

Multi-Agent Interactions and Social Dilemmas

Advantage Alignment Algorithms by Juan Duque, Milad Aghajohari, Tim Cooijmans, Razvan Ciuca, Tianyu Zhang, Gauthier Gidel and Aaron Courville

Aaron Courville

Mila, University of Montreal

April 17th, 2025 Safety-Guaranteed LLMs

What's next ... LLMs -> Agents

Agents make decisions and actions that can affect their environment

A2A protocol

Multi-Agent Systems

2010 Flash Crash

Image credit: Tim Fries (2025) Flash Crashes: What They Are, How They Work

Failure modes in multi-agent systems

1. Miscoordination

 Agents fail to cooperate despite having the same goal.

2. Conflict

- Agents with different goals fail to cooperate.
- Social Dilemmas

3. Collusion

- Competitive settings where we do not want agents cooperating.

Multi-Agent Risks from Advanced Al

Alan Chan
Jesse Clifton
Jason Hoelscher-Obermaier
Akbir Khan
Euan McLean
Chandler Smith
Wolfram Barfuss
Jakob Foerster
Tomáš Gavenčiak
The Anh Han
Edward Hughes
Vojtěch Kovařík
Jan Kulveit

Joel Z. Leibo

1ewis Hammond

Caspar Oesterheld
Christian Schroeder de Witt
Nisarg Shah
Michael Wellman
Paolo Bova
Theodor Cimpeanu
Carson Ezell
Quentin Feuillade-Montixi
Matija Franklin
Esben Kran
Igor Krawczuk
Max Lamparth
Niklas Lauffer
Alexander Meinke
Sumeet Motwani

Anka Reuel
Vincent Conitzer
Michael Dennis
Iason Gabriel
Adam Gleave
Gillian Hadfield
Nika Haghtalab
Atoosa Kasirzadeh
Sébastien Krier
Kate Larson
Joel Lehman
David C. Parkes
Georgios Piliouras
Iyad Rahwan

Failure modes in multi-agent systems

1. Miscoordination

- Agents fail to cooperate despite having the same goal.

2. Conflict

- Agents with different goals fail to cooperate.
- Social Dilemmas

3. Collusion

- Competitive settings where we do not want agents cooperating.

[cs.MA]

Multi-Agent Risks from Advanced Al

Alan Chan
Jesse Clifton
Jason Hoelscher-Obermaier
Akbir Khan
Euan McLean
Chandler Smith
Wolfram Barfuss
Jakob Foerster
Tomáš Gavenčiak
The Anh Han
Edward Hughes
Vojtěch Kovařík

Jan Kulveit

Joel Z. Leibo

1ewis Hammond

Caspar Oesterheld
Christian Schroeder de Witt
Nisarg Shah
Michael Wellman
Paolo Bova
Theodor Cimpeanu
Carson Ezell
Quentin Feuillade-Montixi
Matija Franklin
Esben Kran
Igor Krawczuk
Max Lamparth
Niklas Lauffer
Alexander Meinke
Sumeet Motwani

Anka Reuel
Vincent Conitzer
Michael Dennis
Iason Gabriel
Adam Gleave
Gillian Hadfield
Nika Haghtalab
Atoosa Kasirzadeh
Sébastien Krier
Kate Larson
Joel Lehman
David C. Parkes
Georgios Piliouras
Iyad Rahwan

Reinforcement Learning

Multi-Agent Reinforcement Learning

Multi-Agent Reinforcement Learning

Environment

Discounted Return:

$$R^{i}(\tau) = \sum_{t=0}^{\infty} \gamma^{t} r^{i}(s_t, a_t, b_t)$$

Probability distribution over trajectories:

$$\Pr_{\mu}^{\pi^1,\pi^2}(\tau) = \mu(s_0)\pi^1(a_0|s_0)\pi^2(b_0|s_0)P(s_1|s_0,a_0,b_0)\dots$$

Value function:

$$V^{i}(s) = \mathbb{E}_{\tau \sim \Pr_{\mu}^{\pi^{1}, \pi^{2}}} \left[R^{i}(\tau) \mid s_{0} = s \right]$$

Action-value functions:

$$Q^{1}(s, a, b) = \mathbb{E}_{\tau \sim \Pr_{\mu}^{\pi^{1}, \pi^{2}}} \left[R^{1}(\tau) \mid s_{0} = s, a_{0} = a, b_{0} = b \right],$$

$$Q^{2}(s, a, b) = \mathbb{E}_{\tau \sim \Pr_{\mu}^{\pi^{1}, \pi^{2}}} \left[R^{2}(\tau) \mid s_{0} = s, a_{0} = a, b_{0} = b \right]$$

What are Social Dilemmas?

Social Dilemmas:

 A type of decision problem where each party's myopic efforts to maximize their own benefit lead to a less favourable outcome compared to when all parties cooperate.

Non-Zero Sum Area of Overlapping Interests "Win/Win." You win

What are Social Dilemmas? - Iterated Prisoners Dilemma (IPD)

Social Dilemmas:

 A type of decision problem where each party's myopic efforts to maximize their own benefit lead to a less favourable outcome compared to when all parties cooperate.

