIFAR-10 training data

Results We induce 17x the accuracy

R B s B S Lo_Tllr drop vs. existing methods
50.90jl'_'_'_'_'_';I'_'_'_'_'_'_';l'_'_'_'_'_'_'lf_'_'_'_'_'_' Model " X
§ 0.87 J[__ __41 ______ T ______ T _____ ode CC.
SN -7 —— T I - - = Original model 92.0% —
< o981l DAY W . - -~ GradCancel [LKY23] 91.2% —0.80%
N | | | | e - Oo — . OO
& 078 k-4 -+~ TP AL MGD-DP (ours) 78.1% 13.9%

075 b *

0 200 400 600 800
Metagradient steps
deer
Poisoned

samples:

Predicting with metagradients

Predicting with metagradients

Given a prediction task:

Predicting with metagradients

Given a prediction task:

1. Rewrite problem as a function of a metaparameter

Predicting with metagradients

Given a prediction task:

1. Rewrite problem as a function of a metaparameter

Predicting with metagradients

Given a prediction task:

1. Rewrite problem as a function of a metaparameter

2. For reference metaparameter z,, compute ¢p((z,)) and V, (< (z,))

Predicting with metagradients

Given a prediction task:

1. Rewrite problem as a function of a metaparameter

2. For reference metaparameter z,, compute ¢p((z,)) and V, (< (z,))

3. For any metaparameter z, predict (A (zy)) + (z — zy) ' V, (A (2,))

Predicting with metagradients

Given a prediction task:

1. Rewrite problem as a function of a metaparameter

2. For reference metaparameter z,, compute ¢p((z,)) and V, (< (z,))

3. For any metaparameter z, predict (A (zy)) + (z — zy) ' V, (A (2,))

Task: Training data attribution
Setup

Task: Training data attribution
Setup

Choose train subset

VKX

Task: Training data attribution
Setup

Choose train subset Train a model

wE - &

Task: Training data attribution

Setup

ar . Measure loss on
oose train subset Train a model
test example x:

\/[‘ -' —> % —> v llll—l

Task: Training data attribution

Setup

ar Measure |oss on
oose train subset Train a model
test example x:

\/L‘ > % — v llll—l

Goal: Predict the effect of removing some training data on the model's loss on x

Task: Training data attribution

Setup
Measure loss on

test example x:
; T

Goal: Predict the effect of removing some training data on the model's loss on x

Choose train subset Train a model

Equivalent goal: Predict the model’s loss on x as a function of training data weighting

Task: Training data attribution

Setup
Measure loss on

test example x:
VKX — % ~ B

Goal: Predict the effect of removing some training data on the model's loss on x

Choose train subset Train a model

Equivalent goal: Predict the model’s loss on x as a function of training data weighting

State of the art: predictions that are moderately correlated with model behavior

Task: Training data attribution

Setup

ar Measure loss on
oose train subset Train a model
test example x:

Goal: Predict the effect of removing some training data on the model's loss on x

Equivalent goal: Predict the model’s loss on x as a function of training data weighting

State of the art: predictions that are moderately correlated with model behavior
[Park Georgiev | Leclerc Madry '24; Grosse Bae Anil et al. '24; many others]

Task: Training data attribution
Approach

Task: Training data attribution
Approach

Metaparameter z: vectorz € R" st,, Z. is the weight on i-th training example

Task: Training data attribution
Approach

Metaparameter z: vectorz € R" st,, Z. is the weight on i-th training example
Learning algorithm &/: standard model training routine

Task: Training data attribution
Approach

Metaparameter z: vectorz € R" st,, Z. is the weight on i-th training example
Learning algorithm &/: standard model training routine
Output function: Loss function £(- ; x) evaluated on a specific test example

Task: Training data attribution
Approach

Metaparameter z: vectorz € R" st,, Z. is the weight on i-th training example
Learning algorithm &/: standard model training routine
Output function: Loss function £(- ; x) evaluated on a specific test example

Choose reference parameter to be all-ones vector and Taylor expand

Task: Training data attribution
Approach

Metaparameter z: vectorz € R" st,, Z. is the weight on i-th training example
Learning algorithm &/: standard model training routine
Output function: Loss function £(- ; x) evaluated on a specific test example

Choose reference parameter to be all-ones vector and Taylor expand

@) |

P(A(z)) = p(A4((1,)) + y
Z

z=1,

Task: Training data attribution
Approach

Metaparameter z: vectorz € R" st,, Z. is the weight on i-th training example
Learning algorithm &/: standard model training routine
Output function: Loss function £(- ; x) evaluated on a specific test example

Choose reference parameter to be all-ones vector and Taylor expand

dop(d
pet@) ~ pr)+ (r-,)
z=1

\ |

AKA the exact influence function (Hampel '47)

Task: Training data attribution

Results

Task: Training data attribution

Results

Deleting 1% random subsets from CIFAR-10 training:

Task: Training data attribution

Results

Deleting 1% random subsets from CIFAR-10 training:

M EK-FAC (optimally scaled) A TRAK (optimally scaled) DM-STAR (unscaled)
Drop 0.1% Drop 1% Drop 5%
| 1.9 | 2
| - 1.8 1 - AR
? 1.75 ‘..:;‘ | Y 1.8 ap ;i"f
: iy P i
A B As o | oA N el .]
::3 17 . ‘gk. {é"n) 1.6 -::"t ~
= (,ALQ ¢ WA .,'.-.\‘r'.A
Lo 1.6 s 1.4 , Arle
A B :I: ‘A‘- Iy}
1.65 | |
1.65 1.7 1.75 16 1.7 18 19 14 16 1.8
Predicted Loss Predicted Loss Predicted Loss

