
Gregory D. Kahanamoku-Meyer*, Seyoon Ragavan*, Vinod Vaikuntanathan*, Katherine Van Kirk†
*MIT, †Harvard

The Jacobi Factoring Circuit
Classically Hard Factoring in Sublinear Quantum Space and Depth

Integer Factorisation
 Given an -bit integer , find its prime factorisation in time.n N < 2n 𝗉𝗈𝗅𝗒(n)

Classical Factoring: A Crash Course
 Given an -bit integer , find its prime factorisation in time.n N < 2n 𝗉𝗈𝗅𝗒(n)

Factoring general integers

• Brute force: exp(O(n))

Classical Factoring: A Crash Course
 Given an -bit integer , find its prime factorisation in time.n N < 2n 𝗉𝗈𝗅𝗒(n)

Factoring general integers

• Brute force: exp(O(n))
• Quadratic sieve (many works from

Fermat to Pomerance ‘82): exp(Õ(n1/2))

Classical Factoring: A Crash Course
 Given an -bit integer , find its prime factorisation in time.n N < 2n 𝗉𝗈𝗅𝗒(n)

Factoring general integers

• Brute force: exp(O(n))
• Quadratic sieve (many works from

Fermat to Pomerance ‘82): exp(Õ(n1/2))
• General number field sieve (Pollard ’88;

Buhler-Lenstra-Pomerance ’93):
exp(Õ(n1/3))

Classical Factoring: A Crash Course
 Given an -bit integer , find its prime factorisation in time.n N < 2n 𝗉𝗈𝗅𝗒(n)

Factoring general integers

• Brute force: exp(O(n))
• Quadratic sieve (many works from

Fermat to Pomerance ‘82): exp(Õ(n1/2))
• General number field sieve (Pollard ’88;

Buhler-Lenstra-Pomerance ’93):
exp(Õ(n1/3))

Factoring special-form integers

Classical Factoring: A Crash Course
 Given an -bit integer , find its prime factorisation in time.n N < 2n 𝗉𝗈𝗅𝗒(n)

Factoring general integers

• Brute force: exp(O(n))
• Quadratic sieve (many works from

Fermat to Pomerance ‘82): exp(Õ(n1/2))
• General number field sieve (Pollard ’88;

Buhler-Lenstra-Pomerance ’93):
exp(Õ(n1/3))

Factoring special-form integers

• Lenstra ECM (’87):
where is a factor of

exp (Õ((log P)1/2)))
P N

Classical Factoring: A Crash Course
 Given an -bit integer , find its prime factorisation in time.n N < 2n 𝗉𝗈𝗅𝗒(n)

Factoring general integers

• Brute force: exp(O(n))
• Quadratic sieve (many works from

Fermat to Pomerance ‘82): exp(Õ(n1/2))
• General number field sieve (Pollard ’88;

Buhler-Lenstra-Pomerance ’93):
exp(Õ(n1/3))

Factoring special-form integers

• Lenstra ECM (’87):
where is a factor of

exp (Õ((log P)1/2)))
P N

• Boneh, Durfee, Howgrave-Graham (’99):
if and , can factor in

 time
N = PrQ r ≥ log P

𝗉𝗈𝗅𝗒(n)

Classical Factoring: A Crash Course
 Given an -bit integer , find its prime factorisation in time.n N < 2n 𝗉𝗈𝗅𝗒(n)

Factoring general integers

• Brute force: exp(O(n))
• Quadratic sieve (many works from

Fermat to Pomerance ‘82): exp(Õ(n1/2))
• General number field sieve (Pollard ’88;

Buhler-Lenstra-Pomerance ’93):
exp(Õ(n1/3))

Factoring special-form integers

• Lenstra ECM (’87):
where is a factor of

exp (Õ((log P)1/2)))
P N

• Boneh, Durfee, Howgrave-Graham (’99):
if and , can factor in

 time
N = PrQ r ≥ log P

𝗉𝗈𝗅𝗒(n)

For more: see Pomerance’s survey “A Tale of Two Sieves”!

Integer Factorisation

• Fastest classical algorithm for general : timeN exp (Õ(n1/3))

 Given an -bit integer , find its prime factorisation in time.n N < 2n 𝗉𝗈𝗅𝗒(n)

Integer Factorisation

• Fastest classical algorithm for general : timeN exp (Õ(n1/3))
• Quantum algorithms: time! (Shor 1994)𝗉𝗈𝗅𝗒(n)

 Given an -bit integer , find its prime factorisation in time.n N < 2n 𝗉𝗈𝗅𝗒(n)

Implication 1: Breaking Cryptography

• RSA public-key cryptography:
𝗉𝗄 = N (= pq) 𝗌𝗄 = (p, q)

Implication 1: Breaking Cryptography

• RSA public-key cryptography:

“Hi Bob!”
𝗉𝗄 = N (= pq) 𝗌𝗄 = (p, q)𝖼𝗍

Implication 1: Breaking Cryptography

• RSA public-key cryptography:

• Completely broken if the eavesdropper has a large quantum computer (learn
Bob’s secret key by factoring)N = pq

𝗌𝗄 = (p, q)

“Hi Bob!”
𝗉𝗄 = N (= pq) 𝖼𝗍

Implication 1: Breaking Cryptography

• Okamoto-Uchiyama () or Takagi () cryptography:

• Completely broken if the eavesdropper has a large quantum computer (learn
Bob’s secret key by factoring)

r = 2 r > 2

N = prq

𝗌𝗄 = (p, q)

“Hi Bob!”
𝗉𝗄 = N (= prq) 𝖼𝗍

Goal: faster
decryption
than RSA

Implication 1: Breaking Cryptography

• Okamoto-Uchiyama () or Takagi () cryptography:

• Completely broken if the eavesdropper has a large quantum computer (learn
Bob’s secret key by factoring)

r = 2 r > 2

N = prq

𝗌𝗄 = (p, q)

Coming up: even better quantum circuits for factoring prq (r > 1)

“Hi Bob!”
𝗉𝗄 = N (= prq) 𝖼𝗍

Goal: faster
decryption
than RSA

Implication 2: Proofs of Quantumness

We’ve successfully built a
big quantum computer!

Okay but I don’t believe you

Q: How can XYZABC Labs convince Alice that they really do have a large quantum computer?

One answer: By factoring a large integer of Alice’s choice!

N = 4250350537

4250350537 = 60449 × 70313

Implication 2: Proofs of Quantumness

We’ve successfully built a
big quantum computer!

