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Motivation
Training requires many design choices. Making the right choice is hard!

Fundamental Q: Can we predict and optimize the effect of these choices? 
E.g.: Architecture search, scaling laws, data curation

Hyperparameters Training datasetModel architecture

/ /



The dream

A framework for optimizing and predicting the 
effect of design choices on model training



Example: Training data
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Optimizing: Training data curation
(Sorscher et al. 2022; Gadre et al. 2023; Xie et al. 2024; Xia et al. 2024; Engstrom et al. 2024; many others)

Much of the internet is low-quality: what data should we train on? 

Equivalently: can we optimize the training data selection for target performance?

+Scraped internet data
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Predicting: Training data attribution
(Koh & Liang 2017; Feldman 2019; I et al. 2022; Bae et al. 2023, Park et al. 2024; many others)

"What examples in the training data caused this behavior?"

Equivalently: Can we predict change in this behavior as a function of training data?

Model Predict

+Training data

Data

"ship"

What is this? 

🤔



Full problem statement
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z
ϕ(𝒜(z))

Prediction: Find , direct model output estimator (does not invoke )̂f(z) ≈ ϕ(𝒜(z)) 𝒜

Captures data curation & attribution but also many established ML challenges
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Problem: Metaparameter selection
Idea: write model output as a direct function of training setup (“metaparameter”)  

Metaparameter  
z ∈ Z ⊂ ℝd

Training routine 
𝒜 : Z → Θ

Output function 
ϕ : Θ → ℝ

Trained model 
θ = 𝒜(z)

Final output 
ϕ(𝒜(z))

Data selection Model trained on 
selected data Final model output

Goal (Data curation) 

Find the selection  that minimizes the resulting 
model’s test loss

z
Goal (Data attribution) 

Predict how changing the selection  will change 
resulting model’s output

z

The aspect(s) of the 
training setup that 
we want to study

The loss/target 
metric of interest

Map from metaparameter 
to model, all else fixed
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In many cases, metaparameter  is a continuous variable (or can be relaxed to one)z
We will show how to compute and use the metagradient:

Cost: In practice, “only” 3-5x the cost of model training!

Main idea: The metagradient

z θ = 𝒜(z) ϕ(θ)
Training 

setup
Trained 
model

Model 
output

Metagradient ∇zϕ(𝒜(z))



Main idea: The metagradient

Metagradients offer a powerful way to optimize 
and predict (aspects of) model behavior
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Optimizing with metagradients
Given a task:

1. Rewrite problem in terms of model outputs (as a function of a metaparameter)
Decide on appropriate , ,  so that the problem becomes z 𝒜 ϕ min

z∈ℝd
ϕ(𝒜(z))

2. Solve via (meta)gradient descent:
A. Pick a starting  and number of steps z(0) T
B. For  Compute  and descendi = 1…T : g := ∇zϕ(𝒜(z(i−1)))

Requires  total metagradient calculationsT
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Task: Data selection

Goal: Select the training data subset minimizing loss on the target set
 Equivalent goal: Find the training data weighting minimizing loss on the target set

Train a modelChoose train subset Measure loss on a 
target/test set:

Increasingly recognized as a critical step in large-scale ML pipeline
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Task: Selecting CLIP data
Approach
Metaparameter : vector  s.t.,  is the weight on -th training examplez z ∈ ℝN zi i
Learning algorithm : standardized CLIP training routine𝒜
Output function: Loss function  evaluated on target tasksLtarg

Repeat, starting from :z = 1N
1. Train model weighting the training points by z
2. Calculate metagradient g = ∇zϕ(𝒜(z))
3. Update z ← z − sign(g)

*simplified
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Task: Selecting CLIP data
Setup

Data selection task where the learning 
algorithm (CLIP training) and evaluation 

(zero-shot classification) are fixed
Goal: Curate the best possible dataset …

Example leaderboard (small):



Task: Selecting CLIP data
Results (DataComp-small)



Task: Selecting CLIP data
Results (DataComp-small)



Task: Selecting CLIP data
Results (DataComp-small)



Task: Selecting CLIP data
Results (DataComp-small)

Best existing method



Task: Selecting CLIP data
Results (DataComp-small)

MGD improvement 
(relative to no selection) is 
double existing methods'

Best existing method



Task: Selecting CLIP data
Results (DataComp-small)

MGD improvement 
(relative to no selection) is 
double existing methods'

Best existing method

Now working on DataComp-medium (already #1!)
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Task: Selecting instruction fine-tuning data
New goal: Select instruction fine-tuning data for LM benchmarks (2B param model)

2x the improvement in MMLU

Previous methods harm performance in BBH

Results (LESS IFT setting) 
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Task: Poisoning CIFAR-10 training data
Setup

Goal: Insert poison datapoints that maximize overall test loss

Train model using fixed 
learning algorithm

CIFAR10: 85%

Goal: reduce overall 
test accuracy

Insert poison data z

“However, in the setting of indiscriminate data poisoning, where an attacker aims to 
decrease the overall test accuracy by adding a small fraction of corrupted data, the 
effectiveness of existing attacks remains underwhelming.”

