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Motivation

Training requires many design choices. Making the right choice is hard!

Model architecture Hyperparameters Training dataset

Sy,

Fundamental Q: Can we predict and the effect of these choices?
E.Q.:




The dream

A framework for optimizing and predicting the
effect of design choices on model training
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Much of the internet is low-quality: what data should we train on?
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Predicting: Training data attribution

What is this?

Data Model Predict

.,
+ % » ‘%'

"What examples in the training data caused this behavior?"

predict



Full problem statement
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This will be the output of the model trained on z

]
]
i
Might be the loss on a specific fixed target :
example, or performance on a fixed test set r

]
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Problem: Metaparameter selection

|dea: write model output as a direct function of training setup (“metaparameter”)

The aspect(s) of the

training setup that Training routine Output function
we want to study oA 7 — O ¢ 0 > R
Metaparameter Trained model Final output
# #
A=V e Rd Map from metaparameter 0 = Qf(Z) The loss/target ¢(<Q[(Z))
to model, all else fixed metric of interest

Model trained on

Data selection selected data

Final model output

Goal (Data curation) Goal (Data attribution)

Find the selection Z that minimizes the resulting Predict how changing the selection z will change
model’s test loss resulting model’s output
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Main idea: The metagradient

In many cases, metaparameter Z is a continuous variable

We will show how to compute and use the metagradient:

Metagradient V, (< (z))

I B N .
______________
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- "~
- ~
- ~
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S N

Z 0 = 9 (z)
Training Trained
setup model

Cost: In practice, "only” 3-5x the cost of model training!




Main idea: The metagradient

Metagradients offer a powerful way to
and predict (aspects of) model behavior
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Task: Data selection

Choose train subset Train a model Measure loss on a
target/test set:

7M X — % —> TR

Goal: Select the training data subset minimizing loss on the target set

Equivalent goal: Find the training data weighting minimizing loss on the target set

Increasingly recognized as a critical step in large-scale ML pipeline
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Task: Selecting CLIP data

Setup
Example leaderboard (small):

DATACOMP:
In search of the next generation of multimodal datasets 1 03-14-2025 M-FLYT + SCS (alpha=0.5) 0.080
2 08-18-2024 EcoDatum 0.053
Samir Yitzhak Gadre*2, Gabriel Ilharco*!, Alex Fang*!, Jonathan Hayase', 3 08-12-2023 >w < 0.056
Georgios Smyrnis®, Thao Nguyen', Ryan Marten”-°, Mitchell Wortsman', 4 11-04-2023 Hype Sampler 0.063
Dhruba Ghosh!, Jieyu Zhang', Eyal Orgad®, Rahim Entezari'’, Giannis Daras®,
Sarah Pratt!, Vivek Ramanujan!, Yonatan Bitton'!, Kalyani Marathe!, 5 01-08-2024 Content Alignment Model n Flipped CLIP Score 0.064
Stephen Mussmann', Richard Vencu®, Mehdi Cherti®®, Ranjay Krishna®, _
Pang Wei K0h1’12, Olga Saukhlo, Alexander Ratner1=13, Shuran SOIng, 6 09-07-2023 Detection n CLIP score 0.053
Hannaneh Hajishirzi':", Ali Farhadi!, Romain Beaumont® : N
¢ ’ -06- B - -f -35% :
Sewoong Oh!, Alex Dimakis’, Jenia Jitsev®", 7 09-06-2023 BLIP2-COCO-finetuned_similarity_top-35% 0.053
Yair Carmon?, Vaishaal Shankar?, Ludwig Schmidt' %7 8 08-03-2023 WS (baselines) 0.059
9 04-28-2023 Baseline: CLIP score (L/14 30%) 0.051
Data Selection task Where the Iea rning 10 09-07-2023 OCR and Naive english filtering 0.057
11 08-05-2024 MoDO 0.051
a Ig Orlt h m (C L I P t ra I n I n g) a n d eva I u at I O n 12 08-25-2023 Fondant baseline, CLIP score (L/14 1%-30%), ascii>4 0.053
I . o 13 08-25-2023 text masked CLIP 30% 0.048
(zero-shot classification) are fixed 14 08022023 GLIP score (L14 30%) baseline 0.049
15 04-28-2023 Baseline: Image-based 0.043