Okay but I don’t believe you

N = 4250350537

4250350537 = 60449 × 70313

I believe you now!

Q: How can XYZABC Labs convince Alice that they really do have a large quantum computer?

One answer: By factoring a large integer of Alice’s choice!

The Current State of Affairs

• Known for 30 years: if we had a large-scale quantum computer, we could verifiably
demonstrate quantum advantage (by factoring large integers)

• Slight catch: no-one has managed to build a large-scale quantum computer
yet

The Current State of Affairs

• Known for 30 years: if we had a large-scale quantum computer, we could verifiably
demonstrate quantum advantage (by factoring large integers)

• Slight catch: no-one has managed to build a large-scale quantum computer
yet

“Our qubits are constantly trying to fall apart…
It’s like you’re trying to write in the sand and
the wind is blowing it away.”

The Current State of Affairs

• Known for 30 years: if we had a large-scale quantum computer, we could verifiably
demonstrate quantum advantage (by factoring large integers)

• Slight catch: no-one has managed to build a large-scale quantum computer
yet

“Our qubits are constantly trying to fall apart…
It’s like you’re trying to write in the sand and
the wind is blowing it away.”

Har
dw

ar
e i

m
pr

ov
em

en
ts

Quantum
 error correction

Quantum algorithmic improvements

Proofs of Quantumness from Factoring
Authors Types of inputs Gates Space Depth

Shor (1994) Any

LPDS (2012)

KCVY (2021) N/A

Regev (2023) Any

RV (2024) Any

KRVV (2024)

Õ(n2) Õ(n) Õ(n)

Õ(n) Õ(n) Õ(n)

Õ(n) Õ(n) Õ(1)

Õ(n1.5) O(n1.5) Õ(n0.5)

Õ(n1.5) O(n) Õ(n0.5)

Õ(n) Õ(m) Õ(n/m + m)

N = P2Q

N = P2Q (Q < 2m)

 is the number of bits in the input

 hides constant and factors

All results in this talk are using fast integer
multiplication (multiply -bit integers in time)

n N

Õ(⋅) 𝗉𝗈𝗅𝗒(log n)

n Õ(n)

Proofs of Quantumness from Factoring
Authors Types of inputs Gates Space Depth

Shor (1994) Any

LPDS (2012)

KCVY (2021) N/A

Regev (2023) Any

RV (2024) Any

KRVV (2024)

Õ(n2) Õ(n) Õ(n)

Õ(n) Õ(n) Õ(n)

Õ(n) Õ(n) Õ(1)

Õ(n1.5) O(n1.5) Õ(n0.5)

Õ(n1.5) O(n) Õ(n0.5)

Õ(n) Õ(m) Õ(n/m + m)

N = P2Q

N = P2Q (Q < 2m)

Proofs of Quantumness from Factoring
Authors Types of inputs Gates Space Depth

Shor (1994) Any

LPDS (2012)

KCVY (2021) N/A

Regev (2023) Any

RV (2024) Any

KRVV (2024)

Õ(n2) Õ(n) Õ(n)

Õ(n) Õ(n) Õ(n)

Õ(n) Õ(n) Õ(1)

Õ(n1.5) O(n1.5) Õ(n0.5)

Õ(n1.5) O(n) Õ(n0.5)

Õ(n) Õ(m) Õ(n/m + m)

N = P2Q

N = P2Q (Q < 2m)

Any input: would break RSA cryptography, and suffice as a proof of quantumness

: only suffices as a proof of quantumnessN = P2Q

Proofs of Quantumness from Factoring
Authors Types of inputs Gates Space Depth

Shor (1994) Any

LPDS (2012)

KCVY (2021) N/A

Regev (2023) Any

RV (2024) Any

KRVV (2024)

Õ(n2) Õ(n) Õ(n)

Õ(n) Õ(n) Õ(n)

Õ(n) Õ(n) Õ(1)

Õ(n1.5) O(n1.5) Õ(n0.5)

Õ(n1.5) O(n) Õ(n0.5)

Õ(n) Õ(m) Õ(n/m + m)

N = P2Q

N = P2Q (Q < 2m)

Proofs of Quantumness from Factoring
Authors Types of inputs Gates Space Depth

Shor (1994) Any

LPDS (2012)

KCVY (2021) N/A

Regev (2023) Any

RV (2024) Any

KRVV (2024)

Õ(n2) Õ(n) Õ(n)

Õ(n) Õ(n) Õ(n)

Õ(n) Õ(n) Õ(1)

Õ(n1.5) O(n1.5) Õ(n0.5)

Õ(n1.5) O(n) Õ(n0.5)

Õ(n) Õ(m) Õ(n/m + m)

N = P2Q

N = P2Q (Q < 2m)

Note: KCVY is not a factoring algorithm!

• 3-round interactive proof of quantumness (building on previous work by BCMVV18)
assuming factoring is classically hard

Proofs of Quantumness from Factoring
Authors Types of inputs Gates Space Depth

Shor (1994) Any

LPDS (2012)

KCVY (2021) N/A

Regev (2023) Any

RV (2024) Any

KRVV (2024)

Õ(n2) Õ(n) Õ(n)

Õ(n) Õ(n) Õ(n)

Õ(n) Õ(n) Õ(1)

Õ(n1.5) O(n1.5) Õ(n0.5)

Õ(n1.5) O(n) Õ(n0.5)

Õ(n) Õ(m) Õ(n/m + m)

N = P2Q

N = P2Q (Q < 2m)

Note: KCVY is not a factoring algorithm!

• 3-round interactive proof of quantumness (building on previous work by BCMVV18)
assuming factoring is classically hard

• Pro: easier than actually factoring

Proofs of Quantumness from Factoring
Authors Types of inputs Gates Space Depth

Shor (1994) Any

LPDS (2012)

KCVY (2021) N/A

Regev (2023) Any

RV (2024) Any

KRVV (2024)

Õ(n2) Õ(n) Õ(n)

Õ(n) Õ(n) Õ(n)

Õ(n) Õ(n) Õ(1)

Õ(n1.5) O(n1.5) Õ(n0.5)

Õ(n1.5) O(n) Õ(n0.5)

Õ(n) Õ(m) Õ(n/m + m)

N = P2Q

N = P2Q (Q < 2m)

Note: KCVY is not a factoring algorithm!