Task: Training data attribution

Results

Deleting 1% random subsets from CIFAR-10 training:

B EK-FAC (optimally scaled) A TRAK (optimally scaled) ® DM-STAR (unscaled)
Drop 0.1% Drop 1% Drop 5%
- | 1.9 | | 2
| - 1.8 1 : R e
§ 175 ‘.:‘ . . ‘u: > 18 P A“:"J
g ‘S - 153 1 16 S -
S I, ¥ o
g 17 ‘x‘) o= Al "';‘-f\y
o of 1.6 ey S gl
A Wiy ma 1.4 s “lam
é am NT Bkt ®
165 - 1 1
1.6 1.7 1.75 16 1.7 18 19 14 16 1.8
Predicted Loss Predicted Loss Predicted Loss

Near-perfect predictions
(p = 0.9, well-scaled)

Task: Training data attribution

Results

Deleting 1% random subsets from CIFAR-10 training:

Near-perfect predictions
(p = 0.9, well-scaled)

B EK-FAC (optimally scaled) A TRAK (optimally scaled) ® DM-STAR (unscaled)
Drop 0.1% Drop 1% Drop 5%
- | 1.9 - 2 —
g 17| -V i « hieh | 18 e
3 3 1.7 Aty 1 161 A
E 1 7 T i 3 " | n , ﬁéﬂ‘ A
. LN 1 .6 ,.:_‘ - “.: ’ 1 .4 e / A :
tesl 1 o \ Best baseline
1.6 1.7 1.75 16 17 18 1.9 14 16 1.
Predicted Loss Predicted Loss Predicted Loss

(p = 0.4, uncalibrated)

Task: Training data attribution

Results

Deleting 1% random subsets from CIFAR-10 training:

B EK-FAC (optimally scaled) A TRAK (optimally scaled) ® DM-STAR (unscaled)
Drop 0.1% Drop 1% Drop 5%
- | 1.9 | | 2
% 1.75 |- ‘.~ A‘:“ 1.8 Y | 1.8 ‘r:l:‘."':a ‘
3 ﬁ? -’ ‘ "'lf'i“ -
v L 1.7 i 1 16 I~
1.7} ol t'.“ A) A y
= <"L-‘r 4 -i‘ ','~:"$f' R
vi B 1.6 ey * dighme
| Am ry 14 > e
é am NT k™
165 - 1 1
1.6 1.7 1.75 16 1.7 18 19 14 16 1.8
Predicted Loss Predicted Loss Predicted Loss

Also works for LMs!

Deleting 1% of data from
Gemma-2B fine-tuning

/

Text example #0

'3
‘@
0.4230 1 o
n “\J
0 v o
O ° @
— e®
T 0.4225 - o o
5 o "
0‘?‘
< o &
o %0
0.4220 - AL
o ®
@
0' '

| | |
0.4220 0.4225 0.4230
Predicted loss

Task: Training data attribution

Results

Deleting 1% random subsets from CIFAR-10 training:

B EK-FAC (optimally scaled) A TRAK (optimally scaled) = ® DM-STAR (unscaled)
Drop 0.1% Drop 1% Drop 5%
T | 19F | . | o | ——
| -] 18Ff o R >
% 1.75 \\‘ ..5 ARG A 1.8
— : =l.
g 1.7 1, 1 16 |
5 17} - % A
s *s
1.6 0% 4r 1 14 i
165" “" | . i |
1.65 1.7 1.75 16 1.7 18 19 14 16 1.8
Predicted Loss Predicted Loss Predicted Loss

(From a different paper; online soon!)

Actual loss

Also works for LMs!

Deleting 1% of data from
Gemma-2B fine-tuning

0.4230 -

0.4225 -

0.4220 -

/

Text example #0

| | |
0.4220 0.4225 0.4230
Predicted loss

Roadmap

Prequel: Two challenges

Looking forward

A brief history of the metagradient

Why hasn't this been done before?

A brief history of the metagradient

Why hasn't this been done before?

Exact metagradients at small scale

100-iteration MNIST
four-layer network

A brief history of the metagradient

Why hasn't this been done before?

Exact metagradients at small scale [Maclaurin Duvenaud Adams '15; Franceschi et al. '17; ...]
Optimized LR, weight decay, init, etc. for 100-iteration MNIST training
Largest-scale setting: four-layer network on phone classification dataset

Approximate (but large-scale) metagradients via implicit differentiation [Lorraine etal.19]

Scalable but coarse approximation based on convergence assumption; requires Hessian
estimation & cannot optimize optimizer parameters such as learning rate

A brief history of the metagradient

Why hasn't this been done before?

Exact metagradients at small scale

100-iteration MNIST
four-layer network

Approximate (but large-scale) metagradients via implicit differentiation
coarse approximation

Note: These are just three representative works; significant line of work on
differentiating through optimization

A brief history of the metagradient

Why hasn't this been done before?