Famous strategy: Tit-for-tat for prisoner A

• For t = 1, $a_t^A = \text{Remain Silent}$

• For t > 1, $a_t^A = a_{t-1}^B$

Social Dilemmas are Everywhere!

Business negotiations and deal-making

Negotiating interaction with other vehicles on the road.

Policy negotiation between countries.

Climate tragedy of the commons

Why Deep RL for Social Dilemmas? Mila

Multi-Agent Reinforcement Learning

Coin Game against a Random Opponent

Coin Game against a Random Opponent

Coin Game against a Random Opponent

LLMs and The Ultimatum Game

Muqeeth Mohammed

Uday Karan Kapur

Michael Noukhovitch

Déreck Piché

25

LLMs and The Ultimatum Game

ALICE

Intermediary 🌼

Welcome to the Splitting Game.

Game Overview:

- 1) Two agents divide 10 coins.
- 2) Each agent proposes a division of the coins.
- 3) Both agents must agree on a division to receive the coins. If not, both receive zero coins.
- 4) The game is played only once.

Response Format:

- 1) Responses must be within <finalize> </finalize> tags.
- 2) Use JSON format: <finalize> {"i_take": {"coins": x}, "other_agent_gets": {"coins": y}} </finalize>.

Goal: Aim to be fair with both the other agent and yourself. You are the first agent. It is your turn to play.

LLM (alice) 🎃

<finalize> {"i_take": {"coins": 5}, "other_agent_gets": {"coins": 5}} </finalize>

BOB

Intermediary 🌼

Welcome to the Splitting Game.

Game Overview:

- 1) Two agents divide 10 coins.
- 2) Each agent proposes a division of the coins.
- 3) Both agents must agree on a division to receive the coins. If not, both receive zero coins.
- 4) The game is played only once.

Response Format:

- 1) Responses must be within <finalize> </finalize> tags.
- 2) Use JSON format: <finalize> {"i_take": {"coins": x}, "other_agent_gets": {"coins": y}} </finalize>.

Goal: Aim to be fair with both the other agent and yourself.

The other agent's finalization was {'i_take': {'coins': 5}, 'other_agent_gets': {'coins': 5}}. You are the second agent. It is your turn to play.

LLM (bob) 🎃

<finalize> {"i_take": {"coins": 5}, "other_agent_gets": {"coins": 5}} </finalize>

LLMs and The Ultimatum Game

Opponent Shaping (Jakob Foerster et al.)

- Assume the learning dynamics of other agents can be controlled via some mechanism to incentivize desired behaviours.
 - → Agent can "shape" their opponents.

Learning with Opponent Learning Awareness (LOLA) (Jakob Foerster et al., 2018, AAMAS)

LOLA agents assume the opponent is a naive learning agent, so it can simulate the update of the opponent and take gradients w.r.t. opponent policy parameters.

$$V^1(\theta^1,\theta^2):=egin{array}{l} {\sf Expected\ return\ of\ the\ agent\ conditioned\ on\ its\ policy\ parameters,\ } \ heta^1,\ {\sf and\ the\ opponent's\ policy\ parameters,\ } \ heta^2 \ \end{array}$$

$$\Delta\theta^2:= \begin{array}{l} \text{Imagined parameter update for the opponent, which can be differentiated w.r.t. } \theta^1 \end{array}$$

LOLA maximizes
$$V^1(\theta^1,\theta^2+\Delta\theta^2)$$
 w.r.t θ^1

Limitations of LOLA

- Assumes access to the opponent's policy parameters.
- $\nabla_{\theta_1} V^1(\theta^1, \theta^2 + \Delta \theta^2)$ is difficult to estimate so in practice a surrogate that uses the first-order Taylor expansion is used (imprecise).
- To compute the gradient with respect to the update, it is necessary to build large computational graphs and differentiate through it (very expensive).

A different perspective on where naive RL goes wrong

In RL we aim to optimize the expected return of the agent (agent 1):

$$V^1(\mu) = \mathbb{E}_{ au \sim \Pr_{\mu}^{\pi^1, \pi^2}} \left[R^1(au) \right], \quad \text{where} \quad R^i(au) = \sum_{t=0}^{\infty} \gamma^t r^i(s_t, a_t, b_t)$$

 Adapting the original Actor-Critic formulation (Konda & Tsitsiklis, 2000) to the joint agent-opponent policy space we have:

$$\nabla_{\theta^{1}} V^{1}(\mu) = \mathbb{E}_{\tau \sim \Pr_{\mu}^{\pi^{1}, \pi^{2}}} \left[\sum_{t=0}^{T} A^{1}(s_{t}, a_{t}, b_{t}) \nabla_{\theta^{1}} \left(\log \pi^{1}(a_{t}|s_{t}) + \underbrace{\log \pi^{2}(b_{t}|s_{t})}_{\nabla_{\theta^{1}} = 0} \right) \right]$$