• 3-round interactive proof of quantumness (building on previous work by BCMVV18)
assuming factoring is classically hard

• Pro: easier than actually factoring

• Con: quantum prover needs to store state between rounds

Proofs of Quantumness from Factoring
Authors Types of inputs Gates Space Depth

Shor (1994) Any

LPDS (2012)

KCVY (2021) N/A

Regev (2023) Any

RV (2024) Any

KRVV (2024)

Õ(n2) Õ(n) Õ(n)

Õ(n) Õ(n) Õ(n)

Õ(n) Õ(n) Õ(1)

Õ(n1.5) O(n1.5) Õ(n0.5)

Õ(n1.5) O(n) Õ(n0.5)

Õ(n) Õ(m) Õ(n/m + m)

N = P2Q

N = P2Q (Q < 2m)

Proofs of Quantumness from Factoring
Authors Types of inputs Gates Space Depth

Shor (1994) Any

LPDS (2012)

KCVY (2021) N/A

Regev (2023) Any

RV (2024) Any

KRVV (2024)

Õ(n2) Õ(n) Õ(n)

Õ(n) Õ(n) Õ(n)

Õ(n) Õ(n) Õ(1)

Õ(n1.5) O(n1.5) Õ(n0.5)

Õ(n1.5) Õ(n0.5)

Õ(n) Õ(m) Õ(n/m + m)

N = P2Q

N = P2Q (Q < 2m)

Õ(n)

Proofs of Quantumness from Factoring
Authors Types of inputs Gates Space Depth

Shor (1994) Any

LPDS (2012)

KCVY (2021) N/A

Regev (2023) Any

RV (2024) Any

KRVV (2024)

Õ(n2) Õ(n) Õ(n)

Õ(n) Õ(n) Õ(n)

Õ(n) Õ(n) Õ(1)

Õ(n1.5) O(n1.5) Õ(n0.5)

Õ(n1.5) Õ(n) Õ(n0.5)

Õ(n) Õ(m) Õ(n/m + m)

N = P2Q

N = P2Q (Q < 2m)

This work: LPDS with space and depth proportional to rather than log Q log N

Setting Parameters

• Balancing act:

• If is too large: our quantum circuit is no better than the LPDS12 circuitQ

How should we set ?m = log Q

Setting Parameters

• Balancing act:

• If is too large: our quantum circuit is no better than the LPDS12 circuitQ

• If is too small: classical algorithms could exploit this structure to run faster than
general-purpose classical factoring algorithms

Q

How should we set ?m = log Q

Setting Parameters

• Balancing act:

• If is too large: our quantum circuit is no better than the LPDS12 circuitQ

• If is too small: classical algorithms could exploit this structure to run faster than
general-purpose classical factoring algorithms

Q

• General NFS: exp(Õ(n1/3))

• Lenstra elliptic curve method/Mulder ’24: exp(Õ(m1/2))

How should we set ?m = log Q

Setting Parameters

• Balancing act:

• If is too large: our quantum circuit is no better than the LPDS12 circuitQ

• If is too small: classical algorithms could exploit this structure to run faster than
general-purpose classical factoring algorithms

Q

• General NFS: exp(Õ(n1/3))

• Lenstra elliptic curve method/Mulder ’24: exp(Õ(m1/2))

• Sweet spot: → gates , space , depth m = Õ(n2/3) Õ(n) Õ(n2/3) Õ(n2/3)

How should we set ?m = log Q

Our Result
Authors Types of inputs Gates Space Depth

Shor (1994) Any

LPDS (2012)

KCVY (2021) N/A

Regev (2023) Any

RV (2024) Any

KRVV (2024)

Õ(n2) Õ(n) Õ(n)

Õ(n) Õ(n) Õ(n)

Õ(n) Õ(n) Õ(1)

Õ(n1.5) O(n1.5) Õ(n0.5)

Õ(n1.5) Õ(n) Õ(n0.5)

Õ(n) Õ(n2/3) Õ(n2/3)

N = P2Q

N = P2Q (Q < 2n2/3)

An algorithm that factors special-form integers (that are still classically as
hard as RSA integers to factor) in sublinear space and depth!

Factoring with LPDS12:
A Sketch
P2Q

Preliminary: Quantum Period Finding

• Strictly periodic function with unknown period f : ℤ → ℤ T

• x ≡ y (mod T) ⇔ f(x) = f(y)

Preliminary: Quantum Period Finding

• Strictly periodic function with unknown period f : ℤ → ℤ T

• x ≡ y (mod T) ⇔ f(x) = f(y)
• Informal theorem statement: can quantumly recover a uniformly random multiple

of (and hence itself) using essentially only the gates/space needed to compute
 for

1/T T
f(x) |x | ≤ 𝗉𝗈𝗅𝗒(T)

Preliminary: General Quantum Period Finding

• Strictly periodic function with unknown period f : ℤ → {−1,1} T

• x ≡ y (mod T) ⇒ f(x) = f(y)

Hales-Hallgren ’98, May-Schlieper ’22

Preliminary: General Quantum Period Finding

• Strictly periodic function with unknown period f : ℤ → {−1,1} T

• x ≡ y (mod T) ⇒ f(x) = f(y)

• Linearity of the Fourier transform → the same algorithm still outputs a (not necessarily
uniform) random multiple of 1/T

Hales-Hallgren ’98, May-Schlieper ’22

Preliminary: General Quantum Period Finding

• Strictly periodic function with unknown period f : ℤ → {−1,1} T

• x ≡ y (mod T) ⇒ f(x) = f(y)

• Linearity of the Fourier transform → the same algorithm still outputs a (not necessarily
uniform) random multiple of 1/T

• Informal theorem statement: for “reasonable” , this is still sufficient to recover f T

Hales-Hallgren ’98, May-Schlieper ’22

What is a Reasonable ?f

• Approximate probability of obtaining , for):
a
T

a ∈ [T]

̂f(a)
2

=
1
T

T−1

∑
x=0

f(x) ⋅ exp (2πiax
T)

2

Hales-Hallgren ’98, May-Schlieper ’22

What is a Reasonable ?f

• Approximate probability of obtaining , for):
a
T

a ∈ [T]

̂f(a)
2

=
1
T

T−1

∑
x=0

f(x) ⋅ exp (2πiax
T)

2

• Obvious failure mode: when concentrates on multiples of some divisor of
(equivalently, has a smaller period)

̂f d > 1 T
f T/d

Hales-Hallgren ’98, May-Schlieper ’22

What is a Reasonable ?f

• Approximate probability of obtaining , for):
a
T

a ∈ [T]

̂f(a)
2

=
1
T

T−1

∑
x=0

f(x) ⋅ exp (2πiax
T)

2

• Obvious failure mode: when concentrates on multiples of some divisor of
(equivalently, has a smaller period)

̂f d > 1 T
f T/d

• As long as this is not the case, we can succeed after taking enough samples!