Exact metagradients at small scale [Maclaurin Duvenaud Adams '15; Franceschi et al. '17; ...]
Optimized LR, weight decay, init, etc. for 100-iteration MNIST training
Largest-scale setting: four-layer network on phone classification dataset

Approximate (but large-scale) metagradients via implicit differentiation [Lorraine et al.”19]

Scalable but coarse approximation based on convergence assumption; requires Hessian
estimation & cannot optimize optimizer parameters such as learning rate

Note: These are just three representative works; significant line of work on
differentiating through Optimization [e.g., Domke '12; Nichol et al.'18; Hara '19; Shaban et al.'19: ...]

Broadly, nothing has scaled to "medium"-size training (e.g., >10M params, >1k iters)

Metagradient roadmap: Two challenges

Metagradient roadmap: Two challenges

Two barriers to optimizing with the metagradient V, ¢ (< (z))

Metagradient roadmap: Two challenges

Two barriers to optimizing with the metagradient V, ¢ (< (z))

Memory

steps

#1: Computational tractability

Metagradient roadmap: Two challenges

Two barriers to optimizing with the metagradient V, ¢ (< (z))

Memory

(A (2))

steps //

#1: Computational tractability #2: Optimization (non)smoothness

Metagradient roadmap: Two challenges

Two barriers to optimizing with the metagradient V, ¢ (< (z))

Memory

P(d(2))

steps Z

#1: Computational tractability #2: Optimization (non)smoothness

Metagradient roadmap: Two challenges

Two barriers to optimizing with the metagradient V, ¢ (< (z))

. Memory

steps

#1: Computational tractability

Problem #1: Calculating the gradient

|dea: Direct autodiff

Problem #1: Calculating the gradient

|dea: Direct autodiff

Direct approach: Auto-differentiation (AD)

Problem #1: Calculating the gradient

|dea: Direct autodiff

Direct approach: Auto-differentiation (AD)

Take derivatives of any function defined by simple
operations by

Problem #1: Calculating the gradient

|dea: Direct autodiff

Direct approach: Auto-differentiation (AD) (a)a=ane (a)a=ane
Take derivatives of any function defined by simple R —
operations by saving intermediate products [\ e

Problem #1: Calculating the gradient

|dea: Direct autodiff

Direct approach: Auto-differentiation (AD) (a)a=ane

Take derivatives of any function defined by simple
operations by

Key insight: Training an ML model is just a (very, ¢) e=atd
very, very long) sequence of operations! Maybe we
can just backprop through it?

Problem #1: Calculating the gradient

|dea: Direct autodiff

Direct approach: Auto-differentiation (AD) (a)a=ane

Take derivatives of any function defined by simple
operations by

Key insight: Training an ML model is just a (very, ¢) e=atd
very, very long) sequence of operations! Maybe we
can just backprop through it?

Problem: Too many intermediate products!

Problem #1: Calculating the gradient

|dea: Direct autodiff (e.g., Domke et al., 2012)

Direct approach: Auto-differentiation (AD) (a)a=ane (a)a=ane
Take derivatives of any function defined by simple “x:_b_j ______ |
operations by saving intermediate products s

Key insight: Training an ML model is just a (very, ¢) e=atb 3__ C) c=a+b

very, very long) sequence of operations! Maybe we ; 8+ -

can just backprop through it? il

Problem: Too many intermediate products! i : @ @

We will think of AD as a black box that can compute gradients of a

many — one compute graph O(# edges) memory

Problem #1: Calculating the gradient
Stepwise AD

Problem #1: Calculating the gradient
Stepwise AD

Naive approach: AD on full model training - too many "edges" on compute graph to store!

Problem #1: Calculating the gradient

Stepwise AD
Naive approach: AD on full model training - too many "edges" on compute graph to store!
Z\ ZX ZX ZX ZX
Goal: PA2)) from B> >8>0 >8> o)
dz
‘91 ‘9t 9t+1 HT

Problem #1: Calculating the gradient
Stepwise AD

Naive approach: AD on full model training - too many "edges" on compute graph to store!
< < < < <

| | | | |
Goal: dp(2)) from IR B8 > >8>)
dz
6’1 Ht 9t+1 HT

Stepwise AD insight: step ¢ derivatives depend only on step ¢ + 1 derivatives, step 7 state

Problem #1: Calculating the gradient
Stepwise AD

Naive approach: AD on full model training - too many "edges" on compute graph to store!
< ¢ < <

d (A (7 p - p - p - p
Goal: PA2)) from R > >8> o)
dz
‘91 6’t+1 6’T
Stepwise AD insigepend only on step ¢ + 1 derivatives, step f state
dfz) _ df(z) db, dfz) _ dfz) db,

dz db,., dz do, do,., db,

Problem #1: Calculating the gradient

Stepwise AD
Naive approach: AD on full model training - too many "edges" on compute graph to store!
ZX ZX ZX ZX
d Q[< p— - -
Goal: PA2)) from R > >8> o)
dz
‘91 6’t+1 6’T
Stepwise AD insig o epend only on step ¢ + 1 derivatives, step 7 state
dfiz) _ dfiz) dby,, dfiz) _ dfiz) dby,,
dz do.., dz do, do.., dob,
I I

One autograd call One autograd call

Problem #1: Calculating the gradient

Stepwise AD
Naive approach: AD on full model training - too many "edges" on compute graph to store!
< “ < " < 3 < “

