
April 3, 2025

Predicting & Optimizing ML Training
Simons “Future of LLMs” Workshop

Collaborators

Logan Engstrom Aleksander MądryAxel FeldmannBen Chen Billy Moses

Collaborators

Logan Engstrom Aleksander MądryAxel FeldmannBen Chen Billy Moses

Graduating now!

Collaborators

Logan Engstrom Aleksander MądryAxel FeldmannBen Chen Billy Moses

Graduating now!

Graduating now (from undergrad)!

Collaborators

Logan Engstrom Aleksander MądryAxel FeldmannBen Chen Billy Moses

Graduating now!

Graduating now (from undergrad)!

Motivation
Training requires many design choices. Making the right choice is hard!

Motivation
Training requires many design choices. Making the right choice is hard!

Model architecture

/ /

Motivation
Training requires many design choices. Making the right choice is hard!

HyperparametersModel architecture

/ /

Motivation
Training requires many design choices. Making the right choice is hard!

Hyperparameters Training datasetModel architecture

/ /

Motivation
Training requires many design choices. Making the right choice is hard!

Fundamental Q: Can we predict and optimize the effect of these choices?
E.g.: Architecture search, scaling laws, data curation

Hyperparameters Training datasetModel architecture

/ /

The dream

A framework for optimizing and predicting the
effect of design choices on model training

Example: Training data

Optimizing: Training data curation
(Sorscher et al. 2022; Gadre et al. 2023; Xie et al. 2024; Xia et al. 2024; Engstrom et al. 2024; many others)

Optimizing: Training data curation
(Sorscher et al. 2022; Gadre et al. 2023; Xie et al. 2024; Xia et al. 2024; Engstrom et al. 2024; many others)

Scraped internet data

Optimizing: Training data curation
(Sorscher et al. 2022; Gadre et al. 2023; Xie et al. 2024; Xia et al. 2024; Engstrom et al. 2024; many others)

+Scraped internet data

Optimizing: Training data curation
(Sorscher et al. 2022; Gadre et al. 2023; Xie et al. 2024; Xia et al. 2024; Engstrom et al. 2024; many others)

+Scraped internet data

Optimizing: Training data curation
(Sorscher et al. 2022; Gadre et al. 2023; Xie et al. 2024; Xia et al. 2024; Engstrom et al. 2024; many others)

+Scraped internet data

Optimizing: Training data curation
(Sorscher et al. 2022; Gadre et al. 2023; Xie et al. 2024; Xia et al. 2024; Engstrom et al. 2024; many others)

+Scraped internet data

electroniccigarettereviewed.info
prestigedentalproducts.com

brain-dumps.us

Optimizing: Training data curation
(Sorscher et al. 2022; Gadre et al. 2023; Xie et al. 2024; Xia et al. 2024; Engstrom et al. 2024; many others)

+Scraped internet data

electroniccigarettereviewed.info
prestigedentalproducts.com

brain-dumps.us

http://ufdc.ufl.edu/AA00010883/00095

ac omplishmnl 'o the mi alon and welR I the men. U (SR 600-17b-I) are
clear enough and cover everybody. iM-be UeIrU d at home first.
lDretewr.. NatM WLWr Of Panama. B Aleol B -w s sin,ambas to V '). ..
&. iZ'." . '- .- '.'" ""5- ". ^ -*," ..^ -^:? ^~-. ; ,'- i ,? '. " ". 1 the eye to
those Europe. like an orlontal: Mrt of the Ch-. te a ter ii wre n capw. to '.
%e anti-trust sutt "I made let of money, but . mg C1 Y ay With ne shot of
a Lot d Aieles mining and. petrlce Wymore is fac9 aur rtl 1 Dalton. Gr at
gag tUdS 't come! Mand Jobaim AIMauccessful- M ." y uw? ie House
ar&rkd, "Hold A mtllon yeas? A trillion? t Arrival." Or are they ageless?

Optimizing: Training data curation
(Sorscher et al. 2022; Gadre et al. 2023; Xie et al. 2024; Xia et al. 2024; Engstrom et al. 2024; many others)

Much of the internet is low-quality: what data should we train on?

Equivalently: can we optimize the training data selection for target performance?

+Scraped internet data

electroniccigarettereviewed.info
prestigedentalproducts.com

brain-dumps.us

http://ufdc.ufl.edu/AA00010883/00095

ac omplishmnl 'o the mi alon and welR I the men. U (SR 600-17b-I) are
clear enough and cover everybody. iM-be UeIrU d at home first.
lDretewr.. NatM WLWr Of Panama. B Aleol B -w s sin,ambas to V '). ..
&. iZ'." . '- .- '.'" ""5- ". ^ -*," ..^ -^:? ^~-. ; ,'- i ,? '. " ". 1 the eye to
those Europe. like an orlontal: Mrt of the Ch-. te a ter ii wre n capw. to '.
%e anti-trust sutt "I made let of money, but . mg C1 Y ay With ne shot of
a Lot d Aieles mining and. petrlce Wymore is fac9 aur rtl 1 Dalton. Gr at
gag tUdS 't come! Mand Jobaim AIMauccessful- M ." y uw? ie House
ar&rkd, "Hold A mtllon yeas? A trillion? t Arrival." Or are they ageless?

Predicting: Training data attribution
(Koh & Liang 2017; Feldman 2019; I et al. 2022; Bae et al. 2023, Park et al. 2024; many others)

Predicting: Training data attribution
(Koh & Liang 2017; Feldman 2019; I et al. 2022; Bae et al. 2023, Park et al. 2024; many others)

Model

Predicting: Training data attribution
(Koh & Liang 2017; Feldman 2019; I et al. 2022; Bae et al. 2023, Park et al. 2024; many others)

Model Predict

Predicting: Training data attribution
(Koh & Liang 2017; Feldman 2019; I et al. 2022; Bae et al. 2023, Park et al. 2024; many others)

Model Predict What is this?

Predicting: Training data attribution
(Koh & Liang 2017; Feldman 2019; I et al. 2022; Bae et al. 2023, Park et al. 2024; many others)

Model Predict

"ship"

What is this?

Predicting: Training data attribution
(Koh & Liang 2017; Feldman 2019; I et al. 2022; Bae et al. 2023, Park et al. 2024; many others)

Model Predict

"ship"

What is this?

🤔

Predicting: Training data attribution
(Koh & Liang 2017; Feldman 2019; I et al. 2022; Bae et al. 2023, Park et al. 2024; many others)

Model Predict

+Training data

Data

"ship"

What is this?

🤔

Predicting: Training data attribution
(Koh & Liang 2017; Feldman 2019; I et al. 2022; Bae et al. 2023, Park et al. 2024; many others)

"What examples in the training data caused this behavior?"

Model Predict

+Training data

Data

"ship"

What is this?

🤔

Predicting: Training data attribution
(Koh & Liang 2017; Feldman 2019; I et al. 2022; Bae et al. 2023, Park et al. 2024; many others)

"What examples in the training data caused this behavior?"

Equivalently: Can we predict change in this behavior as a function of training data?

Model Predict

+Training data

Data

"ship"

What is this?

🤔

Full problem statement

Problem: Metaparameter selection

Problem: Metaparameter selection
Idea: write model output as a direct function of training setup (“metaparameter”)

Problem: Metaparameter selection
Idea: write model output as a direct function of training setup (“metaparameter”)

Metaparameter
z ∈ Z ⊂ ℝd

Problem: Metaparameter selection
Idea: write model output as a direct function of training setup (“metaparameter”)

Metaparameter
z ∈ Z ⊂ ℝd

The aspect(s) of the
training setup that
we want to study

Problem: Metaparameter selection
Idea: write model output as a direct function of training setup (“metaparameter”)

Metaparameter
z ∈ Z ⊂ ℝd

Training routine
𝒜 : Z → Θ

Trained model
θ = 𝒜(z)

The aspect(s) of the
training setup that
we want to study

Problem: Metaparameter selection
Idea: write model output as a direct function of training setup (“metaparameter”)

Metaparameter
z ∈ Z ⊂ ℝd

Training routine
𝒜 : Z → Θ

Trained model
θ = 𝒜(z)

The aspect(s) of the
training setup that
we want to study

Map from metaparameter
to model, all else fixed

Problem: Metaparameter selection
Idea: write model output as a direct function of training setup (“metaparameter”)

