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What's next ... LLMs =» Agents

Agents make decisions and actions
that can aftect their environment

Image Credit: Kelsey Piper. Al “agents” could do real work in the real world. That might not be &good thing. 2024 (Malorny/Getty Images)
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Agent Systems
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2010 Flash Crash

$10.800 1
DOW INDUSTRIALS

A FLASH IN O Volatility in some stocks

/
$10'600 TH E MARKET increases in a down market. '.
Unusually nervous trading pushes overall
Stock markets plunged volatility up sharply; the Dow is down 2.5 percent. 4
$10.400 suddenly on May 6,
2010, and gained speed O A program to sell $4.1 billion in E-Mini futures
as computer programs starts; other traders react by starting to sell.
prevented losses. But,
$10.200 almost as quickly, the O 11 Selling in the futures market spreads to stocks;
market recovered much automated trading programs react to the sharp drops
of the decline. by shutting down.
$10.000 O 6 After trading in E-Mini futures is paused for five
seconds, alleviating the pressure to sell, the market
begins to recover. .
0
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Image credit: Tim Fries (2025) Flash Crashes: What They Are, How They Work



Multi-Agent Risks
from Advanced Al

Failure modes in multi-agent systems

1. Miscoordination

- Agents fail to cooperate despite
having the same goal.

2. Conflict
- Agents with different goals falil
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Reinforcement Learning

Observation

Reward

Agent Environment

(Policy) N W

Action

Image Credit: J K Terry, Multi-Agent Deep Reinforcement Learning in 13 Lines of Code Using PettingZoo: A tutorial on multi-agent deep reinforcement learning for beginners, Feb. 2021




Multi-Agent Reinforcement Learning

Environment

Image Credit: J K Terry, Multi-Agent Deep Reinforcement Learning in 13 Lines of Code UsindPettingZoo: A tutorial on multi-agent deep reinforcement learning for beginners, Feb. 2021



Multi-Agent Reinforcement Learning

Discounted Return:

R (1) = +'r'(se,as, by) -
t=0

Probability distribution over trajectories:

Pr ™ (r) = p(s0)7" (aolso)m? (bo|so) P(s1]s0, a0, bo) ... snvironment

Value function: Action-value functions:

Vi(s) = ﬂTNPer,ﬂ R'(7) | so = Q' (s,a,b) = ﬂTNPermz R'(T) | so = s,a0 =a,by = b,
Q*(s,a,b) = ﬂTNPermz R*(T) | so =s,a0 =a,bp =b

Image Credit: J K Terry, Multi-Agent Deep Reinforcement Learning in 13 Lines of Code Using! PettingZoo: A tutorial on multi-agent deep reinforcement learning for beginners, Feb. 2021



What are Social Dilemmas?

Prisoners .
dilemma . , Social Dilemmas:

. 9 A type of decision problem where each party’s myopic efforts to

remain . . .

silent maximize their own benefit lead to a less favourable outcome
compared to when all parties cooperate.

i
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What are Social Dilemmas? - iterated Prisoners Dilemma (IPD)

Prisoners' - B ' ' .
dile o ER Social Dilemmas:
) prisoner B
dile prisoners' m— - A type of decision problem where each party’s myopic efforts to

dile 5. oners risonor B maximize their own benefit lead to a less favourable outcome

dilemma \6,

remain

confess .
silent

Famous strategy: Tit-for-tat for prisoner A
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"I'm not going to Sid's funeral.
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Soclal Dilemmas are Everywhere!

Business negotiations and deal-making

A J

i’y 22
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Negotiating interaction with
y other vehicles on the road.