Goal: PA2)) from R > >8> o)

dz

‘91 Ht+1 6’T
Stepwise AD insight: step 7 derivativesWlepend only on step ¢ + 1 derivatives, step 7 state
dfiz) _ dfiz) dby,, dfiz) _ dfiz) dby,,
dz do.., dz do, do.., dob,
— —
One autograd call One autograd call

Algorithm: save all states {Hi}iTzl, do autograd one step at a time from iterate 7" down to 1

Problem #1: Calculating the gradient

REPLAY: Efficiently calculating metagradients at scale

Problem #1: Calculating the gradient

REPLAY: Efficiently calculating metagradients at scale

A simple modification: REPLAY

Problem #1: Calculating the gradient

REPLAY: Efficiently calculating metagradients at scale

A simple modification: REPLAY

Key primitive of step-wise AD: traversing the states 6’T. : .6’1 INn reverse order

Problem #1: Calculating the gradient

REPLAY: Efficiently calculating metagradients at scale

A simple modification: REPLAY

Key primitive of step-wise AD: traversing the states 6’T. : .6’1 INn reverse order
(Maclaurin Duvenaud & Adams, 2015)

Problem #1: Calculating the gradient

REPLAY: Efficiently calculating metagradients at scale

A simple modification: REPLAY

Key primitive of step-wise AD: traversing the states 6’T. : .6’1 INn reverse order
(Maclaurin Duvenaud & Adams, 2015)

Deterministic training allows us to “replay” from a previous state to rematerialize

Problem #1: Calculating the gradient

REPLAY: Efficiently calculating metagradients at scale

A simple modification: REPLAY

Key primitive of step-wise AD: traversing the states 6’T. : .6’1 INn reverse order
(Maclaurin Duvenaud & Adams, 2015)

Deterministic training allows us to “replay” from a previous state to rematerialize

Design a data structure that allows us to trade off time and space:

Problem #1: Calculating the gradient

REPLAY: Efficiently calculating metagradients at scale

A simple modification: REPLAY

Key primitive of step-wise AD: traversing the states 6’T. : .6’1 INn reverse order
(Maclaurin Duvenaud & Adams, 2015)

Deterministic training allows us to “replay” from a previous state to rematerialize

Design a data structure that allows us to trade off time and space:

Step-wise AD: Save every state, traverse states in reverse

Problem #1: Calculating the gradient

REPLAY: Efficiently calculating metagradients at scale

A simple modification: REPLAY

Key primitive of step-wise AD: traversing the states 6’T. : .6’1 INn reverse order
(Maclaurin Duvenaud & Adams, 2015)

Deterministic training allows us to “replay” from a previous state to rematerialize

Design a data structure that allows us to trade off time and space:

Step-wise AD: Save every state, traverse states in reverse

- 8§ 8§ 8§ 8§ 8 8 B
Or¢ Ors Ory4 Or3 Op, Op, O

Problem #1: Calculating the gradient

REPLAY: Efficiently calculating metagradients at scale

A simple modification: REPLAY

Key primitive of step-wise AD: traversing the states 6’T. : .6’1 INn reverse order
(Maclaurin Duvenaud & Adams, 2015)

Deterministic training allows us to “replay” from a previous state to rematerialize

Design a data structure that allows us to trade off time and space:

Step-wise AD: Save every state, traverse states in reverse

- 8 8 8 8 =
Or¢ Ors Or4 Ops 0Or, O,

Problem #1: Calculating the gradient

REPLAY: Efficiently calculating metagradients at scale

A simple modification: REPLAY

Key primitive of step-wise AD: traversing the states 6’T. : .6’1 INn reverse order
(Maclaurin Duvenaud & Adams, 2015)

Deterministic training allows us to “replay” from a previous state to rematerialize

Design a data structure that allows us to trade off time and space:

Step-wise AD: Save every state, traverse states in reverse

- 8 8 8 8 8 =6
Or¢ Or_s Or4 0Or HT—E 0 -l

4 4
~.-’ .-'

_
0

Problem #1: Calculating the gradient

REPLAY: Efficiently calculating metagradients at scale

A simple modification: REPLAY

Key primitive of step-wise AD: traversing the states 6’T. : .6’1 INn reverse order
(Maclaurin Duvenaud & Adams, 2015)

Deterministic training allows us to “replay” from a previous state to rematerialize

Design a data structure that allows us to trade off time and space:

Step-wise AD: Save every state, traverse states in reverse

R = _ U
Or¢ Or_s Or_4 0Op_3 0Op

Problem #1: Calculating the gradient

REPLAY: Efficiently calculating metagradients at scale

A simple modification: REPLAY

Key primitive of step-wise AD: traversing the states 6’T. : .6’1 INn reverse order
(Maclaurin Duvenaud & Adams, 2015)

Deterministic training allows us to “replay” from a previous state to rematerialize

Design a data structure that allows us to trade off time and space:

- 8 8§ 8§ 8§ 8 8 B
Or¢ Ors Ory4 Or3 Op, Op, O

Problem #1: Calculating the gradient

REPLAY: Efficiently calculating metagradients at scale

A simple modification: REPLAY

Key primitive of step-wise AD: traversing the states 6’T. : .6’1 INn reverse order
(Maclaurin Duvenaud & Adams, 2015)

Deterministic training allows us to “replay” from a previous state to rematerialize

Design a data structure that allows us to trade off time and space:

Idea #1: Save every k-th state, "hop” back to saved states and replay to traverse

- 8 8§ 8§ 8§ 8 8 B
Or¢ Ors Ory4 Or3 Op, Op, O

Problem #1: Calculating the gradient

REPLAY: Efficiently calculating metagradients at scale

A simple modification: REPLAY

Key primitive of step-wise AD: traversing the states 6’T. : .6’1 INn reverse order
(Maclaurin Duvenaud & Adams, 2015)

Deterministic training allows us to “replay” from a previous state to rematerialize

Design a data structure that allows us to trade off time and space:

Idea #1: Save every k-th state, "hop” back to saved states and replay to traverse

- B 8 8 B —
Or_¢ Or_s Opr_q 0Or; Or_

Problem #1: Calculating the gradient

REPLAY: Efficiently calculating metagradients at scale

A simple modification: REPLAY

Key primitive of step-wise AD: traversing the states 6’T. : .6’1 INn reverse order
(Maclaurin Duvenaud & Adams, 2015)

Deterministic training allows us to “replay” from a previous state to rematerialize

Design a data structure that allows us to trade off time and space:

Idea #1: Save every k-th state, "hop” back to saved states and replay to traverse

Or_¢ Or_s Or_4

Problem #1: Calculating the gradient

REPLAY: Efficiently calculating metagradients at scale

A simple modification: REPLAY

Key primitive of step-wise AD: traversing the states 6’T. : .6’1 INn reverse order
(Maclaurin Duvenaud & Adams, 2015)

Deterministic training allows us to “replay” from a previous state to rematerialize

Design a data structure that allows us to trade off time and space:

Idea #1: Save every k-th state, "hop” back to saved states and replay to traverse

Or_¢ Or_s Or_4

Problem #1: Calculating the gradient

REPLAY: Efficiently calculating metagradients at scale

A simple modification: REPLAY

Key primitive of step-wise AD: traversing the states 6’T. : .6’1 INn reverse order
(Maclaurin Duvenaud & Adams, 2015)

Deterministic training allows us to “replay” from a previous state to rematerialize

Design a data structure that allows us to trade off time and space:

Idea #1: Save every k-th state, "hop” back to saved states and replay to traverse

Problem #1: Calculating the gradient

REPLAY: Efficiently calculating metagradients at scale

A simple modification: REPLAY

Key primitive of step-wise AD: traversing the states 6’T. : .6’1 INn reverse order
(Maclaurin Duvenaud & Adams, 2015)

Deterministic training allows us to “replay” from a previous state to rematerialize

Design a data structure that allows us to trade off time and space:

Idea #1: Save every k-th state, "hop” back to saved states and replay to traverse

Problem #1: Calculating the gradient

REPLAY: Efficiently calculating metagradients at scale

A simple modification: REPLAY

Key primitive of step-wise AD: traversing the states 6’T. : .6’1 INn reverse order
(Maclaurin Duvenaud & Adams, 2015)

Deterministic training allows us to “replay” from a previous state to rematerialize

Design a data structure that allows us to trade off time and space:

- 8 8§ 8§ 8§ 8 8 B
Or¢ Ors Ory4 Or3 Op, Op, O

Problem #1: Calculating the gradient

REPLAY: Efficiently calculating metagradients at scale

A simple modification: REPLAY

Key primitive of step-wise AD: traversing the states 6’T. : .6’1 INn reverse order
(Maclaurin Duvenaud & Adams, 2015)

Deterministic training allows us to “replay” from a previous state to rematerialize

Design a data structure that allows us to trade off time and space:

Idea #2: Recursively apply same idea across k training segments

- 8 8§ 8§ 8§ 8 8 B
Or¢ Ors Ory4 Or3 Op, Op, O

Problem #1: Calculating the gradient

REPLAY: Efficiently calculating metagradients at scale

A simple modification: REPLAY

Key primitive of step-wise AD: traversing the states 6’T. : .6’1 INn reverse order
(Maclaurin Duvenaud & Adams, 2015)

Deterministic training allows us to “replay” from a previous state to rematerialize

Design a data structure that allows us to trade off time and space:

Idea #2: Recursively apply same idea across k training segments

_
6’1

°oo -
0. Or_

Problem #1: Calculating the gradient

REPLAY: Efficiently calculating metagradients at scale

A simple modification: REPLAY

Key primitive of step-wise AD: traversing the states 6’T. : .6’1 INn reverse order
(Maclaurin Duvenaud & Adams, 2015)

Deterministic training allows us to “replay” from a previous state to rematerialize

Design a data structure that allows us to trade off time and space:
Apply REPLAY here

Idea #2: Recursively apply same idea across k training segments /

_
6’1

oo -
Or—6

Problem #1: Calculating the gradient

REPLAY: Efficiently calculating metagradients at scale

A simple modification: REPLAY

Key primitive of step-wise AD: traversing the states 6’T. : .6’1 INn reverse order
(Maclaurin Duvenaud & Adams, 2015)

Deterministic training allows us to “replay” from a previous state to rematerialize

Design a data structure that allows us to trade off time and space:
Apply REPLAY here