Goal: Curate the best possible dataset
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Task: Selecting CLIP data

Results (DataComp-small)
MGD improvement

(relative to no selection) is

/ double existing methods

&
p—
O1

Q
=
c 0.21 —

ﬁ Method Score A
g" _______________________ Baseline: No filtering 0.13 —
= 0.18 - - Best baseline from [GIF+24] 017  +0.04

O - - - Previous SOTA [Eco24] 0.18 +0.05
% —o— MGD-DS (ours) 0.22  +0.09
o

Best existing method

Metagradient steps

Now working on DataComp-medium (already #1!)
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Results (LESS IFT setting)

New goal: Select instruction fine-tuning data for LM benchmarks (2B param model)

A Accuracy (%)

—
Q1

p—

-
O

-

/ 2X the improvement in MMLU

BBH [S55+22] MMLU [HBB+20]

Acc. JAY Acc. A

All Data 35.2% — 41.2% —
LESS 35.2% —0.0% 41.8% +0.5%
MGD-DS 36.7% +1.5% 42.5% +1.3%
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MMLU
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Task: Poisoning CIFAR-10 training data

Setup

Insert poison data z Train model using fixed Goal: reduce overall
learning algorithm test accuracy

— %@ —— CIFAR10: 85%

“However, in the setting of indiscriminate data poisoning, where an attacker aims to
decrease the overall test accuracy by adding a small fraction of corrupted data, the
effectiveness of existing attacks remains underwhelming.”

& O

Goal: Insert poison datapoints that maximize overall test loss
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Task: Training data attribution

Setup

ar Measure loss on
oose train subset Train a model
test example x:

Goal: Predict the effect of removing some training data on the model's loss on x

Equivalent goal: Predict the model’s loss on x as a function of training data weighting

State of the art: predictions that are moderately correlated with model behavior
[Park Georgiev | Leclerc Madry '24; Grosse Bae Anil et al. '24; many others]
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Task: Training data attribution
Approach

Metaparameter z: vectorz € R" st,, Z. is the weight on i-th training example
Learning algorithm &/: standard model training routine
Output function: Loss function £( - ; x) evaluated on a specific test example

Choose reference parameter to be all-ones vector and Taylor expand

dop(d
pet@) ~ pr )+ (r-,)
z=1

\ |

AKA the exact influence function (Hampel '47)
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(From a different paper; online soon!)

Actual loss

Also works for LMs!
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A brief history of the metagradient

Why hasn't this been done before?

Exact metagradients at small scale [Maclaurin Duvenaud Adams '15; Franceschi et al. '17; ...]
Optimized LR, weight decay, init, etc. for 100-iteration MNIST training
Largest-scale setting: four-layer network on phone classification dataset

Approximate (but large-scale) metagradients via implicit differentiation [Lorraine et al.”19]

Scalable but coarse approximation based on convergence assumption; requires Hessian
estimation & cannot optimize optimizer parameters such as learning rate

Note: These are just three representative works; significant line of work on
differentiating through Optimization [e.g., Domke '12; Nichol et al.'18; Hara '19; Shaban et al.'19: ...]

Broadly, nothing has scaled to "medium"-size training (e.g., >10M params, >1k iters)
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Problem #1: Calculating the gradient

|dea: Direct autodiff (e.g., Domke et al., 2012)

Direct approach: Auto-differentiation (AD) (a)a=ane (a)a=ane
Take derivatives of any function defined by simple “x:_b_j ______ |
operations by saving intermediate products s

Key insight: Training an ML model is just a (very, ¢ ) e=atb 3__ C) c=a+b

very, very long) sequence of operations! Maybe we ; 8+ -

can just backprop through it? il

Problem: Too many intermediate products! i : @ @

We will think of AD as a black box that can compute gradients of a

many — one compute graph O(# edges) memory
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Problem #1: Calculating the gradient

Stepwise AD
Naive approach: AD on full model training - too many "edges" on compute graph to store!
< “ < " < 3 < “

Goal: PA2)) from R > >8> o)

dz

‘91 Ht+1 6’T
Stepwise AD insight: step 7 derivativesWlepend only on step ¢ + 1 derivatives, step 7 state
dfiz) _ dfiz) dby,, dfiz) _ dfiz) dby,,
dz do.., dz do, do.., dob,
— —
One autograd call One autograd call