Hales-Hallgren ’98, May-Schlieper ’22

What is a Reasonable ?f

• Approximate probability of obtaining , for):
a
T

a ∈ [T]

̂f(a)
2

=
1
T

T−1

∑
x=0

f(x) ⋅ exp (2πiax
T)

2

• Obvious failure mode: when concentrates on multiples of some divisor of
(equivalently, has a smaller period)

̂f d > 1 T
f T/d

• As long as this is not the case, we can succeed after taking enough samples!

• Example: random periodic (by Chernoff bound)f

Hales-Hallgren ’98, May-Schlieper ’22

What is a Reasonable ?f

• Approximate probability of obtaining , for):
a
T

a ∈ [T]

̂f(a)
2

=
1
T

T−1

∑
x=0

f(x) ⋅ exp (2πiax
T)

2

• Obvious failure mode: when concentrates on multiples of some divisor of
(equivalently, has a smaller period)

̂f d > 1 T
f T/d

• As long as this is not the case, we can succeed after taking enough samples!

• Example: random periodic (by Chernoff bound)f

• Even better, we can recover from one sample if concentrates on values such that T ̂f a
gcd(a, T) = 1

Hales-Hallgren ’98, May-Schlieper ’22

Preliminary: The Legendre Symbol

• is a quadratic residue modulo an odd prime if there exists integer such that a p x
a ≡ x2 (mod p)

Preliminary: The Legendre Symbol

• is a quadratic residue modulo an odd prime if there exists integer such that a p x
a ≡ x2 (mod p)

• Legendre symbol essentially indicates whether this is the case:

(a
p) =

1, if a is a nonzero quadratic residue modulo p; and
−1, if a is not a quadratic residue modulo p; and
0, if a divisible by p .

Preliminary: The Jacobi Symbol

• Essentially generalises the Legendre symbol to odd composite moduli

Preliminary: The Jacobi Symbol

• Essentially generalises the Legendre symbol to odd composite moduli

• For , define:N = pα1
1 …pαr

r

(a
N) = (a

p1)
α1

(a
p2)

α2

…(a
pr)

αr

Preliminary: The Jacobi Symbol

• Essentially generalises the Legendre symbol to odd composite moduli

• For , define:N = pα1
1 …pαr

r

(a
N) = (a

p1)
α1

(a
p2)

α2

…(a
pr)

αr

• Note for intuition: the quadratic residue characterisation does not carry over from
the Legendre symbol

Preliminary: The Jacobi Symbol

• Essentially generalises the Legendre symbol to odd composite moduli

• For , define:N = pα1
1 …pαr

r

(a
N) = (a

p1)
α1

(a
p2)

α2

…(a
pr)

αr

• Note for intuition: the quadratic residue characterisation does not carry over from
the Legendre symbol

• Could have without being a quadratic residue modulo (a
N) = 1 a N

Preliminary: The Jacobi Symbol

• Essentially generalises the Legendre symbol to odd composite moduli

• For , define:N = pα1
1 …pαr

r

(a
N) = (a

p1)
α1

(a
p2)

α2

…(a
pr)

αr

• Useful property: a ≡ b (mod N) ⇒ (a
N) = (b

N)

Preliminary: The Jacobi Symbol

• Essentially generalises the Legendre symbol to odd composite moduli

• For , define:N = pα1
1 …pαr

r

(a
N) = (a

p1)
α1

(a
p2)

α2

…(a
pr)

αr

• Useful property: a ≡ b (mod N) ⇒ (a
N) = (b

N)
• Theorem (from Euclid to Schönhage 1971): can compute efficiently without

knowing the factorisation of — in fact, in time
(a

N)
N Õ(log N)

Algorithms Computing the Jacobi Symbol
ft. Euclid, 2000 years ago

Algorithms Computing the Jacobi Symbol

Jacobi Properties

• Periodicity:

• Reciprocity:*

for a very simple

(a
b) = (a mod b

b)
(a

b) = (−1) f(a,b)(b
a)

f

ft. Euclid, 2000 years ago

* modulo minor technical caveats; requires odda, b

Algorithms Computing the Jacobi Symbol

Jacobi Properties

• Periodicity:

• Reciprocity:*

for a very simple

(a
b) = (a mod b

b)
(a

b) = (−1) f(a,b)(b
a)

f

ft. Euclid, 2000 years ago

* modulo minor technical caveats; requires odda, b

f(a, b) = {0, if a ≡ 1 (mod 4) or b ≡ 1 (mod 4)
1, if a ≡ b ≡ 3 (mod 4)

Algorithms Computing the Jacobi Symbol

Jacobi Properties

• Periodicity:

• Reciprocity:*

for a very simple

(a
b) = (a mod b

b)
(a

b) = (−1) f(a,b)(b
a)

f

ft. Euclid, 2000 years ago

* modulo minor technical caveats; requires odda, b

Greatest Common Divisor (GCD)
Properties

• Periodicity:

• Reciprocity:

gcd(a, b) = gcd(a mod b, b)

gcd(a, b) = gcd(b, a)

Algorithms Computing the Jacobi Symbol

Jacobi Properties

• Periodicity:

• Reciprocity:*

for a very simple

(a
b) = (a mod b

b)
(a

b) = (−1) f(a,b)(b
a)

f

ft. Euclid, 2000 years ago

* modulo minor technical caveats; requires odda, b

Greatest Common Divisor (GCD)
Properties

• Periodicity:

• Reciprocity:

gcd(a, b) = gcd(a mod b, b)

gcd(a, b) = gcd(b, a)

Extended Euclidean algorithm solves both these problems!