Idea #2: Recursively apply same idea across k training segments /

_
6’1

oo -
Or—6

Problem #1: Calculating the gradient

REPLAY: Efficiently calculating metagradients at scale

A simple modification: REPLAY

g{%}‘ Sasha Rush & .
Key piil ng the states 0...0, in reverse order

| really want to figure out an application for Recursive Halving AD
(M (picture from Elements of Differentiable Programming

arxiv.org/pdf/2403.14606). It feels like it should be useful for something

Deter cool. Méybe like on-device test-time derivatives... ay" from a preV|OUS State to rematerlallze

o trade off time and space:
Apply REPLAY here

ss k training segments v

Forward computation Storage in memory Backward computation

Figure 8.8: Illustration of checkpointing with recursive halving, for a chain of
8 functions. The chain is first fully evaluated while storing some computations

as checkpoints in memory. Then, during the backward pass, we recompute some

intermediate values from the latest checkpoint available. In contrast, vanilla reverse-
mode autodiff (with full caching of the intermediate computations) would lead to a [3 T

simple triangle shape.

Metagradient roadmap: Two challenges

Two barriers to optimizing with the metagradient V_¢((z))

P(d(2))

Z

#2: Optimization (non)smoothness

Metagradient roadmap: Two challenges

Two barriers to optimizing with the metagradient V_¢((z))

P(d(2))

Z

- #2: Optimization (non)smoothness

Problem #2: (Lack of) Smoothness

Are our gradients useful?

Problem #2: (Lack of) Smoothness

Are our gradients useful?

A gradient is only "useful” if it locally predicts function behavior

Problem #2: (Lack of) Smoothness

Are our gradients useful?

A gradient is only "useful” if it locally predicts function behavior

Given the complexity of &f(z) for large-scale models, cannot take this for granted!

Problem #2: (Lack of) Smoothness

Are our gradients useful?

A gradient is only "useful” if it locally predicts function behavior

Given the complexity of &f(z) for large-scale models, cannot take this for granted!

Indeed:

Problem #2: (Lack of) Smoothness

Are our gradients useful?

A gradient is only "useful” if it locally predicts function behavior
In optimization terms, we want ¢(/(z)) to be "smooth"

Given the complexity of &f(z) for large-scale models, cannot take this for granted!

Indeed: ¢(A(z))

; | 0.8
| 0.6
0.0 ‘
0.2 0.4
0.4
0.6 0.2 1
X
Z 0.8
O 1000/

Small changes in training data pixels!

Problem #2: (Lack of) Smoothness

Are our gradients useful?

A gradient is only "useful” if it locally predicts function behavior

Given the complexity of &f(z) for large-scale models, cannot take this for granted!

Indeed: #(Z(2)) \‘ iy ...Standard model training is very "non-smooth!”

0.4
0.6
ZX() 0.8

Small changes in training data pixels!

Problem #2: (Lack of) Smoothness

Are our gradients useful?

A gradient is only "useful” if it locally predicts function behavior

Given the complexity of &f(z) for large-scale models, cannot take this for granted!

Indeed: #(Z(2)) \A iy ...Standard model training is very "non-smooth!”

Need to find "smooth" model training routines!

‘ 0.8
Ny 0.6
0.0 ‘ ‘
0.2 0.4
0.4
0.6 0.2 1
X
Z 0.8
O 1000/

Small changes in training data pixels!

Problem #2: (Lack of) Smoothness

Constructing "smooth" model training routines

Problem #2: (Lack of) Smoothness

Constructing "smooth" model training routines

Goal: design model training routines that do have "smooth" optimization landscapes

Problem: need a cheap + accurate measure of "smoothness”

Problem #2: (Lack of) Smoothness

Constructing "smooth" model training routines

Goal: design model training routines that do have "smooth" optimization landscapes

Problem: need a cheap + accurate measure of "smoothness”

Desired diagnostic ("Smoothness"): Approximate Taylor predictiveness

~ max || d(wW+ Aw) — A (W) — ad(w) - Aw

AW dW

Problem #2: (Lack of) Smoothness

Constructing "smooth" model training routines

Goal: design model training routines that do have "smooth" optimization landscapes

Problem: need a cheap + accurate measure of "smoothness”

Desired diagnostic ("Smoothness"): Approximate Taylor predictiveness

~ max || d(wW+ Aw) — A (W) — as(w) :

AW
Aw : dw I

First-order effect of metaparameter changes

Problem #2: (Lack of) Smoothness

Constructing "smooth" model training routines

Goal: design model training routines that do have "smooth" optimization landscapes

Problem: need a cheap + accurate measure of "smoothness”

Desired diagnostic ("Smoothness"): Approximate Taylor predictiveness

Can't take a max!

AW+ AW) — (W) — AW A
| ALY |

First-order effect of metaparameter changes

Problem #2: (Lack of) Smoothness

Constructing "smooth" model training routines

Goal: design model training routines that do have "smooth" optimization landscapes

Problem: need a cheap + accurate measure of "smoothness”

Desired diagnostic ("Smoothness"): Approximate Taylor predictiveness

Can't take a max!

Hard to interpret this quantitgl .

oCct of metaparameter changes

Problem #2: (Lack of) Smoothness

Constructing "smooth" model training routines

Goal: design model training routines that do have "smooth" optimization landscapes

Problem: need a cheap + accurate measure of "smoothness”

Desired diagnostic ("Smoothness"): Approximate Taylor predictiveness
Don't have full Jacobian!

Can't take a max!

Hard to interpret this quantitgl .