Metaparameter
z ∈ Z ⊂ ℝd

Training routine
𝒜 : Z → Θ

Trained model
θ = 𝒜(z)

Output function
ϕ : Θ → ℝ

Final output
ϕ(𝒜(z))

The aspect(s) of the
training setup that
we want to study

Map from metaparameter
to model, all else fixed

Problem: Metaparameter selection
Idea: write model output as a direct function of training setup (“metaparameter”)

Metaparameter
z ∈ Z ⊂ ℝd

Training routine
𝒜 : Z → Θ

Trained model
θ = 𝒜(z)

Output function
ϕ : Θ → ℝ

Final output
ϕ(𝒜(z))

The aspect(s) of the
training setup that
we want to study

The loss/target
metric of interest

Map from metaparameter
to model, all else fixed

Problem: Metaparameter selection
Idea: write model output as a direct function of training setup (“metaparameter”)

Goals:

Metaparameter
z ∈ Z ⊂ ℝd

Training routine
𝒜 : Z → Θ

Trained model
θ = 𝒜(z)

Output function
ϕ : Θ → ℝ

Final output
ϕ(𝒜(z))

The aspect(s) of the
training setup that
we want to study

The loss/target
metric of interest

Map from metaparameter
to model, all else fixed

Problem: Metaparameter selection
Idea: write model output as a direct function of training setup (“metaparameter”)

Goals:
Optimization: Find metaparameter minimizing outputz* = arg min

z
ϕ(𝒜(z))

Metaparameter
z ∈ Z ⊂ ℝd

Training routine
𝒜 : Z → Θ

Trained model
θ = 𝒜(z)

Output function
ϕ : Θ → ℝ

Final output
ϕ(𝒜(z))

The aspect(s) of the
training setup that
we want to study

The loss/target
metric of interest

Map from metaparameter
to model, all else fixed

Problem: Metaparameter selection
Idea: write model output as a direct function of training setup (“metaparameter”)

Goals:
Optimization: Find metaparameter minimizing outputz* = arg min

z
ϕ(𝒜(z))

Prediction: Find , direct model output estimator (does not invoke)̂f(z) ≈ ϕ(𝒜(z)) 𝒜

Metaparameter
z ∈ Z ⊂ ℝd

Training routine
𝒜 : Z → Θ

Trained model
θ = 𝒜(z)

Output function
ϕ : Θ → ℝ

Final output
ϕ(𝒜(z))

The aspect(s) of the
training setup that
we want to study

The loss/target
metric of interest

Map from metaparameter
to model, all else fixed

Problem: Metaparameter selection
Idea: write model output as a direct function of training setup (“metaparameter”)

Goals:
Optimization: Find metaparameter minimizing outputz* = arg min

z
ϕ(𝒜(z))

Prediction: Find , direct model output estimator (does not invoke)̂f(z) ≈ ϕ(𝒜(z)) 𝒜

Captures data curation & attribution but also many established ML challenges

Metaparameter
z ∈ Z ⊂ ℝd

Training routine
𝒜 : Z → Θ

Trained model
θ = 𝒜(z)

Output function
ϕ : Θ → ℝ

Final output
ϕ(𝒜(z))

The aspect(s) of the
training setup that
we want to study

The loss/target
metric of interest

Map from metaparameter
to model, all else fixed

Problem: Metaparameter selection
Idea: write model output as a direct function of training setup (“metaparameter”)

Metaparameter
z ∈ Z ⊂ ℝd

Training routine
𝒜 : Z → Θ

Output function
ϕ : Θ → ℝ

Trained model
θ = 𝒜(z)

Final output
ϕ(𝒜(z))

The aspect(s) of the
training setup that
we want to study

The loss/target
metric of interest

Map from metaparameter
to model, all else fixed

Problem: Metaparameter selection
Idea: write model output as a direct function of training setup (“metaparameter”)

Metaparameter
z ∈ Z ⊂ ℝd

Training routine
𝒜 : Z → Θ

Output function
ϕ : Θ → ℝ

Trained model
θ = 𝒜(z)

Final output
ϕ(𝒜(z))

This will be our data selection:

 = number of training examples
 means don’t train on
 means train on with importance weight

d
zi = 0 i
zi > 0 i zi

The aspect(s) of the
training setup that
we want to study

The loss/target
metric of interest

Map from metaparameter
to model, all else fixed

Problem: Metaparameter selection
Idea: write model output as a direct function of training setup (“metaparameter”)

Metaparameter
z ∈ Z ⊂ ℝd

Training routine
𝒜 : Z → Θ

Output function
ϕ : Θ → ℝ

Trained model
θ = 𝒜(z)

Final output
ϕ(𝒜(z))

Data selection

This will be a model trained on the selected data:
We will treat everything (hyperparameters, model
architecture, optimizer, etc.) as fixed/part of 𝒜

The aspect(s) of the
training setup that
we want to study

The loss/target
metric of interest

Map from metaparameter
to model, all else fixed

Problem: Metaparameter selection
Idea: write model output as a direct function of training setup (“metaparameter”)

Metaparameter
z ∈ Z ⊂ ℝd

Training routine
𝒜 : Z → Θ

Output function
ϕ : Θ → ℝ

Trained model
θ = 𝒜(z)

Final output
ϕ(𝒜(z))

Data selection Model trained on
selected data

This will be the output of the model trained on
Might be the loss on a specific fixed target
example, or performance on a fixed test set

z

The aspect(s) of the
training setup that
we want to study

The loss/target
metric of interest

Map from metaparameter
to model, all else fixed

Problem: Metaparameter selection
Idea: write model output as a direct function of training setup (“metaparameter”)

Metaparameter
z ∈ Z ⊂ ℝd

Training routine
𝒜 : Z → Θ

Output function
ϕ : Θ → ℝ

Trained model
θ = 𝒜(z)

Final output
ϕ(𝒜(z))

Data selection Model trained on
selected data Final model output

Goal (Data curation)

Find the selection that minimizes the resulting
model’s test loss

z

The aspect(s) of the
training setup that
we want to study

The loss/target
metric of interest

Map from metaparameter
to model, all else fixed

Problem: Metaparameter selection
Idea: write model output as a direct function of training setup (“metaparameter”)

Metaparameter
z ∈ Z ⊂ ℝd

Training routine
𝒜 : Z → Θ

Output function
ϕ : Θ → ℝ

Trained model
θ = 𝒜(z)

Final output
ϕ(𝒜(z))

Data selection Model trained on
selected data Final model output

Goal (Data curation)

Find the selection that minimizes the resulting
model’s test loss

z
Goal (Data attribution)

Predict how changing the selection will change
resulting model’s output

z

The aspect(s) of the
training setup that
we want to study

The loss/target
metric of interest

Map from metaparameter
to model, all else fixed

Roadmap

Main idea: The metagradient

Prequel: Two challenges

Looking forward

Roadmap

Main idea: The metagradient

Prequel: Two challenges

Looking forward

Main idea: The metagradient

z θ = 𝒜(z) ϕ(θ)
Training

setup
Trained
model

Model
output

In many cases, metaparameter is a continuous variable (or can be relaxed to one)z

Main idea: The metagradient

z θ = 𝒜(z) ϕ(θ)
Training

setup
Trained
model

Model
output

In many cases, metaparameter is a continuous variable (or can be relaxed to one)z
We will show how to compute and use the metagradient:

Main idea: The metagradient

z θ = 𝒜(z) ϕ(θ)
Training

setup
Trained
model

Model
output

In many cases, metaparameter is a continuous variable (or can be relaxed to one)z
We will show how to compute and use the metagradient:

Main idea: The metagradient

z θ = 𝒜(z) ϕ(θ)
Training

setup
Trained
model

Model
output

Metagradient ∇zϕ(𝒜(z))

In many cases, metaparameter is a continuous variable (or can be relaxed to one)z
We will show how to compute and use the metagradient:

Cost: In practice, “only” 3-5x the cost of model training!