Algorithms Computing the Jacobi Symbol

• Extended Euclidean recursion: if , swap . Else, update .a < b a, b a ← a mod b

• Standard runtime: O(log a log b)

ft. Euclid, 2000 years ago

Algorithms Computing the Jacobi Symbol

• Extended Euclidean recursion: if , swap . Else, update .a < b a, b a ← a mod b

• Standard runtime: O(log a log b)
• Schönhage 1971: complicated (and little-known!) divide-and-conquer algorithm

that outputs the “transcript” of extended Euclidean in timeÕ(log a + log b)

ft. Euclid, 2000 years ago

Algorithms Computing the Jacobi Symbol

• Extended Euclidean recursion: if , swap . Else, update .a < b a, b a ← a mod b

• Standard runtime: O(log a log b)
• Schönhage 1971: complicated (and little-known!) divide-and-conquer algorithm

that outputs the “transcript” of extended Euclidean in timeÕ(log a + log b)

ft. Euclid, 2000 years ago

Algorithms Computing the Jacobi Symbol

• Extended Euclidean recursion: if , swap . Else, update .a < b a, b a ← a mod b

• Standard runtime: O(log a log b)
• Schönhage 1971: complicated (and little-known!) divide-and-conquer algorithm

that outputs the “transcript” of extended Euclidean in timeÕ(log a + log b)

ft. Euclid, 2000 years ago

Factoring from Jacobi Symbol Periodicity

• For RSA integers : product of two periodic functions with smaller periods
but itself only has period

(N = PQ)
N

(a
N) = (a

P) (a
Q)

Factoring from Jacobi Symbol Periodicity

• For RSA integers : product of two periodic functions with smaller periods
but itself only has period

(N = PQ)
N

(a
N) = (a

P) (a
Q)

• What about ?N = P2Q

, which is periodic* with period !(a
N) = (a

P)
2

(a
Q) = (a

Q) Q

* modulo minor technical caveats; could have

 for a tiny fraction of inputs (a
P) = 0 a

Quantumly Factoring N = P2Q

• We know is periodic with period !(a
N) Q

• So quantum period finding → recover (and hence)Q P

Li, Peng, Du, Suter (2012)

Quantumly Factoring N = P2Q

• We know is periodic with period !(a
N) Q

• So quantum period finding → recover (and hence)Q P

• Gate complexity: cost of computing for , which is (a
N) a ≤ 𝗉𝗈𝗅𝗒(Q) Õ(log N)

Li, Peng, Du, Suter (2012)

Quantumly Factoring N = P2Q

• We know is periodic with period !(a
N) Q

• So quantum period finding → recover (and hence)Q P

• Gate complexity: cost of computing for , which is (a
N) a ≤ 𝗉𝗈𝗅𝗒(Q) Õ(log N)

• Space and depth (if naively implemented): also Õ(log N)

Li, Peng, Du, Suter (2012)

Is the Jacobi Function “Reasonable”?
• Generalised quantum period finding: we recover with probability

a
Q

̂f(a)
2

=
1
Q

Q−1

∑
x=0

(x
Q) ⋅ exp (2πiax

Q)
2

Is the Jacobi Function “Reasonable”?
• Generalised quantum period finding: we recover with probability

a
Q

̂f(a)
2

=
1
Q

Q−1

∑
x=0

(x
Q) ⋅ exp (2πiax

Q)
2

• Typically (and in Shor’s factoring algorithm): may need samples (runs of the
quantum circuit) to recover the period

> 1

Is the Jacobi Function “Reasonable”?
• Generalised quantum period finding: we recover with probability

a
Q

̂f(a)
2

=
1
Q

Q−1

∑
x=0

(x
Q) ⋅ exp (2πiax

Q)
2

• Typically (and in Shor’s factoring algorithm): may need samples (runs of the
quantum circuit) to recover the period

> 1

• Troublesome case: we sample such that a gcd(a, Q) > 1

Is the Jacobi Function “Reasonable”?
• Generalised quantum period finding: we recover with probability

a
Q

̂f(a)
2

=
1
Q

Q−1

∑
x=0

(x
Q) ⋅ exp (2πiax

Q)
2

• Typically (and in Shor’s factoring algorithm): may need samples (runs of the
quantum circuit) to recover the period

> 1

• Troublesome case: we sample such that a gcd(a, Q) > 1
• Theorem (follows from Gauss sums): 1 sample always suffices for Jacobi!

Is the Jacobi Function “Reasonable”?
• Generalised quantum period finding: we recover with probability

a
Q

̂f(a)
2

=
1
Q

Q−1

∑
x=0

(x
Q) ⋅ exp (2πiax

Q)
2

• Typically (and in Shor’s factoring algorithm): may need samples (runs of the
quantum circuit) to recover the period

> 1

• Troublesome case: we sample such that a gcd(a, Q) > 1
• Theorem (follows from Gauss sums): 1 sample always suffices for Jacobi!

• Proof: Gauss sums → whenever ̂f(a) = 0 gcd(a, Q) > 1

Is the Jacobi Function “Reasonable”?
• Generalised quantum period finding: we recover with probability

a
Q

̂f(a)
2

=
1
Q

Q−1

∑
x=0

(x
Q) ⋅ exp (2πiax

Q)
2

• Typically (and in Shor’s factoring algorithm): may need samples (runs of the
quantum circuit) to recover the period

> 1

• Troublesome case: we sample such that a gcd(a, Q) > 1
• Theorem (follows from Gauss sums): 1 sample always suffices for Jacobi!

• Proof: Gauss sums → whenever ̂f(a) = 0 gcd(a, Q) > 1

• Special case for intuition: if is prime, we have Q ̂f(0) = 𝔼 [(x
Q)] = 0

Is the Jacobi Function “Reasonable”?
• Generalised quantum period fi

• Typically (and in Shor’s factoring algorithm): may need samples (runs of the
quantum circuit) to recover the period

• Troublesome case: we sample such that

• Theorem (follows from Gauss sums): 1 sample always suffi

• Proof: Gauss sums → whenever

• Special case for intuition: if is prime, we have

a
Q

̂f(a)
2

=
1
Q

Q−1

∑
x=0

(x
Q) ⋅ exp (2πiax

Q)
2

> 1

a gcd(a, Q) > 1

̂f(a) = 0 gcd(a, Q) > 1

Q ̂f(0) = 0

The Jacobi function isn’t just “reasonably good” for general
quantum period finding, it’s actually magically well-suited to it —
even more so than the periodic function used by Shor to factor!

Our Contribution: Pushing Space
and Depth Down to Õ(log Q)

Why is There Any Hope for Sublinear Space?

• Recall: to solve period finding when the period is , need to set up a superpositionT
𝗉𝗈𝗅𝗒(T)

∑
a=1

|a⟩ | f(a)⟩

Why is There Any Hope for Sublinear Space?

• Recall: to solve period finding when the period is , need to set up a superpositionT
𝗉𝗈𝗅𝗒(T)

∑
a=1

|a⟩ | f(a)⟩

• Even just writing down requires qubits!|a⟩ log 𝗉𝗈𝗅𝗒(T) = O(log T)

Why is There Any Hope for Sublinear Space?