[Lu Kamath Yu ’23]
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Task: Poisoning CIFAR-10 training data
Approach

Metaparameter : tensor  of poison pixels and labelsz z ∈ ℝεN×32×32×3 × ℝεN×10

Learning algorithm : standardized CIFAR-10 training (ResNet)𝒜
Output function: Loss  evaluated on a heldout validation setLval

Repeat, starting from  being the first -fraction of the training data:z ε
1. Train model, replacing the first -fraction of the training set with ε z
2. Calculate metagradient g = ∇zϕ(𝒜(z))
3. Update z ← z + η ⋅ g

(this is the full algorithm)
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drop vs. existing methods
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Predicting with metagradients
Given a prediction task:

1. Rewrite problem as a function of a metaparameter
Decide on appropriate , ,  so that the problem becomes estimating z 𝒜 ϕ ϕ(𝒜(z))

2. For reference metaparameter , compute  and z0 ϕ(𝒜(z0)) ∇zϕ(𝒜(z0))

3. For any metaparameter , predict z ϕ(𝒜(z0)) + (z − z0)⊤ ∇zϕ(𝒜(z0))
This is just a linear function of , no “extra computation” beyond z z0
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Task: Training data attribution
Setup

Goal: Predict the effect of removing some training data on the model’s loss on x
Equivalent goal: Predict the model’s loss on  as a function of training data weightingx

State of the art: predictions that are moderately correlated with model behavior 
[Park Georgiev I Leclerc Madry ’24; Grosse Bae Anil et al. ’24; many others]

Train a modelChoose train subset
Measure loss on 
test example :x
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Task: Training data attribution
Approach
Metaparameter : vector  s.t.,  is the weight on -th training examplez z ∈ ℝn zi i
Learning algorithm : standard model training routine𝒜
Output function: Loss function  evaluated on a specific test exampleℓ( ⋅ ; x)

Choose reference parameter to be all-ones vector and Taylor expand

ϕ(𝒜(z)) ≈ ϕ(𝒜((1n)) +
dϕ(𝒜(z))

dz z=1n

(z − 1n)

AKA the exact influence function (Hampel ’47)
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Results
Deleting 1% random subsets from CIFAR-10 training:

Near-perfect predictions 
( , well-scaled)ρ = 0.9

Best baseline        
( , uncalibrated)ρ = 0.4
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Task: Training data attribution
Results
Deleting 1% random subsets from CIFAR-10 training:

Also works for LMs! 
Deleting 1% of data from 
Gemma-2B fine-tuning

(From a different paper; online soon!)



Roadmap

Main idea: The metagradient 

Prequel: Two challenges 

Looking forward



A brief history of the metagradient
Why hasn’t this been done before?



A brief history of the metagradient
Why hasn’t this been done before?
Exact metagradients at small scale [Maclaurin Duvenaud Adams ’15; Franceschi et al.  ’17; …] 

Optimized LR, weight decay, init, etc. for 100-iteration MNIST training 
Largest-scale setting: four-layer network on phone classification dataset



A brief history of the metagradient
Why hasn’t this been done before?
Exact metagradients at small scale [Maclaurin Duvenaud Adams ’15; Franceschi et al.  ’17; …] 

Optimized LR, weight decay, init, etc. for 100-iteration MNIST training 
Largest-scale setting: four-layer network on phone classification dataset

Approximate (but large-scale) metagradients via implicit differentiation [Lorraine  et al. ’19] 

Scalable but coarse approximation based on convergence assumption; requires Hessian 
estimation & cannot optimize optimizer parameters such as learning rate



A brief history of the metagradient
Why hasn’t this been done before?
Exact metagradients at small scale [Maclaurin Duvenaud Adams ’15; Franceschi et al.  ’17; …] 

Optimized LR, weight decay, init, etc. for 100-iteration MNIST training 
Largest-scale setting: four-layer network on phone classification dataset

Approximate (but large-scale) metagradients via implicit differentiation [Lorraine  et al. ’19] 

Scalable but coarse approximation based on convergence assumption; requires Hessian 
estimation & cannot optimize optimizer parameters such as learning rate