Main idea: The metagradient

z θ = 𝒜(z) ϕ(θ)
Training

setup
Trained
model

Model
output

Metagradient ∇zϕ(𝒜(z))

Main idea: The metagradient

Metagradients offer a powerful way to optimize
and predict (aspects of) model behavior

Optimizing with metagradients

Optimizing with metagradients
Given a task:

Optimizing with metagradients
Given a task:

1. Rewrite problem in terms of model outputs (as a function of a metaparameter)

Optimizing with metagradients
Given a task:

1. Rewrite problem in terms of model outputs (as a function of a metaparameter)
Decide on appropriate , , so that the problem becomes z 𝒜 ϕ min

z∈ℝd
ϕ(𝒜(z))

Optimizing with metagradients
Given a task:

1. Rewrite problem in terms of model outputs (as a function of a metaparameter)
Decide on appropriate , , so that the problem becomes z 𝒜 ϕ min

z∈ℝd
ϕ(𝒜(z))

2. Solve via (meta)gradient descent:

Optimizing with metagradients
Given a task:

1. Rewrite problem in terms of model outputs (as a function of a metaparameter)
Decide on appropriate , , so that the problem becomes z 𝒜 ϕ min

z∈ℝd
ϕ(𝒜(z))

2. Solve via (meta)gradient descent:
A. Pick a starting and number of steps z(0) T

Optimizing with metagradients
Given a task:

1. Rewrite problem in terms of model outputs (as a function of a metaparameter)
Decide on appropriate , , so that the problem becomes z 𝒜 ϕ min

z∈ℝd
ϕ(𝒜(z))

2. Solve via (meta)gradient descent:
A. Pick a starting and number of steps z(0) T
B. For Compute and descendi = 1…T : g := ∇zϕ(𝒜(z(i−1)))

Optimizing with metagradients
Given a task:

1. Rewrite problem in terms of model outputs (as a function of a metaparameter)
Decide on appropriate , , so that the problem becomes z 𝒜 ϕ min

z∈ℝd
ϕ(𝒜(z))

2. Solve via (meta)gradient descent:
A. Pick a starting and number of steps z(0) T
B. For Compute and descendi = 1…T : g := ∇zϕ(𝒜(z(i−1)))

Requires total metagradient calculationsT

Task: Data selection

Task: Data selection

Choose train subset

Task: Data selection

Train a modelChoose train subset

Task: Data selection

Train a modelChoose train subset Measure loss on a
target/test set:

Task: Data selection

Goal: Select the training data subset minimizing loss on the target set

Train a modelChoose train subset Measure loss on a
target/test set:

Task: Data selection

Goal: Select the training data subset minimizing loss on the target set
 Equivalent goal: Find the training data weighting minimizing loss on the target set

Train a modelChoose train subset Measure loss on a
target/test set:

Task: Data selection

Goal: Select the training data subset minimizing loss on the target set
 Equivalent goal: Find the training data weighting minimizing loss on the target set

Train a modelChoose train subset Measure loss on a
target/test set:

Task: Data selection

Goal: Select the training data subset minimizing loss on the target set
 Equivalent goal: Find the training data weighting minimizing loss on the target set

Train a modelChoose train subset Measure loss on a
target/test set:

Increasingly recognized as a critical step in large-scale ML pipeline

Task: Selecting CLIP data
Approach

Task: Selecting CLIP data
Approach
Metaparameter : vector s.t., is the weight on -th training examplez z ∈ ℝN zi i

Task: Selecting CLIP data
Approach
Metaparameter : vector s.t., is the weight on -th training examplez z ∈ ℝN zi i
Learning algorithm : standardized CLIP training routine𝒜

Task: Selecting CLIP data
Approach
Metaparameter : vector s.t., is the weight on -th training examplez z ∈ ℝN zi i
Learning algorithm : standardized CLIP training routine𝒜
Output function: Loss function evaluated on target tasksLtarg

Task: Selecting CLIP data
Approach
Metaparameter : vector s.t., is the weight on -th training examplez z ∈ ℝN zi i
Learning algorithm : standardized CLIP training routine𝒜
Output function: Loss function evaluated on target tasksLtarg

Repeat, starting from :z = 1N

Task: Selecting CLIP data
Approach
Metaparameter : vector s.t., is the weight on -th training examplez z ∈ ℝN zi i
Learning algorithm : standardized CLIP training routine𝒜
Output function: Loss function evaluated on target tasksLtarg

Repeat, starting from :z = 1N
1. Train model weighting the training points by z

Task: Selecting CLIP data
Approach
Metaparameter : vector s.t., is the weight on -th training examplez z ∈ ℝN zi i
Learning algorithm : standardized CLIP training routine𝒜
Output function: Loss function evaluated on target tasksLtarg

Repeat, starting from :z = 1N
1. Train model weighting the training points by z
2. Calculate metagradient g = ∇zϕ(𝒜(z))

Task: Selecting CLIP data
Approach
Metaparameter : vector s.t., is the weight on -th training examplez z ∈ ℝN zi i
Learning algorithm : standardized CLIP training routine𝒜
Output function: Loss function evaluated on target tasksLtarg

Repeat, starting from :z = 1N
1. Train model weighting the training points by z
2. Calculate metagradient g = ∇zϕ(𝒜(z))
3. Update z ← z − sign(g)

Task: Selecting CLIP data
Approach
Metaparameter : vector s.t., is the weight on -th training examplez z ∈ ℝN zi i
Learning algorithm : standardized CLIP training routine𝒜
Output function: Loss function evaluated on target tasksLtarg

Repeat, starting from :z = 1N
1. Train model weighting the training points by z
2. Calculate metagradient g = ∇zϕ(𝒜(z))
3. Update z ← z − sign(g)

*simplified

Task: Selecting CLIP data
Setup

Task: Selecting CLIP data
Setup

Task: Selecting CLIP data
Setup

Data selection task where the learning
algorithm (CLIP training) and evaluation

(zero-shot classification) are fixed

Task: Selecting CLIP data
Setup

Data selection task where the learning
algorithm (CLIP training) and evaluation

(zero-shot classification) are fixed
Goal: Curate the best possible dataset

Task: Selecting CLIP data
Setup

Data selection task where the learning
algorithm (CLIP training) and evaluation

(zero-shot classification) are fixed
Goal: Curate the best possible dataset …

Example leaderboard (small):

Task: Selecting CLIP data
Results (DataComp-small)

Task: Selecting CLIP data
Results (DataComp-small)

Task: Selecting CLIP data
Results (DataComp-small)

Task: Selecting CLIP data
Results (DataComp-small)

Best existing method

Task: Selecting CLIP data
Results (DataComp-small)

MGD improvement
(relative to no selection) is
double existing methods'

Best existing method

Task: Selecting CLIP data
Results (DataComp-small)

MGD improvement
(relative to no selection) is
double existing methods'

Best existing method

Now working on DataComp-medium (already #1!)

Task: Selecting instruction fine-tuning data
Results (LESS IFT setting)

Task: Selecting instruction fine-tuning data
New goal: Select instruction fine-tuning data for LM benchmarks (2B param model)
Results (LESS IFT setting)

Task: Selecting instruction fine-tuning data
New goal: Select instruction fine-tuning data for LM benchmarks (2B param model)
Results (LESS IFT setting)

Task: Selecting instruction fine-tuning data
New goal: Select instruction fine-tuning data for LM benchmarks (2B param model)
Results (LESS IFT setting)

Task: Selecting instruction fine-tuning data
New goal: Select instruction fine-tuning data for LM benchmarks (2B param model)

Previous methods harm performance in BBH

Results (LESS IFT setting)

Task: Selecting instruction fine-tuning data
New goal: Select instruction fine-tuning data for LM benchmarks (2B param model)

2x the improvement in MMLU

Previous methods harm performance in BBH

Results (LESS IFT setting)

Task: Poisoning CIFAR-10 training data
Setup

Task: Poisoning CIFAR-10 training data
Setup

Insert poison data z

Task: Poisoning CIFAR-10 training data
Setup

Train model using fixed
learning algorithm

Insert poison data z

Task: Poisoning CIFAR-10 training data
Setup

Train model using fixed
learning algorithm

CIFAR10: 85%

Goal: reduce overall
test accuracy

Insert poison data z

Task: Poisoning CIFAR-10 training data
Setup

Goal: Insert poison datapoints that maximize overall test loss

Train model using fixed
learning algorithm

CIFAR10: 85%

Goal: reduce overall
test accuracy

Insert poison data z

Task: Poisoning CIFAR-10 training data
Setup

Goal: Insert poison datapoints that maximize overall test loss

Train model using fixed
learning algorithm

CIFAR10: 85%

Goal: reduce overall
test accuracy

Insert poison data z

“However, in the setting of indiscriminate data poisoning, where an attacker aims to
decrease the overall test accuracy by adding a small fraction of corrupted data, the
effectiveness of existing attacks remains underwhelming.”