• Recall: to solve period finding when the period is , need to set up a superpositionT
𝗉𝗈𝗅𝗒(T)

∑
a=1

|a⟩ | f(a)⟩

• Even just writing down requires qubits!|a⟩ log 𝗉𝗈𝗅𝗒(T) = O(log T)

• In Shor (and Regev): the period is → stuck at qubits≈ N O(log N)

Why is There Any Hope for Sublinear Space?

• Recall: to solve period finding when the period is , need to set up a superpositionT
𝗉𝗈𝗅𝗒(T)

∑
a=1

|a⟩ | f(a)⟩

• Even just writing down requires qubits!|a⟩ log 𝗉𝗈𝗅𝗒(T) = O(log T)

• In Shor (and Regev): the period is → stuck at qubits≈ N O(log N)

• Hope 1: when factoring with Jacobi: the period is just → qubits
could suffice!

P2Q Q O(log Q)

Why is There Any Hope for Sublinear Space?

• Goal: compute for (a
N) a ≤ 𝗉𝗈𝗅𝗒(Q)

• How could we compute this without ever writing down all of quantumly?N

Why is There Any Hope for Sublinear Space?

• Goal: compute for (a
N) a ≤ 𝗉𝗈𝗅𝗒(Q)

• How could we compute this without ever writing down all of quantumly?N

• Hope 2: is classically known → could quantumly “stream” through bits of to
save space

N N

Why is There Any Hope for Sublinear Space?

• Goal: compute for (a
N) a ≤ 𝗉𝗈𝗅𝗒(Q)

• How could we compute this without ever writing down all of quantumly?N

• Hope 2: is classically known → could quantumly “stream” through bits of to
save space

N N

Bits of , split into chunks of size N O(log Q)

Classical computer sending instructions to the quantum computer

Quantum computer with qubitsÕ(log Q)

Computing the Jacobi Symbol

• Our task: compute for (a
N) a ≤ 𝗉𝗈𝗅𝗒(Q)

It’s all about N mod a

Computing the Jacobi Symbol

• Our task: compute for (a
N) a ≤ 𝗉𝗈𝗅𝗒(Q)

• Recall:

(a
N) = (−1) f(a,N)(N

a) = (−1) f(a,N)(N mod a
a)

It’s all about N mod a

Computing the Jacobi Symbol

• Our task: compute for (a
N) a ≤ 𝗉𝗈𝗅𝗒(Q)

• Recall:

(a
N) = (−1) f(a,N)(N

a) = (−1) f(a,N)(N mod a
a)

• Two step procedure:
1. Compute N mod a

It’s all about N mod a

Computing the Jacobi Symbol

• Our task: compute for (a
N) a ≤ 𝗉𝗈𝗅𝗒(Q)

• Recall:

(a
N) = (−1) f(a,N)(N

a) = (−1) f(a,N)(N mod a
a)

• Two step procedure:
1. Compute N mod a

2. Now → can finish in gates/space using
Schönhage

(N mod a) < a < 𝗉𝗈𝗅𝗒(Q) Õ(log Q)

It’s all about N mod a

Computing the Jacobi Symbol

• Our task: compute for (a
N) a ≤ 𝗉𝗈𝗅𝗒(Q)

• Recall:

(a
N) = (−1) f(a,N)(N

a) = (−1) f(a,N)(N mod a
a)

• Two step procedure:
1. Compute N mod a

2. Now → can finish in gates/space using
Schönhage

(N mod a) < a < 𝗉𝗈𝗅𝗒(Q) Õ(log Q)

The “only” bottleneck: computing |a⟩ ↦ |a⟩ |N mod a⟩

It’s all about N mod a

Our Result, Distilled
• Theorem (KRVV24): for quantum and classically known , we can computea N

|a⟩ ↦ |a⟩ |N mod a⟩

 in gates (near-linear) and qubits (enough qubits to write down)Õ(log N) Õ(log a) a

Our Result, Distilled
• Theorem (KRVV24): for quantum and classically known , we can computea N

|a⟩ ↦ |a⟩ |N mod a⟩

 in gates (near-linear) and qubits (enough qubits to write down)Õ(log N) Õ(log a) a

• Corollary 1: all of the following can be computed in gates (near-linear) and
 qubits for quantum and classical :

Õ(log N)
Õ(log a) a N

• Jacobi symbol: (a
N)

Our Result, Distilled
• Theorem (KRVV24): for quantum and classically known , we can computea N

|a⟩ ↦ |a⟩ |N mod a⟩

 in gates (near-linear) and qubits (enough qubits to write down)Õ(log N) Õ(log a) a

• Corollary 1: all of the following can be computed in gates (near-linear) and
 qubits for quantum and classical :

Õ(log N)
Õ(log a) a N

• Jacobi symbol: (a
N)

• GCD: gcd(a, N)

• Modular inverse: (provided)a−1 mod N gcd(a, N) = 1

Our Result, Distilled
• Theorem (KRVV24): for quantum and classically known , we can computea N

|a⟩ ↦ |a⟩ |N mod a⟩

 in gates (near-linear) and qubits (enough qubits to write down)Õ(log N) Õ(log a) a

• Corollary 1: all of the following can be computed in gates (near-linear) and
 qubits for quantum and classical :

Õ(log N)
Õ(log a) a N

• Jacobi symbol: (a
N)

• GCD: gcd(a, N)

• Modular inverse: (provided)a−1 mod N gcd(a, N) = 1

Open question:
other applications
of these results?

Our Result, Distilled
• Theorem (KRVV24): for quantum and classically known , we can compute

 in gates (near-linear) and qubits (enough qubits to write down)

• Corollary 2: we can factor in gates and qubits

• Just need the above theorem for

a N

|a⟩ ↦ |a⟩ |N mod a⟩

Õ(log N) Õ(log a) a

N = P2Q Õ(log N) Õ(log Q)

a ≤ 𝗉𝗈𝗅𝗒(Q)

Computing with Quantum StreamingN mod a

Bits of , split into chunks of size N O(log Q)

Classical computer sending instructions to the quantum computer

Quantum computer with qubitsÕ(log Q)

a

Notation: has
bits, has

 bits

N n
a

m = O(log Q)

Computing with Quantum StreamingN mod a
• Proceeds in time steps (one for each -bit chunk of)tmax = O(n/m) m N

Bits of , split into chunks of size N O(log Q)

Classical computer sending instructions to the quantum computer

Quantum computer with qubitsÕ(log Q)

a

Notation: has
bits, has

 bits

N n
a

m = O(log Q)

Computing with Quantum StreamingN mod a
• Proceeds in time steps (one for each -bit chunk of)tmax = O(n/m) m N