Note: These are just three representative works; significant line of work on 
differentiating through optimization [e.g., Domke ’12; Nichol et al. ’18; Hara ’19; Shaban et al. ’19; …]
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Why hasn’t this been done before?
Exact metagradients at small scale [Maclaurin Duvenaud Adams ’15; Franceschi et al.  ’17; …] 

Optimized LR, weight decay, init, etc. for 100-iteration MNIST training 
Largest-scale setting: four-layer network on phone classification dataset

Approximate (but large-scale) metagradients via implicit differentiation [Lorraine  et al. ’19] 

Scalable but coarse approximation based on convergence assumption; requires Hessian 
estimation & cannot optimize optimizer parameters such as learning rate

Note: These are just three representative works; significant line of work on 
differentiating through optimization [e.g., Domke ’12; Nichol et al. ’18; Hara ’19; Shaban et al. ’19; …]

Broadly, nothing has scaled to "medium"-size training (e.g., >10M params, >1k iters)
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Metagradient roadmap: Two challenges

#1: Computational tractability
# steps

Memory

#2: Optimization (non)smoothness
z

ϕ(𝒜(z))
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Problem #1: Calculating the gradient
Idea: Direct autodiff (e.g., Domke et al., 2012)

Direct approach: Auto-differentiation (AD)
Take derivatives of any function defined by simple 
operations by saving intermediate products

Key insight: Training an ML model is just a (very, 
very, very long) sequence of operations! Maybe we 
can just backprop through it?
Problem: Too many intermediate products!

We will think of AD as a black box that can compute gradients of a 
many  one compute graph  memory→ O(# edges)
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Algorithm: save all states , do autograd one step at a time from iterate  down to 1{θi}T
i=1 T

Naive approach: AD on full model training - too many "edges" on compute graph to store!
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⋯
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Are our gradients useful?
A gradient is only "useful" if it locally predicts function behavior

In optimization terms, we want  to be "smooth"ϕ(𝒜(z))
Given the complexity of  for large-scale models, cannot take this for granted!𝒜(z)

Indeed: ...standard model training is very "non-smooth!"

Need to find "smooth" model training routines!

ϕ(𝒜(z))

Small changes in training data pixels!

z1z0
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≈ max
Δw

𝒜(w + Δw) − 𝒜(w) −
d𝒜(w)

dw
⋅ Δw

First-order effect of metaparameter changes

Problem #2: (Lack of) Smoothness
Constructing "smooth" model training routines
Goal: design model training routines that do have "smooth" optimization landscapes

Problem: need a cheap + accurate measure of "smoothness"

We adapt this estimator to a new metric  
Our final estimator: feasible, interpretable, and accurate!

Metasmoothness(𝒜) ∈ [−1,1]

Can't take a max!

Hard to interpret this quantity!

Don’t have full Jacobian!
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Our metric accurately predicts optimization success in practice!

Training Options (1 point = 1 model config!)
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ϕ(θ(z))

z1z0
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Problem #2: (Lack of) Smoothness
Constructing "smooth" model training routines

Our metric accurately predicts optimization success in practice!
How to train your smooth model:

Layer composition, width
Learning rate/weight decay/batch size
Adam , momentum/warmupϵroot
Normalizer ϵ
Logit scales
LM only:

QK-layernorm
Uncoupled (un)embedding

Training Options (1 point = 1 model config!)

“Smooth model training”

Key property: Optimized parameters “transfer back” to non-smooth training! 



Roadmap

Main idea: The metagradient 

Prequel: Two challenges 

Looking forward



Future work
Our goal/hope is for the following recipe to be a general one: 

1. Pick a design choice you’re interested in optimizing/predicting 

2. Write problem as a metaparameter prediction or optimization problem 

3. Find a smooth training setup  

4. Compute the metagradient 

5. Apply gradient descent/Taylor approximation 

What do we need to get there?



Future work
What do we need to get there? 

1. A more systematic way of finding smooth models 
2. More computational efficiency gains 
3. More creative ways of applying metagradients 
‣ Hyperparameter optimization? (Simple example in the paper) 
‣ Data weighting networks? 
‣ Synthetic data generators? 
‣ Gradient pre-conditioners? 
“Anything we can continuously parameterize, we can (try to) optimize”



Conclusion
Design space of ML is too large to explore → how do we think about design choices?
Approach: Take the gradient of a model output with respect to metaparameters 

Challenges: 
Computing the metagradient at scale 
Making the metagradient useful for optimization 

Addressing these challenges unlocks: 
Data selection (> 2x more effective) & attribution 
Data poisoning (> 10x more effective) 
Gradient-based hyperparameter optimization 
What next?

See the paper 
for more!

🔗 https://arxiv.org/abs/2503.13751  

📫 andrewi@stanford.edu 

🌐 andrewilyas.com
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