[Lu Kamath Yu ’23]

Task: Poisoning CIFAR-10 training data
Approach

Task: Poisoning CIFAR-10 training data
Approach

Metaparameter : tensor of poison pixels and labelsz z ∈ ℝεN×32×32×3 × ℝεN×10

Task: Poisoning CIFAR-10 training data
Approach

Metaparameter : tensor of poison pixels and labelsz z ∈ ℝεN×32×32×3 × ℝεN×10

Learning algorithm : standardized CIFAR-10 training (ResNet)𝒜

Task: Poisoning CIFAR-10 training data
Approach

Metaparameter : tensor of poison pixels and labelsz z ∈ ℝεN×32×32×3 × ℝεN×10

Learning algorithm : standardized CIFAR-10 training (ResNet)𝒜
Output function: Loss evaluated on a heldout validation setLval

Task: Poisoning CIFAR-10 training data
Approach

Metaparameter : tensor of poison pixels and labelsz z ∈ ℝεN×32×32×3 × ℝεN×10

Learning algorithm : standardized CIFAR-10 training (ResNet)𝒜
Output function: Loss evaluated on a heldout validation setLval

Repeat, starting from being the first -fraction of the training data:z ε

Task: Poisoning CIFAR-10 training data
Approach

Metaparameter : tensor of poison pixels and labelsz z ∈ ℝεN×32×32×3 × ℝεN×10

Learning algorithm : standardized CIFAR-10 training (ResNet)𝒜
Output function: Loss evaluated on a heldout validation setLval

Repeat, starting from being the first -fraction of the training data:z ε
1. Train model, replacing the first -fraction of the training set with ε z

Task: Poisoning CIFAR-10 training data
Approach

Metaparameter : tensor of poison pixels and labelsz z ∈ ℝεN×32×32×3 × ℝεN×10

Learning algorithm : standardized CIFAR-10 training (ResNet)𝒜
Output function: Loss evaluated on a heldout validation setLval

Repeat, starting from being the first -fraction of the training data:z ε
1. Train model, replacing the first -fraction of the training set with ε z
2. Calculate metagradient g = ∇zϕ(𝒜(z))

Task: Poisoning CIFAR-10 training data
Approach

Metaparameter : tensor of poison pixels and labelsz z ∈ ℝεN×32×32×3 × ℝεN×10

Learning algorithm : standardized CIFAR-10 training (ResNet)𝒜
Output function: Loss evaluated on a heldout validation setLval

Repeat, starting from being the first -fraction of the training data:z ε
1. Train model, replacing the first -fraction of the training set with ε z
2. Calculate metagradient g = ∇zϕ(𝒜(z))
3. Update z ← z + η ⋅ g

Task: Poisoning CIFAR-10 training data
Approach

Metaparameter : tensor of poison pixels and labelsz z ∈ ℝεN×32×32×3 × ℝεN×10

Learning algorithm : standardized CIFAR-10 training (ResNet)𝒜
Output function: Loss evaluated on a heldout validation setLval

Repeat, starting from being the first -fraction of the training data:z ε
1. Train model, replacing the first -fraction of the training set with ε z
2. Calculate metagradient g = ∇zϕ(𝒜(z))
3. Update z ← z + η ⋅ g

(this is the full algorithm)

Task: Poisoning CIFAR-10 training data
Results

Task: Poisoning CIFAR-10 training data
Results

Task: Poisoning CIFAR-10 training data
Results

Task: Poisoning CIFAR-10 training data
Results

Poisoned
samples:

Task: Poisoning CIFAR-10 training data
Results We induce 17x the accuracy

drop vs. existing methods

Poisoned
samples:

Predicting with metagradients

Predicting with metagradients
Given a prediction task:

Predicting with metagradients
Given a prediction task:

1. Rewrite problem as a function of a metaparameter

Predicting with metagradients
Given a prediction task:

1. Rewrite problem as a function of a metaparameter
Decide on appropriate , , so that the problem becomes estimating z 𝒜 ϕ ϕ(𝒜(z))

Predicting with metagradients
Given a prediction task:

1. Rewrite problem as a function of a metaparameter
Decide on appropriate , , so that the problem becomes estimating z 𝒜 ϕ ϕ(𝒜(z))

2. For reference metaparameter , compute and z0 ϕ(𝒜(z0)) ∇zϕ(𝒜(z0))

Predicting with metagradients
Given a prediction task:

1. Rewrite problem as a function of a metaparameter
Decide on appropriate , , so that the problem becomes estimating z 𝒜 ϕ ϕ(𝒜(z))

2. For reference metaparameter , compute and z0 ϕ(𝒜(z0)) ∇zϕ(𝒜(z0))

3. For any metaparameter , predict z ϕ(𝒜(z0)) + (z − z0)⊤ ∇zϕ(𝒜(z0))

Predicting with metagradients
Given a prediction task:

1. Rewrite problem as a function of a metaparameter
Decide on appropriate , , so that the problem becomes estimating z 𝒜 ϕ ϕ(𝒜(z))

2. For reference metaparameter , compute and z0 ϕ(𝒜(z0)) ∇zϕ(𝒜(z0))

3. For any metaparameter , predict z ϕ(𝒜(z0)) + (z − z0)⊤ ∇zϕ(𝒜(z0))
This is just a linear function of , no “extra computation” beyond z z0

Task: Training data attribution
Setup

Task: Training data attribution
Setup

Choose train subset

Task: Training data attribution
Setup

Train a modelChoose train subset

Task: Training data attribution
Setup

Train a modelChoose train subset
Measure loss on
test example :x

Task: Training data attribution
Setup

Goal: Predict the effect of removing some training data on the model’s loss on x

Train a modelChoose train subset
Measure loss on
test example :x

Task: Training data attribution
Setup

Goal: Predict the effect of removing some training data on the model’s loss on x
Equivalent goal: Predict the model’s loss on as a function of training data weightingx

Train a modelChoose train subset
Measure loss on
test example :x

Task: Training data attribution
Setup

Goal: Predict the effect of removing some training data on the model’s loss on x
Equivalent goal: Predict the model’s loss on as a function of training data weightingx

State of the art: predictions that are moderately correlated with model behavior

Train a modelChoose train subset
Measure loss on
test example :x

Task: Training data attribution
Setup

Goal: Predict the effect of removing some training data on the model’s loss on x
Equivalent goal: Predict the model’s loss on as a function of training data weightingx

State of the art: predictions that are moderately correlated with model behavior
[Park Georgiev I Leclerc Madry ’24; Grosse Bae Anil et al. ’24; many others]

Train a modelChoose train subset
Measure loss on
test example :x

Task: Training data attribution
Approach

Task: Training data attribution
Approach
Metaparameter : vector s.t., is the weight on -th training examplez z ∈ ℝn zi i

Task: Training data attribution
Approach
Metaparameter : vector s.t., is the weight on -th training examplez z ∈ ℝn zi i
Learning algorithm : standard model training routine𝒜

Task: Training data attribution
Approach
Metaparameter : vector s.t., is the weight on -th training examplez z ∈ ℝn zi i
Learning algorithm : standard model training routine𝒜
Output function: Loss function evaluated on a specific test exampleℓ(⋅ ; x)

Task: Training data attribution
Approach
Metaparameter : vector s.t., is the weight on -th training examplez z ∈ ℝn zi i
Learning algorithm : standard model training routine𝒜
Output function: Loss function evaluated on a specific test exampleℓ(⋅ ; x)

Choose reference parameter to be all-ones vector and Taylor expand

Task: Training data attribution
Approach
Metaparameter : vector s.t., is the weight on -th training examplez z ∈ ℝn zi i
Learning algorithm : standard model training routine𝒜
Output function: Loss function evaluated on a specific test exampleℓ(⋅ ; x)

Choose reference parameter to be all-ones vector and Taylor expand

ϕ(𝒜(z)) ≈ ϕ(𝒜((1n)) +
dϕ(𝒜(z))

dz z=1n

(z − 1n)

Task: Training data attribution
Approach
Metaparameter : vector s.t., is the weight on -th training examplez z ∈ ℝn zi i
Learning algorithm : standard model training routine𝒜
Output function: Loss function evaluated on a specific test exampleℓ(⋅ ; x)

Choose reference parameter to be all-ones vector and Taylor expand

ϕ(𝒜(z)) ≈ ϕ(𝒜((1n)) +
dϕ(𝒜(z))

dz z=1n

(z − 1n)

AKA the exact influence function (Hampel ’47)

Task: Training data attribution
Results

Task: Training data attribution
Results
Deleting 1% random subsets from CIFAR-10 training:

Task: Training data attribution
Results
Deleting 1% random subsets from CIFAR-10 training:

Task: Training data attribution
Results
Deleting 1% random subsets from CIFAR-10 training:

Near-perfect predictions
(, well-scaled)ρ = 0.9

Task: Training data attribution
Results
Deleting 1% random subsets from CIFAR-10 training:

Near-perfect predictions
(, well-scaled)ρ = 0.9

Best baseline
(, uncalibrated)ρ = 0.4

Task: Training data attribution
Results
Deleting 1% random subsets from CIFAR-10 training:

Also works for LMs!
Deleting 1% of data from
Gemma-2B fine-tuning

Task: Training data attribution
Results
Deleting 1% random subsets from CIFAR-10 training:

Also works for LMs!
Deleting 1% of data from
Gemma-2B fine-tuning

(From a different paper; online soon!)