• After time step : quantum computer has some t 𝗌𝗍𝖺𝗍𝖾t

Bits of , split into chunks of size N O(log Q)

Classical computer sending instructions to the quantum computer

Quantum computer with qubitsÕ(log Q)

a
𝗌𝗍𝖺𝗍𝖾t

Notation: has
bits, has

 bits

N n
a

m = O(log Q)

Computing with Quantum StreamingN mod a
• Proceeds in time steps (one for each -bit chunk of)tmax = O(n/m) m N

• After time step : quantum computer has some t 𝗌𝗍𝖺𝗍𝖾t

• Desiderata:

• Correctness: is efficiently recoverable from N mod a 𝗌𝗍𝖺𝗍𝖾tmax

Bits of , split into chunks of size N O(log Q)

Classical computer sending instructions to the quantum computer

Quantum computer with qubitsÕ(log Q)

a
𝗌𝗍𝖺𝗍𝖾t

Notation: has
bits, has

 bits

N n
a

m = O(log Q)

Computing with Quantum StreamingN mod a
• Proceeds in time steps (one for each -bit chunk of)tmax = O(n/m) m N

• After time step : quantum computer has some t 𝗌𝗍𝖺𝗍𝖾t

• Desiderata:

• Correctness: is efficiently recoverable from N mod a 𝗌𝗍𝖺𝗍𝖾tmax

• Compactness: has bits for all 𝗌𝗍𝖺𝗍𝖾t O(m) t

Bits of , split into chunks of size N O(log Q)

Classical computer sending instructions to the quantum computer

Quantum computer with qubitsÕ(log Q)

a
𝗌𝗍𝖺𝗍𝖾t

Notation: has
bits, has

 bits

N n
a

m = O(log Q)

Computing with Quantum StreamingN mod a
• Proceeds in time steps (one for each -bit chunk of)tmax = O(n/m) m N

• After time step : quantum computer has some t 𝗌𝗍𝖺𝗍𝖾t

• Desiderata:

• Correctness: is efficiently recoverable from N mod a 𝗌𝗍𝖺𝗍𝖾tmax

• Compactness: has bits for all 𝗌𝗍𝖺𝗍𝖾t O(m) t

• Reversibility: can be reconstructed (and therefore uncomputed) from 𝗌𝗍𝖺𝗍𝖾t−1 𝗌𝗍𝖺𝗍𝖾t

Bits of , split into chunks of size N O(log Q)

Classical computer sending instructions to the quantum computer

Quantum computer with qubitsÕ(log Q)

a
𝗌𝗍𝖺𝗍𝖾t

Notation: has
bits, has

 bits

N n
a

m = O(log Q)

Our Construction, Simplified

• At time , let be a multiple of such that t = 0,…, n − m Nt a N ≡ Nt (mod 2t)

• Equivalently: agrees with on the lowest-order bitsNt N t

Our Construction, Simplified

• At time , let be a multiple of such that t = 0,…, n − m Nt a N ≡ Nt (mod 2t)

• Equivalently: agrees with on the lowest-order bitsNt N t

• is easily constructible from Nt Nt−1

Our Construction, Simplified

• At time , let be a multiple of such that t = 0,…, n − m Nt a N ≡ Nt (mod 2t)

• Equivalently: agrees with on the lowest-order bitsNt N t

• is easily constructible from Nt Nt−1

• Bits of split into two parts:Nt

Our Construction, Simplified

• At time , let be a multiple of such that t = 0,…, n − m Nt a N ≡ Nt (mod 2t)

• Equivalently: agrees with on the lowest-order bitsNt N t

• is easily constructible from Nt Nt−1

• Bits of split into two parts:Nt

• low-order bits: these match → classically known → no need to store quantumlyt N

Our Construction, Simplified

• At time , let be a multiple of such that t = 0,…, n − m Nt a N ≡ Nt (mod 2t)

• Equivalently: agrees with on the lowest-order bitsNt N t

• is easily constructible from Nt Nt−1

• Bits of split into two parts:Nt

• low-order bits: these match → classically known → no need to store quantumlyt N

• Higher-order bits: this must be held quantumly, and is 𝗌𝗍𝖺𝗍𝖾t

Our Construction, Simplified

• At time , let be a multiple of such that t = 0,…, n − m Nt a N ≡ Nt (mod 2t)

• Equivalently: agrees with on the lowest-order bitsNt N t

• is easily constructible from Nt Nt−1

• Bits of split into two parts:Nt

• low-order bits: these match → classically known → no need to store quantumlyt N

• Higher-order bits: this must be held quantumly, and is 𝗌𝗍𝖺𝗍𝖾t

• It turns out that the final state suffices to reconstruct 𝗌𝗍𝖺𝗍𝖾n−m N mod a

Our Construction, In Detail

A Natural Attempt: Long Division
Na

N mod a

Required state

Excess state that
we cannot clean
up

Excess state that
we can clean up

𝗌𝗍𝖺𝗍𝖾1

𝗌𝗍𝖺𝗍𝖾2

𝗌𝗍𝖺𝗍𝖾3

𝗌𝗍𝖺𝗍𝖾4

A Natural Attempt: Long Division

• Pro: only need to look at bits of at a time, and each is compactO(m) N 𝗌𝗍𝖺𝗍𝖾t

Na

N mod a

Required state

Excess state that
we cannot clean
up

Excess state that
we can clean up

𝗌𝗍𝖺𝗍𝖾1

𝗌𝗍𝖺𝗍𝖾2

𝗌𝗍𝖺𝗍𝖾3

𝗌𝗍𝖺𝗍𝖾4

A Natural Attempt: Long Division

• Pro: only need to look at bits of at a time, and each is compactO(m) N 𝗌𝗍𝖺𝗍𝖾t

• Con: no reversibility → end up using qubits anywayO(n)

Na

N mod a

Required state

Excess state that
we cannot clean
up

Excess state that
we can clean up

current state

previous state

control bit for last step

𝗌𝗍𝖺𝗍𝖾1

𝗌𝗍𝖺𝗍𝖾2

𝗌𝗍𝖺𝗍𝖾3

𝗌𝗍𝖺𝗍𝖾4

Long Division: A Bird’s Eye View
Na

N mod a

Required state

Excess state that
we cannot clean
up

Excess state that
we can clean up

𝗌𝗍𝖺𝗍𝖾1

𝗌𝗍𝖺𝗍𝖾2

𝗌𝗍𝖺𝗍𝖾3

𝗌𝗍𝖺𝗍𝖾4

Long Division: A Bird’s Eye View

• Goal of long division: find such that , and output k N ≈ ka N − ka

Na

N mod a

Required state

Excess state that
we cannot clean
up

Excess state that
we can clean up

𝗌𝗍𝖺𝗍𝖾1

𝗌𝗍𝖺𝗍𝖾2

𝗌𝗍𝖺𝗍𝖾3

𝗌𝗍𝖺𝗍𝖾4

Long Division: A Bird’s Eye View

• Goal of long division: find such that , and output k N ≈ ka N − ka

• Does this by subtracting from , starting with large (most significant bit of) and
going down to (least significant bit of)