AW+ Aw) — o (w)

2Ccl Oof metaparameter changes

Problem #2: (Lack of) Smoothness

Constructing "smooth" model training routines

Goal: design model training routines that do have "smooth" optimization landscapes

Problem: need a cheap + accurate measure of "smoothness”

Desired diagnostic ("Smoothness"): Approximate Taylor predictiveness
Don't have full Jacobian!

Can't take a max!

Hard to interpret this quantitgl .

AW+ Aw) — o (w)

2Ccl Oof metaparameter changes

We adapt this estimator to a new metric Metasmoothness(&/) € [—1,1]
Our final estimator: feasible, interpretable, and accurate!

Problem #2: (Lack of) Smoothness

Constructing "smooth" model training routines

Problem #2: (Lack of) Smoothness

Constructing "smooth" model training routines

Our metric accurately predicts optimization success in practice!

Problem #2: (Lack of) Smoothness

Constructing "smooth" model training routines

Our metric accurately predicts optimization success in practice!

Final scale e —
0.125 « 0.5 1.0

Batch size E] A !
250 @500 @1000 | | '+ . &

-
-
=~

| | o
010 4Al5 m20 Qe

O
-
)

BN Placement : A, A |
® Before activation - e QA%% 0.00
After activation | |

| l |
0 0.2 0.4
Smoothness

Objective

Problem #2: (Lack of) Smoothness

Constructing "smooth" model training routines

Our metric accurately predicts optimization success in practice!

Training Options

Final scale e —
0.125 « 0.5 1.0

Batch size E] A !
250 @500 @1000 | | '+ . &

-
-
=~

| | o
010 4Al5 m20 Qe

O
-
)

BN Placement : A, A |
® Before activation - e QA%% 0.00
After activation | |

| l |
0 0.2 0.4
Smoothness

Objective

Problem #2: (Lack of) Smoothness

Constructing "smooth" model training routines

Our metric accurately predicts optimization success in practice!

Training Options

Final scale e —
0.125 « 0.5 1.0

Batch size E] A !
250 @500 @1000 | | '+ . &

-
-
=~

| | o
010 4Al5 m20 Qe

O
-
)

BN Placement : A, A |
® Before activation - e QA%% 0.00
After activation | |

| l |
0 0.2 0.4
Smoothness

Objective

Problem #2: (Lack of) Smoothness

Constructing "smooth" model training routines

Our metric accurately predicts optimization success in practice!

Training Options

Final scale
0.125 « 0.5 1.0

e e - e e e e en e e e - e G ———— -

Batch size
o250 @500 @1000

Width I |
@10 Al15 m20

Objective

BN Placement E A |
® Before activation - A QA** - 0.
After activation

| l
0 0.2
Smoothness

“Smooth model training”

Problem #2: (Lack of) Smoothness

Constructing "smooth" model training routines

Our metric accurately predicts optimization success in practice!

Training Options

Final scale
0.125 «0.5

e e - e e e s -

1.0

3atch size
o250 @500 @1000

Objective

Width | |
P(0(2)) @10 415 m20
BN Placement E A 4 |
® Before activation - A QAT* -1 0.

After activation

| l
0 0.2
Smoothness

“Smooth model training”

Problem #2: (Lack of) Smoothness

Constructing "smooth" model training routines

Our metric accurately predicts optimization success in practice!

Training Options

Final scale
0.125 « 0.5 1.0

e e - e e e e en e e e - e G ———— -

Batch size
o250 @500 @1000

Width I |
@10 Al15 m20

Objective

BN Placement E A |
® Before activation - A QA** - 0.
After activation

| l
0 0.2
Smoothness

“Smooth model training”

Problem #2: (Lack of) Smoothness

Constructing "smooth" model training routines

Our metric accurately predicts optimization success in practice!

How to train your smooth model:

Training Options

Final scale
0.125 « 0.5 1.0

Batch size
o250 @500 @1000

Width
@10 aAl> E20

BN Placement
® Before activation
After activation

e - -

- ()
=
)
(@)
___________ D
, Ie
A : O
_______ N
. i
0 0.2
Smoothness

“Smooth model training”

Problem #2: (Lack of) Smoothness

Constructing "smooth" model training routines

Our metric accurately predicts optimization success in practice!

How to train your smooth model:

Layer composition, width

Training Options

Final scale
0.125 « 0.5 1.0

Batch size
o250 @500 @1000

Width
@10 aAl> E20

BN Placement
® Before activation
After activation

e - -

- ()
=
)
(@)
___________ D
, Ie
A : O
_______ N
. i
0 0.2
Smoothness

“Smooth model training”

Problem #2: (Lack of) Smoothness

Constructing "smooth" model training routines

Our metric accurately predicts optimization success in practice!

How to train your smooth model:

Layer composition, width
Learning rate/weight decay/batch size

Training Options

Final scale
0.125 « 0.5 1.0

Batch size
o250 @500 @1000

Width
@10 aAl> E20

BN Placement
® Before activation
After activation

e - -

- ()
=
)
(@)
___________ D
, Ie
A : O
______ N
. i
0 0.2
Smoothness

“Smooth model training”

Problem #2: (Lack of) Smoothness

Constructing "smooth" model training routines

Our metric accurately predicts optimization success in practice!