Roadmap

Main idea: The metagradient

Prequel: Two challenges

Looking forward

A brief history of the metagradient
Why hasn’t this been done before?

A brief history of the metagradient
Why hasn’t this been done before?
Exact metagradients at small scale [Maclaurin Duvenaud Adams ’15; Franceschi et al. ’17; …]

Optimized LR, weight decay, init, etc. for 100-iteration MNIST training
Largest-scale setting: four-layer network on phone classification dataset

A brief history of the metagradient
Why hasn’t this been done before?
Exact metagradients at small scale [Maclaurin Duvenaud Adams ’15; Franceschi et al. ’17; …]

Optimized LR, weight decay, init, etc. for 100-iteration MNIST training
Largest-scale setting: four-layer network on phone classification dataset

Approximate (but large-scale) metagradients via implicit differentiation [Lorraine et al. ’19]

Scalable but coarse approximation based on convergence assumption; requires Hessian
estimation & cannot optimize optimizer parameters such as learning rate

A brief history of the metagradient
Why hasn’t this been done before?
Exact metagradients at small scale [Maclaurin Duvenaud Adams ’15; Franceschi et al. ’17; …]

Optimized LR, weight decay, init, etc. for 100-iteration MNIST training
Largest-scale setting: four-layer network on phone classification dataset

Approximate (but large-scale) metagradients via implicit differentiation [Lorraine et al. ’19]

Scalable but coarse approximation based on convergence assumption; requires Hessian
estimation & cannot optimize optimizer parameters such as learning rate

Note: These are just three representative works; significant line of work on
differentiating through optimization [e.g., Domke ’12; Nichol et al. ’18; Hara ’19; Shaban et al. ’19; …]

A brief history of the metagradient
Why hasn’t this been done before?
Exact metagradients at small scale [Maclaurin Duvenaud Adams ’15; Franceschi et al. ’17; …]

Optimized LR, weight decay, init, etc. for 100-iteration MNIST training
Largest-scale setting: four-layer network on phone classification dataset

Approximate (but large-scale) metagradients via implicit differentiation [Lorraine et al. ’19]

Scalable but coarse approximation based on convergence assumption; requires Hessian
estimation & cannot optimize optimizer parameters such as learning rate

Note: These are just three representative works; significant line of work on
differentiating through optimization [e.g., Domke ’12; Nichol et al. ’18; Hara ’19; Shaban et al. ’19; …]

Broadly, nothing has scaled to "medium"-size training (e.g., >10M params, >1k iters)

Metagradient roadmap: Two challenges

Two barriers to optimizing with the metagradient ∇zϕ(𝒜(z))

Metagradient roadmap: Two challenges

Two barriers to optimizing with the metagradient ∇zϕ(𝒜(z))

Metagradient roadmap: Two challenges

#1: Computational tractability
steps

Memory

Two barriers to optimizing with the metagradient ∇zϕ(𝒜(z))

Metagradient roadmap: Two challenges

#1: Computational tractability
steps

Memory

#2: Optimization (non)smoothness
z

ϕ(𝒜(z))

Two barriers to optimizing with the metagradient ∇zϕ(𝒜(z))

Metagradient roadmap: Two challenges

#1: Computational tractability
steps

Memory

#2: Optimization (non)smoothness
z

ϕ(𝒜(z))

Two barriers to optimizing with the metagradient ∇zϕ(𝒜(z))

Metagradient roadmap: Two challenges

#1: Computational tractability
steps

Memory

#2: Optimization (non)smoothness
z

ϕ(𝒜(z))

Problem #1: Calculating the gradient
Idea: Direct autodiff (e.g., Domke et al., 2012)

Problem #1: Calculating the gradient
Idea: Direct autodiff (e.g., Domke et al., 2012)

Direct approach: Auto-differentiation (AD)

Problem #1: Calculating the gradient
Idea: Direct autodiff (e.g., Domke et al., 2012)

Direct approach: Auto-differentiation (AD)
Take derivatives of any function defined by simple
operations by saving intermediate products

Problem #1: Calculating the gradient
Idea: Direct autodiff (e.g., Domke et al., 2012)

Direct approach: Auto-differentiation (AD)
Take derivatives of any function defined by simple
operations by saving intermediate products

Problem #1: Calculating the gradient
Idea: Direct autodiff (e.g., Domke et al., 2012)

Direct approach: Auto-differentiation (AD)
Take derivatives of any function defined by simple
operations by saving intermediate products

Key insight: Training an ML model is just a (very,
very, very long) sequence of operations! Maybe we
can just backprop through it?

Problem #1: Calculating the gradient
Idea: Direct autodiff (e.g., Domke et al., 2012)

Direct approach: Auto-differentiation (AD)
Take derivatives of any function defined by simple
operations by saving intermediate products

Key insight: Training an ML model is just a (very,
very, very long) sequence of operations! Maybe we
can just backprop through it?
Problem: Too many intermediate products!

Problem #1: Calculating the gradient
Idea: Direct autodiff (e.g., Domke et al., 2012)

Direct approach: Auto-differentiation (AD)
Take derivatives of any function defined by simple
operations by saving intermediate products

Key insight: Training an ML model is just a (very,
very, very long) sequence of operations! Maybe we
can just backprop through it?
Problem: Too many intermediate products!

We will think of AD as a black box that can compute gradients of a
many one compute graph memory→ O(# edges)

Problem #1: Calculating the gradient
Stepwise AD (Franceschi et al. 2017; Hara et al. 2019; many others)

Naive approach: AD on full model training - too many "edges" on compute graph to store!

Problem #1: Calculating the gradient
Stepwise AD (Franceschi et al. 2017; Hara et al. 2019; many others)

Naive approach: AD on full model training - too many "edges" on compute graph to store!

Problem #1: Calculating the gradient
Stepwise AD (Franceschi et al. 2017; Hara et al. 2019; many others)

θt θt+1 θT

ϕ(⋅)
z z z z

⋯

θ1

z
⋯Goal: from

dϕ(𝒜(z))
dz

Stepwise AD insight: step derivatives depend only on step derivatives, step statet t + 1 t

Naive approach: AD on full model training - too many "edges" on compute graph to store!

Problem #1: Calculating the gradient
Stepwise AD (Franceschi et al. 2017; Hara et al. 2019; many others)

θt θt+1 θT

ϕ(⋅)
z z z z

⋯

θ1

z
⋯Goal: from

dϕ(𝒜(z))
dz

Stepwise AD insight: step derivatives depend only on step derivatives, step statet t + 1 t

Naive approach: AD on full model training - too many "edges" on compute graph to store!

Problem #1: Calculating the gradient
Stepwise AD (Franceschi et al. 2017; Hara et al. 2019; many others)

df(z)
dz

=
df(z)
dθt+1

⋅
dθt+1

dz
df(z)
dθt

=
df(z)
dθt+1

⋅
dθt+1

dθt

θt θt+1 θT

ϕ(⋅)
z z z z

⋯

θ1

z
⋯Goal: from

dϕ(𝒜(z))
dz

Stepwise AD insight: step derivatives depend only on step derivatives, step statet t + 1 t

Naive approach: AD on full model training - too many "edges" on compute graph to store!