- Where the Advantage of agent 1 is: $A^1(s_t,a_t,b_t)=Q^1(s_t,a_t,b_t)-V^1(s_t)$

Opponent Shaping via Advantage Alignment

 What if we could make the opponent (agent 2) policy be directly dependent on the policy of Agent 1?

$$\nabla_{\theta^1} V^1(\mu) = \mathbb{E}_{\tau \sim \Pr_{\mu}^{\pi^1, \pi^2}} \left[\sum_{t=0}^T A^1(s_t, a_t, b_t) \nabla_{\theta^1} \left(\log \pi^1(a_t | s_t) + \log \hat{\pi}^2(b_t | s_t) \right) \right]$$

Advantage Alignment key assumption:

$$\hat{\pi}^2(b_t|s_t) \propto \exp\left(\beta \cdot \mathbb{E}_{a_t \sim \pi^1(\cdot|s)}[Q^2(s_t, a_t, b_t)]\right)$$

 \rightarrow Direct dependency on Agent 1 policy $\pi^1(a_t \mid s_t)$ and parameters θ^1

Advantage Alignment

Assumption 1: Each agent i learns to maximize their value function: max $V^i(\mu)$.

Assumption 2: Opponent (player 2) acts proportionally to the exponent of their action-value function: $\hat{\pi}^2(b_t|s_t) \propto \exp\left(\beta \cdot \mathbb{E}_{a_t \sim \pi^1(\cdot|s)}[Q^2(s_t, a_t, b_t)]\right)$

Policy gradient: (Actor-Critic)
$$\nabla_{\theta_1} V^1(\mu) = \mathbb{E}_{\tau \sim \Pr_{\mu}^{\pi^1, \pi^2}} \left[\sum_{t=0}^{\infty} \gamma^t A^1(s_t, a_t, b_t) \left(\underbrace{\nabla_{\theta_1} \log \pi^1(a_t | s_t)}_{\text{policy gradient term}} + \underbrace{\nabla_{\theta_1} \log \hat{\pi}^2(b_t | s_t)}_{\text{opponent shaping term}} \right) \right]$$

Expanding the opponent shaping term:

$$\beta \cdot \mathbb{E}_{\tau \sim \Pr_{\mu}^{\pi^{1}, \pi^{2}}} \left[\sum_{t=0}^{\infty} \gamma^{t+1} \left(\sum_{k < t} \gamma^{t-k} A^{1}(s_{k}, a_{k}, b_{k}) \right) A^{2}(s_{t}, a_{t}, b_{t}) \nabla_{\theta^{1}} \log \pi^{1}(a_{t}|s_{t}) \right]$$

Advantage Alignment — Opponent Shaping term

- If interaction with opponent (Agent 2)
 has been positive (for Agent 1) the
 advantages are aligned.
- If interaction with opponent (Agent 2) has been negative (for Agent 1) the advantages are at odds.

Opponent shaping term:

$$\beta \cdot \mathbb{E}_{\tau \sim \Pr_{\mu}^{\pi^1, \pi^2}} \left[\sum_{t=0}^{\infty} \gamma^{t+1} \left(\sum_{k < t} \gamma^{t-k} A^1(s_k, a_k, b_k) \right) A^2(s_t, a_t, b_t) \nabla_{\theta^1} \log \pi^1(a_t | s_t) \right]$$

Theorem: Advantage Alignment preserves Nash equilibria

If a joint policy (π_1^*, π_2^*) constitutes a Nash equilibrium, then applying Advantage Alignment formula will not change the policy, as the gradient contribution of the advantage alignment term is zero.

Iterated Prisoners Dilemma (IPD)

Coin Game Tournament

Coin Game Tournament

- 7 players game
- Evaluation protocol
 - 5 [method] players
 - 2 greedy heuristic players

 Advantage Alignment improves resource sustainability.

- 7 players game
- Evaluation protocol
 - 5 [method] players
 - 2 greedy heuristic players

 Advantage Alignment improves resource sustainability.

- 7 players game
- Evaluation protocol
 - 5 [method] players
 - 2 greedy heuristic players

 Advantage Alignment improves resource sustainability.

	adaligh	660	660 S	etploite	, SCD	MUBO	opie	aco ?	opies	(andonn
scenario_0	1.78	1.15	0.33	0.91	0.87	0.93	0.84	0.95	0.53	0.00
scenario_1	1.48	0.74	0.45	0.76	0.80	0.85	0.77	0.94	0.52	0.00
average	1.63	0.94	0.39	0.83	0.83	0.89	0.81	0.94	0.52	0.00

- scenario_0: Agents are visited by two invaders who harvest and zap unsustainably.
- scenario_1: Agents are visited by two invaders who harvest unsustainably.

Advantage Alignment: Iterated Negotiation Game

Advantage Alignment: Limitations and future work

- The assumption that the other players act accordingly to an inner action-value (Q) function, prevents it from shaping opponents that do not follow this.
- Currently working on improving performance on the Melting Pot suite of tasks — adding representation learning and other RL tricks.
- Exploring applications in negotiations and LLMs.