How to train your smooth model:

Layer composition, width
Learning rate/weight decay/batch size

Adam €., momentum/warmup

ootr

Training Options

Final scale
0.125 « 0.5 1.0

Batch size
o250 @500 @1000

Width
@10 aAl> E20

BN Placement
® Before activation
After activation

. —

““““ ()
=
)
(@)
___________ D
, Ie
A : O
______ N
. i
0 0.2
Smoothness

“Smooth model training”

Problem #2: (Lack of) Smoothness

Constructing "smooth" model training routines

Our metric accurately predicts optimization success in practice!

How to train your smooth model:

Layer composition, width
Learning rate/weight decay/batch size

Adam €., momentum/warmup

oot/
Normalizer ¢

Training Options

Final scale
0.125 « 0.5 1.0

Batch size
o250 @500 @1000

Width
@10 aAl> E20

BN Placement
® Before activation
After activation

. —

““““ ()
=
)
(@)
___________ D
, Ie
A : O
______ N
. i
0 0.2
Smoothness

“Smooth model training”

Problem #2: (Lack of) Smoothness

Constructing "smooth" model training routines

Our metric accurately predicts optimization success in practice!

How to train your smooth model:

Layer composition, width
Learning rate/weight decay/batch size

Adam €., momentum/warmup

oot/
Normalizer ¢

Logit scales

Training Options

Final scale
0.125 « 0.5 1.0

Batch size
o250 @500 @1000

Width
@10 aAl> E20

BN Placement
® Before activation
After activation

. —

““““ ()
=
)
(@)
___________ D
, Ie
A : O
______ N
. i
0 0.2
Smoothness

“Smooth model training”

Problem #2: (Lack of) Smoothness

Constructing "smooth" model training routines

Our metric accurately predicts optimization success in practice!

How to train your smooth model:

Layer composition, width
Learning rate/weight decay/batch size

Adam €., momentum/warmup

oot/
Normalizer ¢

Logit scales
LM only:

Training Options

Final scale
0.125 « 0.5 1.0

Batch size
o250 @500 @1000

Width
@10 aAl> E20

BN Placement
® Before activation
After activation

. —

““““ ()
=
)
(@)
___________ D
, Ie
A : O
______ N
. i
0 0.2
Smoothness

“Smooth model training”

Problem #2: (Lack of) Smoothness

Constructing "smooth" model training routines

Our metric accurately predicts optimization success in practice!

How to train your smooth model:

Layer composition, width
Learning rate/weight decay/batch size

Adam €., momentum/warmup

oot/
Normalizer ¢

Logit scales
LM only:
QK-layernorm

Training Options

Final scale
0.125 « 0.5 1.0

Batch size
o250 @500 @1000

Width
@10 aAl> E20

BN Placement
® Before activation
After activation

. —

““““ ()
=
)
(@)
___________ D
, Ie
A : O
______ N
. i
0 0.2
Smoothness

“Smooth model training”

Problem #2: (Lack of) Smoothness

Constructing "smooth" model training routines

Our metric accurately predicts optimization success in practice!

Layer composition, width Final scale . i

, , , 0.125 ©0.5 o 1.0 : | : '
Learning rate/weight decay/batch size

Batchsize | | ' A 7
Adam €, ., momentum/warmup *250 500 @1000 >
. Width : : 9
Normalizer € ©10 4l5 m20 | [=
Logit scales BN Placement G O
. . | @D@) |
LM | . ® Before activation B il W 0
oniy: After activation | |
QK-layernorm 0 0.2

Uncoupled (un)embedding Smoothness

“Smooth model training”

Problem #2: (Lack of) Smoothness

Constructing "smooth" model training routines

Our metric accurately predicts optimization success in practice!

Layer composition, width Final scale
. . . 0.125 «0.5 1.0
Learning rate/weight decay/batch size

Batch size

Adam € ., momentum/warmup *250 ®500 @100 >
N i Width 9

ormallzer € 010 4l5 m20 =
Logit scales BN Placement O

Key property: Optimized parameters “"transfer back” to non-smooth training!

MOoOoTNNESS

Uncoupled (un)embedding

“Smooth model training”

Main idaa: T ;
Preguel—hwo-challenrges

Looking forward

Future work

Our goal/hope is for the following recipe to be a general one:
1. Pick a design choice you're interested in optimizing/predicting
Write problem as a metaparameter prediction or optimization problem

Find a smooth training setup

> W D

Compute the metagradient
5. Apply gradient descent/Taylor approximation

What do we need to get there?

Future work

What do we need to get there?

1. A more systematic way of finding smooth models
2. More computational efficiency gains

3. More creative ways of applying metagradients
» Hyperparameter optimization? (Simple example in the paper)
» Data weighting networks?
» Synthetic data generators?
» Gradient pre-conditioners?
"Anything we can continuously parameterize, we can (try to) optimize”

Conclusion

Design space of ML is too large to explore - how do we think about design choices?

Approach: Take the gradient of a model output with respect to metaparameters

Challenges:
Computing the metagradient at scale
Making the metagradient useful for optimization

See the paper
. for more!
Addressing these challenges unlocks:
Data selection (> 2x more effective) & attribution
Data poisoning (> 10x more effective) https://arxiv.org/abs/2503.13751
Gradient-based hyperparameter optimization B andrewi@stanford.edu

What next? % andrewilyas.com

https://arxiv.org/abs/2503.13751
mailto:andrewi@stanford.edu
http://andrewilyas.com