Problem #1: Calculating the gradient
Stepwise AD (Franceschi et al. 2017; Hara et al. 2019; many others)

df(z)
dz

=
df(z)
dθt+1

⋅
dθt+1

dz
df(z)
dθt

=
df(z)
dθt+1

⋅
dθt+1

dθt

θt θt+1 θT

ϕ(⋅)
z z z z

⋯

θ1

z
⋯Goal: from

dϕ(𝒜(z))
dz

One autograd call One autograd call

Stepwise AD insight: step derivatives depend only on step derivatives, step statet t + 1 t

Algorithm: save all states , do autograd one step at a time from iterate down to 1{θi}T
i=1 T

Naive approach: AD on full model training - too many "edges" on compute graph to store!

Problem #1: Calculating the gradient
Stepwise AD (Franceschi et al. 2017; Hara et al. 2019; many others)

df(z)
dz

=
df(z)
dθt+1

⋅
dθt+1

dz
df(z)
dθt

=
df(z)
dθt+1

⋅
dθt+1

dθt

θt θt+1 θT

ϕ(⋅)
z z z z

⋯

θ1

z
⋯Goal: from

dϕ(𝒜(z))
dz

One autograd call One autograd call

Problem #1: Calculating the gradient
REPLAY: Efficiently calculating metagradients at scale

Problem #1: Calculating the gradient
REPLAY: Efficiently calculating metagradients at scale

A simple modification: REPLAY

Problem #1: Calculating the gradient
REPLAY: Efficiently calculating metagradients at scale

A simple modification: REPLAY
Key primitive of step-wise AD: traversing the states in reverse orderθT…θ1

Problem #1: Calculating the gradient
REPLAY: Efficiently calculating metagradients at scale

A simple modification: REPLAY
Key primitive of step-wise AD: traversing the states in reverse orderθT…θ1

(Maclaurin Duvenaud & Adams, 2015)

Problem #1: Calculating the gradient
REPLAY: Efficiently calculating metagradients at scale

A simple modification: REPLAY
Key primitive of step-wise AD: traversing the states in reverse orderθT…θ1

(Maclaurin Duvenaud & Adams, 2015)

Deterministic training allows us to “replay” from a previous state to rematerialize

Problem #1: Calculating the gradient
REPLAY: Efficiently calculating metagradients at scale

A simple modification: REPLAY
Key primitive of step-wise AD: traversing the states in reverse orderθT…θ1

(Maclaurin Duvenaud & Adams, 2015)

Deterministic training allows us to “replay” from a previous state to rematerialize
Design a data structure that allows us to trade off time and space:

Problem #1: Calculating the gradient
REPLAY: Efficiently calculating metagradients at scale

A simple modification: REPLAY
Key primitive of step-wise AD: traversing the states in reverse orderθT…θ1

(Maclaurin Duvenaud & Adams, 2015)

Deterministic training allows us to “replay” from a previous state to rematerialize
Design a data structure that allows us to trade off time and space:

Step-wise AD: Save every state, traverse states in reverse

Problem #1: Calculating the gradient
REPLAY: Efficiently calculating metagradients at scale

A simple modification: REPLAY
Key primitive of step-wise AD: traversing the states in reverse orderθT…θ1

(Maclaurin Duvenaud & Adams, 2015)

Deterministic training allows us to “replay” from a previous state to rematerialize
Design a data structure that allows us to trade off time and space:

Step-wise AD: Save every state, traverse states in reverse

θ1 θ2 θT−6 θT−5 θT−4 θT−3 θT−2 θT−1 θT

⋯

Problem #1: Calculating the gradient
REPLAY: Efficiently calculating metagradients at scale

A simple modification: REPLAY
Key primitive of step-wise AD: traversing the states in reverse orderθT…θ1

(Maclaurin Duvenaud & Adams, 2015)

Deterministic training allows us to “replay” from a previous state to rematerialize
Design a data structure that allows us to trade off time and space:

Step-wise AD: Save every state, traverse states in reverse

θ1 θ2 θT−6 θT−5 θT−4 θT−3 θT−2 θT−1 θT

⋯

Problem #1: Calculating the gradient
REPLAY: Efficiently calculating metagradients at scale

A simple modification: REPLAY
Key primitive of step-wise AD: traversing the states in reverse orderθT…θ1

(Maclaurin Duvenaud & Adams, 2015)

Deterministic training allows us to “replay” from a previous state to rematerialize
Design a data structure that allows us to trade off time and space:

Step-wise AD: Save every state, traverse states in reverse

θ1 θ2 θT−6 θT−5 θT−4 θT−3 θT−2 θT−1 θT

⋯

Problem #1: Calculating the gradient
REPLAY: Efficiently calculating metagradients at scale

A simple modification: REPLAY
Key primitive of step-wise AD: traversing the states in reverse orderθT…θ1

(Maclaurin Duvenaud & Adams, 2015)

Deterministic training allows us to “replay” from a previous state to rematerialize
Design a data structure that allows us to trade off time and space:

Step-wise AD: Save every state, traverse states in reverse

θ1 θ2 θT−6 θT−5 θT−4 θT−3 θT−2 θT−1 θT

⋯

Problem #1: Calculating the gradient
REPLAY: Efficiently calculating metagradients at scale

A simple modification: REPLAY
Key primitive of step-wise AD: traversing the states in reverse order

(Maclaurin Duvenaud & Adams, 2015)

Deterministic training allows us to “replay” from a previous state to rematerialize
Design a data structure that allows us to trade off time and space:

θT…θ1

θ1 θ2 θT−6 θT−5 θT−4 θT−3 θT−2 θT−1 θT

⋯

Problem #1: Calculating the gradient
REPLAY: Efficiently calculating metagradients at scale

A simple modification: REPLAY
Key primitive of step-wise AD: traversing the states in reverse order

(Maclaurin Duvenaud & Adams, 2015)

Deterministic training allows us to “replay” from a previous state to rematerialize
Design a data structure that allows us to trade off time and space:

θT…θ1

θ1 θ2 θT−6 θT−5 θT−4 θT−3 θT−2 θT−1 θT

Idea #1: Save every -th state, “hop” back to saved states and replay to traversek

⋯

Problem #1: Calculating the gradient
REPLAY: Efficiently calculating metagradients at scale

A simple modification: REPLAY
Key primitive of step-wise AD: traversing the states in reverse order

(Maclaurin Duvenaud & Adams, 2015)

Deterministic training allows us to “replay” from a previous state to rematerialize
Design a data structure that allows us to trade off time and space:

θT…θ1

θ1 θ2 θT−6 θT−5 θT−4 θT−3 θT−2 θT−1 θT

Idea #1: Save every -th state, “hop” back to saved states and replay to traversek

⋯

Problem #1: Calculating the gradient
REPLAY: Efficiently calculating metagradients at scale

A simple modification: REPLAY
Key primitive of step-wise AD: traversing the states in reverse order

(Maclaurin Duvenaud & Adams, 2015)

Deterministic training allows us to “replay” from a previous state to rematerialize
Design a data structure that allows us to trade off time and space:

θT…θ1

θ1 θ2 θT−6 θT−5 θT−4 θT−3 θT−2 θT−1 θT

Idea #1: Save every -th state, “hop” back to saved states and replay to traversek

⋯

Problem #1: Calculating the gradient
REPLAY: Efficiently calculating metagradients at scale

A simple modification: REPLAY
Key primitive of step-wise AD: traversing the states in reverse order

(Maclaurin Duvenaud & Adams, 2015)

Deterministic training allows us to “replay” from a previous state to rematerialize
Design a data structure that allows us to trade off time and space:

θT…θ1

θ1 θ2 θT−6 θT−5 θT−4 θT−3 θT−2 θT−1 θT

Idea #1: Save every -th state, “hop” back to saved states and replay to traversek

⋯

Problem #1: Calculating the gradient
REPLAY: Efficiently calculating metagradients at scale

A simple modification: REPLAY
Key primitive of step-wise AD: traversing the states in reverse order

(Maclaurin Duvenaud & Adams, 2015)

Deterministic training allows us to “replay” from a previous state to rematerialize
Design a data structure that allows us to trade off time and space:

θT…θ1

θ1 θ2 θT−6 θT−5 θT−4 θT−3 θT−2 θT−1 θT

Idea #1: Save every -th state, “hop” back to saved states and replay to traversek

⋯

Problem #1: Calculating the gradient
REPLAY: Efficiently calculating metagradients at scale