Policy negotiation between countries.
Climate tragedy of the commgns
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Coin Game

Learning with Opponent-Learning Awareness, Jakob N. Forester et al, 2018 arXiv:1709.04326
16



https://arxiv.org/abs/1709.04326
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Coin Game

Learning with Opponent-Learning Awareness, Jakob N. Forester et al, 2018 arXiv:1709.04326
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Multi-Agent Reinforcement Learning

Environment

Image Credit: J K Terry, Multi-Agent Deep Reinforcement Learning in 13 Lines of Code Usir)l PettingZoo: A tutorial on multi-agent deep reinforcement learning for beginners, Feb. 2021



Coin Game against a Random Opponent

Random Opponent

22



Coin Game against a Random Opponent

Random Opponent
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Coin Game against a Random Opponent

Random Opponent
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L LMs and The Ultimatum Game

Uday Karan Kapur

Accept Reject
Dereck Pié Michael Noovitch
Player 1: $7 Both: $0
Player 2: $3

29



L LMs and The Ultimatum Game a

ALICE BOB
Intermediary @ Intermediary ©
Welcome to the Splitting Game. Welcome to the Splitting Game.
Game Overview: Game Overview:
1) Two agents divide 10 coins. 1) Two agents divide 10 coins.
2) Each agent proposes a division of the coins. 2) Each agent proposes a division of the coins.
3) Both agents must agree on a division to receive the coins. If not, both receive zero coins. 3) Both agents must agree on a division to receive the coins. If not, both receive zero coins.
4) The game is played only once. 4) The game is played only once.
Response Format: Response Format:
1) Responses must be within <finalize> </finalize> tags. 1) Responses must be within <finalize> </finalize> tags.
2) Use JSON format: <finalize> {"i_take": {"coins": x}, "other_agent gets": {"coins": y}} </finalize>. 2) Use JSON format: <finalize> {"i_take": {"coins": x}, "other_agent gets": {"coins": y}} </finalize>.
Goal: Aim to be fair with both the other agent and yourself. Goal: Aim to be fair with both the other agent and yourself.
You are the first agent. It is your turn to play. The other agent's finalization was {'i_take': {'coins": 5}, 'other_agent_gets'": {'coins": 5}}.

You are the second agent. It is your turn to play.

LLM (alice) &
LLM (bob) &
<finalize> {"i_take": {"coins": 5}, "other_agent_gets": {"coins": 5}} </finalize>
<finalize> {"i_take": {"coins": 5}, "other_agent_gets": {"coins": 5}} </finalize>

20
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Opponent Shaping (Jakob Foerster et al.) “:’\

|\

Mila

- Assume the learning dynamics of other agents can be controlled via
some mechanism to incentivize desired behaviours.

= Agent can “shape” their opponents.

28



L earning with Opponent Learning Awareness (LOLA)

(Jakob Foerster et al., 2018, AAMAS)
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L OLA agents assume the opponent is a naive learning agent, so it can simulate
the update of the opponent and take gradients w.r.t. opponent policy parameters.

Vl((?l 92) .__ EXpected return of the agent conditioned on its policy parameters,
’ " ¢! and the opponent’s policy parameters, 6°
Ap? - — Imagined parameter update for the opponent, which can be
P 1

differentiated w.r.t. ¢

LOLA maximizes V'(6', 0% + A6”) w.rt 6

29



L imitations of LOLA

Assumes access to the opponent’s policy parameters.

Vo, V(0" 6% + A9?) is difficult to estimate so in practice a surrogate
that uses the first-order Taylor expansion is used (imprecise).

To compute the gradient with respect to the update, it is necessary
to build large computational graphs and differentiate through it (very
expensive).

30



A different perspective on where naive RL goes wrong

In RL we aim to optimize the expected return of the agent (agent 1):

Vl(/ﬁ) =K wl 2 [RI(T)]a where Z’Y (8¢, at, by)

Adapting the original Actor-Critic formulation (Konda & Tsitsiklis, 2000)
to the joint agent-opponent policy space we have:

TNPru N ,
t=0
V91 =0

T
le Vl (,u) — K 1l 2 ZAI (St, ¢, bt)le (lOg 7T1(Clt|8t) -+ lOg 7'('2([?75875))

- Where the Advantage of agent 1 is: Al(st, ay¢, bt) = Ql(st, Ay, bt) — Vl(st)

31



2o Mila
What if we could make the opponent (agent 2) policy be directly
dependent on the policy of Agent 17

Opponent Shaping via Advantage Alignment

- T
Vo Vi) =E e [y A'(spa,b) Ve (log 7' (arlse) + log 72 (be|s:))

T~Pr
_t=0

Advantage Alignment key assumption:

#2(best) o exp (8 By (1) [Q (50, a1, br)])
?