Algorithm: save all states {Hi}iTzl, do autograd one step at a time from iterate 7" down to 1
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Problem #1: Calculating the gradient

REPLAY: Efficiently calculating metagradients at scale

A simple modification: REPLAY

g{%}‘ Sasha Rush & .
Key piil ng the states 0...0, in reverse order

| really want to figure out an application for Recursive Halving AD
(M (picture from Elements of Differentiable Programming

arxiv.org/pdf/2403.14606). It feels like it should be useful for something

Deter cool. Méybe like on-device test-time derivatives... ay" from a preV|OUS State to rematerlallze

o trade off time and space:
Apply REPLAY here

ss k training segments v

Forward computation Storage in memory Backward computation

Figure 8.8: Illustration of checkpointing with recursive halving, for a chain of
8 functions. The chain is first fully evaluated while storing some computations

as checkpoints in memory. Then, during the backward pass, we recompute some

intermediate values from the latest checkpoint available. In contrast, vanilla reverse-
mode autodiff (with full caching of the intermediate computations) would lead to a [ 3 T

simple triangle shape.
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Are our gradients useful?

A gradient is only "useful” if it locally predicts function behavior
In optimization terms, we want ¢(/(z)) to be "smooth"

Given the complexity of &f(z) for large-scale models, cannot take this for granted!

Indeed: ¢(A(z))
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Problem #2: (Lack of) Smoothness

Are our gradients useful?

A gradient is only "useful” if it locally predicts function behavior

Given the complexity of &f(z) for large-scale models, cannot take this for granted!

Indeed: #(Z(2)) \A iy ...Standard model training is very "non-smooth!”

Need to find "smooth" model training routines!
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Problem #2: (Lack of) Smoothness

Constructing "smooth" model training routines

Goal: design model training routines that do have "smooth" optimization landscapes

Problem: need a cheap + accurate measure of "smoothness”

Desired diagnostic ("Smoothness"): Approximate Taylor predictiveness
Don't have full Jacobian!

Can't take a max!

Hard to interpret this quantitgl .

AW+ Aw) — o (w)

2Ccl Oof metaparameter changes

We adapt this estimator to a new metric Metasmoothness(&/) € [—1,1]
Our final estimator: feasible, interpretable, and accurate!
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Our metric accurately predicts optimization success in practice!

How to train your smooth model:

Layer composition, width
Learning rate/weight decay/batch size

Adam €., momentum/warmup

oot/
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LM only:
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Constructing "smooth" model training routines
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Problem #2: (Lack of) Smoothness

Constructing "smooth" model training routines

Our metric accurately predicts optimization success in practice!

Layer composition, width Final scale
. . . 0.125 «0.5 1.0
Learning rate/weight decay/batch size

Batch size

Adam € ., momentum/warmup *250 ®500 @100 >
N i Width 9

ormallzer € 010 4l5 m20 =
Logit scales BN Placement O

Key property: Optimized parameters “"transfer back” to non-smooth training!

MOoOoTNNESS

Uncoupled (un)embedding

“Smooth model training”
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Future work

Our goal/hope is for the following recipe to be a general one:
1. Pick a design choice you're interested in optimizing/predicting
Write problem as a metaparameter prediction or optimization problem

Find a smooth training setup

> W D

Compute the metagradient
5. Apply gradient descent/Taylor approximation

What do we need to get there?



Future work

What do we need to get there?

1. A more systematic way of finding smooth models
2. More computational efficiency gains

3. More creative ways of applying metagradients
» Hyperparameter optimization? (Simple example in the paper)
» Data weighting networks?
» Synthetic data generators?
» Gradient pre-conditioners?
"Anything we can continuously parameterize, we can (try to) optimize”




Conclusion

Design space of ML is too large to explore - how do we think about design choices?

Approach: Take the gradient of a model output with respect to metaparameters

Challenges:
Computing the metagradient at scale
Making the metagradient useful for optimization

See the paper
. for more!
Addressing these challenges unlocks:
Data selection (> 2x more effective) & attribution
Data poisoning (> 10x more effective)  https://arxiv.org/abs/2503.13751
Gradient-based hyperparameter optimization B andrewi@stanford.edu

What next? % andrewilyas.com
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