A simple modification: REPLAY
Key primitive of step-wise AD: traversing the states in reverse order

(Maclaurin Duvenaud & Adams, 2015)

Deterministic training allows us to “replay” from a previous state to rematerialize
Design a data structure that allows us to trade off time and space:

θT…θ1

θ1 θ2 θT−6 θT−5 θT−4 θT−3 θT−2 θT−1 θT

Idea #1: Save every -th state, “hop” back to saved states and replay to traversek

⋯
(space space, T extra training steps)T/k + k → 2 T

Problem #1: Calculating the gradient
REPLAY: Efficiently calculating metagradients at scale

A simple modification: REPLAY (Recursive rematerialization for metagradients)
Key primitive of step-wise AD: traversing the states in reverse order

(Maclaurin Duvenaud & Adams, 2015)

Deterministic training allows us to “replay” from a previous state to rematerialize
Design a data structure that allows us to trade off time and space:

θT…θ1

θ1 θ2 θT−6 θT−5 θT−4 θT−3 θT−2 θT−1 θT

⋯

Problem #1: Calculating the gradient
REPLAY: Efficiently calculating metagradients at scale

A simple modification: REPLAY (Recursive rematerialization for metagradients)
Key primitive of step-wise AD: traversing the states in reverse order

(Maclaurin Duvenaud & Adams, 2015)

Deterministic training allows us to “replay” from a previous state to rematerialize
Design a data structure that allows us to trade off time and space:

θT…θ1

θ1 θ2 θT−6 θT−5 θT−4 θT−3 θT−2 θT−1 θT

Idea #2: Recursively apply same idea across training segmentsk

⋯

Problem #1: Calculating the gradient
REPLAY: Efficiently calculating metagradients at scale

A simple modification: REPLAY (Recursive rematerialization for metagradients)
Key primitive of step-wise AD: traversing the states in reverse order

(Maclaurin Duvenaud & Adams, 2015)

Deterministic training allows us to “replay” from a previous state to rematerialize
Design a data structure that allows us to trade off time and space:

θT…θ1

θ1 θ2 θT−6 θT−5 θT−4 θT−3 θT−2 θT−1 θT

Idea #2: Recursively apply same idea across training segmentsk

⋯

Problem #1: Calculating the gradient
REPLAY: Efficiently calculating metagradients at scale

A simple modification: REPLAY (Recursive rematerialization for metagradients)
Key primitive of step-wise AD: traversing the states in reverse order

(Maclaurin Duvenaud & Adams, 2015)

Deterministic training allows us to “replay” from a previous state to rematerialize
Design a data structure that allows us to trade off time and space:

θT…θ1

θ1 θ2 θT−6 θT−5 θT−4 θT−3 θT−2 θT−1 θT

Idea #2: Recursively apply same idea across training segmentsk

⋯

Apply REPLAY here

Problem #1: Calculating the gradient
REPLAY: Efficiently calculating metagradients at scale

A simple modification: REPLAY (Recursive rematerialization for metagradients)
Key primitive of step-wise AD: traversing the states in reverse order

(Maclaurin Duvenaud & Adams, 2015)

Deterministic training allows us to “replay” from a previous state to rematerialize
Design a data structure that allows us to trade off time and space:

θT…θ1

θ1 θ2 θT−6 θT−5 θT−4 θT−3 θT−2 θT−1 θT

Idea #2: Recursively apply same idea across training segmentsk

⋯

(For any , uses space, extra training steps)k k logk(T) T logk(T)

Apply REPLAY here

Problem #1: Calculating the gradient
REPLAY: Efficiently calculating metagradients at scale

A simple modification: REPLAY (Recursive rematerialization for metagradients)
Key primitive of step-wise AD: traversing the states in reverse order

(Maclaurin Duvenaud & Adams, 2015)

Deterministic training allows us to “replay” from a previous state to rematerialize
Design a data structure that allows us to trade off time and space:

θT…θ1

θ1 θ2 θT−6 θT−5 θT−4 θT−3 θT−2 θT−1 θT

Idea #2: Recursively apply same idea across training segmentsk

⋯

(For any , uses space, extra training steps)k k logk(T) T logk(T)

Apply REPLAY here

Two barriers to optimizing with the metagradient ∇zϕ(𝒜(z))

Metagradient roadmap: Two challenges

#2: Optimization (non)smoothness
z

ϕ(𝒜(z))

#1: Computational tractability
steps

Memory

Two barriers to optimizing with the metagradient ∇zϕ(𝒜(z))

Metagradient roadmap: Two challenges

#2: Optimization (non)smoothness
z

ϕ(𝒜(z))

#1: Computational tractability
steps

Memory

Problem #2: (Lack of) Smoothness
Are our gradients useful?

Problem #2: (Lack of) Smoothness
Are our gradients useful?
A gradient is only "useful" if it locally predicts function behavior

In optimization terms, we want to be "smooth"ϕ(𝒜(z))

Problem #2: (Lack of) Smoothness
Are our gradients useful?
A gradient is only "useful" if it locally predicts function behavior

In optimization terms, we want to be "smooth"ϕ(𝒜(z))
Given the complexity of for large-scale models, cannot take this for granted!𝒜(z)

Problem #2: (Lack of) Smoothness
Are our gradients useful?
A gradient is only "useful" if it locally predicts function behavior

In optimization terms, we want to be "smooth"ϕ(𝒜(z))
Given the complexity of for large-scale models, cannot take this for granted!𝒜(z)

Indeed:

Problem #2: (Lack of) Smoothness
Are our gradients useful?
A gradient is only "useful" if it locally predicts function behavior

In optimization terms, we want to be "smooth"ϕ(𝒜(z))
Given the complexity of for large-scale models, cannot take this for granted!𝒜(z)

Indeed: ϕ(𝒜(z))

Small changes in training data pixels!

z1z0

Problem #2: (Lack of) Smoothness
Are our gradients useful?
A gradient is only "useful" if it locally predicts function behavior

In optimization terms, we want to be "smooth"ϕ(𝒜(z))
Given the complexity of for large-scale models, cannot take this for granted!𝒜(z)

Indeed: ...standard model training is very "non-smooth!"ϕ(𝒜(z))

Small changes in training data pixels!

z1z0

Problem #2: (Lack of) Smoothness
Are our gradients useful?
A gradient is only "useful" if it locally predicts function behavior

In optimization terms, we want to be "smooth"ϕ(𝒜(z))
Given the complexity of for large-scale models, cannot take this for granted!𝒜(z)

Indeed: ...standard model training is very "non-smooth!"

Need to find "smooth" model training routines!

ϕ(𝒜(z))

Small changes in training data pixels!

z1z0

Problem #2: (Lack of) Smoothness
Constructing "smooth" model training routines

Problem #2: (Lack of) Smoothness
Constructing "smooth" model training routines
Goal: design model training routines that do have "smooth" optimization landscapes

Problem: need a cheap + accurate measure of "smoothness"

Desired diagnostic ("Smoothness"): Approximate Taylor predictiveness

≈ max
Δw

𝒜(w + Δw) − 𝒜(w) −
d𝒜(w)

dw
⋅ Δw

Problem #2: (Lack of) Smoothness
Constructing "smooth" model training routines
Goal: design model training routines that do have "smooth" optimization landscapes

Problem: need a cheap + accurate measure of "smoothness"

Desired diagnostic ("Smoothness"): Approximate Taylor predictiveness

≈ max
Δw

𝒜(w + Δw) − 𝒜(w) −
d𝒜(w)

dw
⋅ Δw

First-order effect of metaparameter changes

Problem #2: (Lack of) Smoothness
Constructing "smooth" model training routines
Goal: design model training routines that do have "smooth" optimization landscapes

Problem: need a cheap + accurate measure of "smoothness"

Desired diagnostic ("Smoothness"): Approximate Taylor predictiveness

≈ max
Δw

𝒜(w + Δw) − 𝒜(w) −
d𝒜(w)

dw
⋅ Δw

First-order effect of metaparameter changes

Problem #2: (Lack of) Smoothness
Constructing "smooth" model training routines
Goal: design model training routines that do have "smooth" optimization landscapes

Problem: need a cheap + accurate measure of "smoothness"

Can't take a max!