- Direct dependency on Agent 1 policy 7'(a: | s;)and parameters 6*

32
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Assumption 1: Each agent ¢ learns to maximize their value function: max V*(u).

Advantage Alignment

Assumption 2: Opponent (player 2) acts proportionally to the exponent of
their action-value function: 72 (bs|s;) o exp (8 - Eq,oni(.5)[Q° (5t, at, bt)])

Policy gradient: ! ﬂ =,
. Vo,V D ol 2 A (s¢,a:,b Vo, 1 Vo, 1 b
(Actor-Critic) o,V (1) = < PrT ;W (5¢,at, by) o, log ' (ay|s:) + Vg, log 72 (bs|ss)

policy gradient term = opponent shaping term

-Xpanding the opponent shaping term:

B-E 12 Zf“ th_kAl(sk,ak,bk) AZ(St,at,bt)lelOg wl(at|st)

TNPrM
k<t _

33



Advantage Alignment — Opponent Shaping term

If interaction with opponent (Agent 2)
has been positive (for Agent 1) the
advantages are aligned.

If interaction with opponent (Agent 2)
has been negative (for Agent 1) the
advantages are at odds.

Agent 1

Opponent shaping term:

6E ol w2 Z fyt—I_l (Z /yt_kAl (Ska ag, bk)) Az(sta at, bt)vellog 7T1 (at‘st)
| t=0 _

TNPr“ —

34



Theorem: Advantage Alignment preserves Nash equilibria

If a joint policy (77, w%) constitutes a Nash equilibrium, then applying Advantage
Alignment formula will not change the policy, as the gradient contribution of the
advantage alignment term 1s zero.

35



iterated Prisoners Dilemma (IPD)

Prisoners' - B
prisoner
dle prisoners T Advantage Alignment (AdAlign)
dlle PrISOnerS' prisonerB
dlle PriSOnerS' prisoner B 1 .O
i . .
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e
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\ S 0.6
p O
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H H E S = 0.4
Q- -§ | § W da\ E
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20 years 0 year 1year 1 year State
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Coin Game Tournament

AdAlign

Coin Game LoaA
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Random
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Melting Pot — Common Harvest Game




Melting Pot — Common Harvest Game

7 players game N e
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Melting Pot — Common Harvest Game

Step 1 Step 155

/ players game

Evaluation protocol
5 [method] players
2 greedy heuristic players

- Advantage Alignment
Improves resource
sustainability.




Melting Pot — Common Harvest Game

Step 1 Step 155 Step 310

/ players game

Evaluation protocol
5 [method] players
2 greedy heuristic players

Advantage Alignment
Improves resource
sustainability.




Melting Pot — Common Harvest Game

<
Q X% Q
O Q o O Q D o
N O 0/ & Q 2 @7 O
& R L & £ & & £ &K &
scenario_0 kel 0.91 | 0.87 | 0.93 | 0.84 | 0.95 HIE

scenario_l 1.48 0.74 0.45 0.76 0.77 | 0.94 BIRY:

EChE 1.63 | 0.94 miEilE 0.83 | 0.83 | 0.89 | 0.81 | 0.94 HsY:

scenario_0: Agents are visited by two invaders who harvest and zap unsustainably.

scenario_1: Agents are visited by two invaders who harvest unsustainably.
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Negotiation Game

Agent 1 Objects Agent 2
value & Number value
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Advantage Alignment: Limitations and future work :}

*Mila

The assumption that the other players act accordingly to an inner

action-value (Q) function, prevents it from shaping opponents that
do not follow this.

Currently working on improving performance on the Melting Pot
suite of tasks — adding representation learning and other RL tricks.

Exploring applications in negotiations and LLMSs.
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