Desired diagnostic ("Smoothness"): Approximate Taylor predictiveness

≈ max
Δw

𝒜(w + Δw) − 𝒜(w) −
d𝒜(w)

dw
⋅ Δw

First-order effect of metaparameter changes

Problem #2: (Lack of) Smoothness
Constructing "smooth" model training routines
Goal: design model training routines that do have "smooth" optimization landscapes

Problem: need a cheap + accurate measure of "smoothness"

Can't take a max!

Hard to interpret this quantity!

Desired diagnostic ("Smoothness"): Approximate Taylor predictiveness

≈ max
Δw

𝒜(w + Δw) − 𝒜(w) −
d𝒜(w)

dw
⋅ Δw

First-order effect of metaparameter changes

Problem #2: (Lack of) Smoothness
Constructing "smooth" model training routines
Goal: design model training routines that do have "smooth" optimization landscapes

Problem: need a cheap + accurate measure of "smoothness"

Can't take a max!

Hard to interpret this quantity!

Don’t have full Jacobian!

Desired diagnostic ("Smoothness"): Approximate Taylor predictiveness

≈ max
Δw

𝒜(w + Δw) − 𝒜(w) −
d𝒜(w)

dw
⋅ Δw

First-order effect of metaparameter changes

Problem #2: (Lack of) Smoothness
Constructing "smooth" model training routines
Goal: design model training routines that do have "smooth" optimization landscapes

Problem: need a cheap + accurate measure of "smoothness"

We adapt this estimator to a new metric
Our final estimator: feasible, interpretable, and accurate!

Metasmoothness(𝒜) ∈ [−1,1]

Can't take a max!

Hard to interpret this quantity!

Don’t have full Jacobian!

Problem #2: (Lack of) Smoothness
Constructing "smooth" model training routines

Problem #2: (Lack of) Smoothness
Constructing "smooth" model training routines

Our metric accurately predicts optimization success in practice!

O
bj

ec
tiv

e

Smoothness

Problem #2: (Lack of) Smoothness
Constructing "smooth" model training routines

Our metric accurately predicts optimization success in practice!

O
bj

ec
tiv

e

Smoothness

Problem #2: (Lack of) Smoothness
Constructing "smooth" model training routines

Our metric accurately predicts optimization success in practice!

Training Options

O
bj

ec
tiv

e

Smoothness

Problem #2: (Lack of) Smoothness
Constructing "smooth" model training routines

Our metric accurately predicts optimization success in practice!

Training Options (1 point = 1 model config!)

O
bj

ec
tiv

e

Smoothness

Problem #2: (Lack of) Smoothness
Constructing "smooth" model training routines

Our metric accurately predicts optimization success in practice!

Training Options (1 point = 1 model config!)

“Smooth model training”

O
bj

ec
tiv

e

Smoothness

Problem #2: (Lack of) Smoothness
Constructing "smooth" model training routines

Our metric accurately predicts optimization success in practice!

Training Options (1 point = 1 model config!)

“Smooth model training”

ϕ(θ(z))

z1z0

O
bj

ec
tiv

e

Smoothness

Problem #2: (Lack of) Smoothness
Constructing "smooth" model training routines

Our metric accurately predicts optimization success in practice!

Training Options (1 point = 1 model config!)

“Smooth model training”

O
bj

ec
tiv

e

Smoothness

Problem #2: (Lack of) Smoothness
Constructing "smooth" model training routines

Our metric accurately predicts optimization success in practice!
How to train your smooth model: Training Options (1 point = 1 model config!)

“Smooth model training”

O
bj

ec
tiv

e

Smoothness

Problem #2: (Lack of) Smoothness
Constructing "smooth" model training routines

Our metric accurately predicts optimization success in practice!
How to train your smooth model:

Layer composition, width
Training Options (1 point = 1 model config!)

“Smooth model training”

O
bj

ec
tiv

e

Smoothness

Problem #2: (Lack of) Smoothness
Constructing "smooth" model training routines

Our metric accurately predicts optimization success in practice!
How to train your smooth model:

Layer composition, width
Learning rate/weight decay/batch size

Training Options (1 point = 1 model config!)

“Smooth model training”

O
bj

ec
tiv

e

Smoothness

Problem #2: (Lack of) Smoothness
Constructing "smooth" model training routines

Our metric accurately predicts optimization success in practice!
How to train your smooth model:

Layer composition, width
Learning rate/weight decay/batch size
Adam , momentum/warmupϵroot

Training Options (1 point = 1 model config!)

“Smooth model training”

O
bj

ec
tiv

e

Smoothness

Problem #2: (Lack of) Smoothness
Constructing "smooth" model training routines

Our metric accurately predicts optimization success in practice!
How to train your smooth model:

Layer composition, width
Learning rate/weight decay/batch size
Adam , momentum/warmupϵroot
Normalizer ϵ

Training Options (1 point = 1 model config!)

“Smooth model training”

O
bj

ec
tiv

e

Smoothness

Problem #2: (Lack of) Smoothness
Constructing "smooth" model training routines

Our metric accurately predicts optimization success in practice!
How to train your smooth model:

Layer composition, width
Learning rate/weight decay/batch size
Adam , momentum/warmupϵroot
Normalizer ϵ
Logit scales

Training Options (1 point = 1 model config!)

“Smooth model training”

O
bj

ec
tiv

e

Smoothness

Problem #2: (Lack of) Smoothness
Constructing "smooth" model training routines

Our metric accurately predicts optimization success in practice!
How to train your smooth model:

Layer composition, width
Learning rate/weight decay/batch size
Adam , momentum/warmupϵroot
Normalizer ϵ
Logit scales
LM only:

Training Options (1 point = 1 model config!)

“Smooth model training”

O
bj

ec
tiv

e

Smoothness

Problem #2: (Lack of) Smoothness
Constructing "smooth" model training routines

Our metric accurately predicts optimization success in practice!
How to train your smooth model:

Layer composition, width
Learning rate/weight decay/batch size
Adam , momentum/warmupϵroot
Normalizer ϵ
Logit scales
LM only:

QK-layernorm

Training Options (1 point = 1 model config!)

“Smooth model training”

O
bj

ec
tiv

e

Smoothness

Problem #2: (Lack of) Smoothness
Constructing "smooth" model training routines

Our metric accurately predicts optimization success in practice!
How to train your smooth model:

Layer composition, width
Learning rate/weight decay/batch size
Adam , momentum/warmupϵroot
Normalizer ϵ
Logit scales
LM only:

QK-layernorm
Uncoupled (un)embedding

Training Options (1 point = 1 model config!)

“Smooth model training”

O
bj

ec
tiv

e

Smoothness

Problem #2: (Lack of) Smoothness
Constructing "smooth" model training routines

Our metric accurately predicts optimization success in practice!
How to train your smooth model:

Layer composition, width
Learning rate/weight decay/batch size
Adam , momentum/warmupϵroot
Normalizer ϵ
Logit scales
LM only:

QK-layernorm
Uncoupled (un)embedding

Training Options (1 point = 1 model config!)

“Smooth model training”

Key property: Optimized parameters “transfer back” to non-smooth training!

Roadmap

Main idea: The metagradient

Prequel: Two challenges

Looking forward

Future work
Our goal/hope is for the following recipe to be a general one:

1. Pick a design choice you’re interested in optimizing/predicting

2. Write problem as a metaparameter prediction or optimization problem

3. Find a smooth training setup

4. Compute the metagradient

5. Apply gradient descent/Taylor approximation

What do we need to get there?

Future work
What do we need to get there?

1. A more systematic way of finding smooth models
2. More computational efficiency gains
3. More creative ways of applying metagradients
‣ Hyperparameter optimization? (Simple example in the paper)
‣ Data weighting networks?
‣ Synthetic data generators?
‣ Gradient pre-conditioners?
“Anything we can continuously parameterize, we can (try to) optimize”

Conclusion
Design space of ML is too large to explore → how do we think about design choices?
Approach: Take the gradient of a model output with respect to metaparameters

Challenges:
Computing the metagradient at scale
Making the metagradient useful for optimization

Addressing these challenges unlocks:
Data selection (> 2x more effective) & attribution
Data poisoning (> 10x more effective)
Gradient-based hyperparameter optimization
What next?

See the paper
for more!

🔗 https://arxiv.org/abs/2503.13751

📫 andrewi@stanford.edu

🌐 andrewilyas.com

https://arxiv.org/abs/2503.13751
mailto:andrewi@stanford.edu
http://andrewilyas.com