2ra 𝗌𝗍𝖺𝗍𝖾 r k
r = 0 k

Na

N mod a

Required state

Excess state that
we cannot clean
up

Excess state that
we can clean up

“subtract ”16a

“subtract ”2a

“subtract 0”

“subtract 0”

𝗌𝗍𝖺𝗍𝖾1

𝗌𝗍𝖺𝗍𝖾2

𝗌𝗍𝖺𝗍𝖾3

𝗌𝗍𝖺𝗍𝖾4

Our Idea: “Backwards Long Division”
Long division: initialise and subtract from ,
starting from large (MSB of) and going down to small (LSB of)

𝗌𝗍𝖺𝗍𝖾 = N 2ra 𝗌𝗍𝖺𝗍𝖾
r k r k

Our Idea: “Backwards Long Division”
Long division: initialise and subtract from ,
starting from large (MSB of) and going down to small (LSB of)

𝗌𝗍𝖺𝗍𝖾 = N 2ra 𝗌𝗍𝖺𝗍𝖾
r k r k

:N

Multiple of from long division:a

Our Idea: “Backwards Long Division”

Backwards long division: initialise and add to ,
starting from small (LSB of) and going up to large (MSB of)

𝗌𝗍𝖺𝗍𝖾 = 0 2ra 𝗌𝗍𝖺𝗍𝖾
r k r k

:N

Multiple of from long division:a

From backwards long division:

Long division: initialise and subtract from ,
starting from large (MSB of) and going down to small (LSB of)

𝗌𝗍𝖺𝗍𝖾 = N 2ra 𝗌𝗍𝖺𝗍𝖾
r k r k

Our Idea: “Backwards Long Division”

Backwards long division: initialise and add to ,
starting from small (LSB of) and going up to large (MSB of)

𝗌𝗍𝖺𝗍𝖾 = 0 2ra 𝗌𝗍𝖺𝗍𝖾
r k r k

Key observation: it is very easy at time to decide based on
whether we just added ; simply check whether

t 𝗌𝗍𝖺𝗍𝖾
2ta 𝗌𝗍𝖺𝗍𝖾 ≥ 2ta

:N

Multiple of from long division:a

From backwards long division:

Long division: initialise and subtract from ,
starting from large (MSB of) and going down to small (LSB of)

𝗌𝗍𝖺𝗍𝖾 = N 2ra 𝗌𝗍𝖺𝗍𝖾
r k r k

Our Idea: “Backwards Long Division”

Key observation: it is very easy at time to decide based on
whether we just added ; simply check whether

t 𝗌𝗍𝖺𝗍𝖾
2ta 𝗌𝗍𝖺𝗍𝖾 ≥ 2ta

:N

Multiple of from long division:a

From backwards long division:

After backwards long division: once we have a
multiple of that matches in the least significant

bits, computing is straightforward!
a N

N mod a

Long division: initialise and subtract from ,
starting from large (MSB of) and going down to small (LSB of)

𝗌𝗍𝖺𝗍𝖾 2ra 𝗌𝗍𝖺𝗍𝖾
r k r k

Backwards long division: initialise and add to ,
starting from small (LSB of) and going up to large (MSB of)

𝗌𝗍𝖺𝗍𝖾 2ra 𝗌𝗍𝖺𝗍𝖾
r k r k

Our Idea: “Backwards Long Division”

Key observation: it is very easy at time to decide based on
whether we just added ; simply check whether

t 𝗌𝗍𝖺𝗍𝖾
2ta 𝗌𝗍𝖺𝗍𝖾 ≥ 2ta

:N

Multiple of from long division:a

From backwards long division:

After backwards long division: once we have a
multiple of that matches in the least significant

bits, computing is straightforward!
a N

N mod a

Long division: initialise and subtract from ,
starting from large (MSB of) and going down to small (LSB of)

𝗌𝗍𝖺𝗍𝖾 2ra 𝗌𝗍𝖺𝗍𝖾
r k r k

Backwards long division: initialise and add to ,
starting from small (LSB of) and going up to large (MSB of)

𝗌𝗍𝖺𝗍𝖾 2ra 𝗌𝗍𝖺𝗍𝖾
r k r k

Implementing Backwards Long Division

• Instead of constructing from MSB to LSB, let’s construct it from LSB to MSBk

Key observation: it is very easy at time to decide based on
whether we just added ; simply check whether

t 𝗌𝗍𝖺𝗍𝖾
2ta 𝗌𝗍𝖺𝗍𝖾 ≥ 2ta

Implementing Backwards Long Division

• Instead of constructing from MSB to LSB, let’s construct it from LSB to MSBk

• Algorithm (assume for simplicity that is odd):a

• Initialise (will eventually be our multiple)𝗌𝗍𝖺𝗍𝖾 = 0 𝗌𝗍𝖺𝗍𝖾 ka

Key observation: it is very easy at time to decide based on
whether we just added ; simply check whether

t 𝗌𝗍𝖺𝗍𝖾
2ta 𝗌𝗍𝖺𝗍𝖾 ≥ 2ta

Implementing Backwards Long Division

• Instead of constructing from MSB to LSB, let’s construct it from LSB to MSBk

• Algorithm (assume for simplicity that is odd):a

• Initialise (will eventually be our multiple)𝗌𝗍𝖺𝗍𝖾 = 0 𝗌𝗍𝖺𝗍𝖾 ka

• At time , add to ift 2ta 𝗌𝗍𝖺𝗍𝖾

Key observation: it is very easy at time to decide based on
whether we just added ; simply check whether

t 𝗌𝗍𝖺𝗍𝖾
2ta 𝗌𝗍𝖺𝗍𝖾 ≥ 2ta

Implementing Backwards Long Division

• Instead of constructing from MSB to LSB, let’s construct it from LSB to MSBk

• Algorithm (assume for simplicity that is odd):a

• Initialise (will eventually be our multiple)𝗌𝗍𝖺𝗍𝖾 = 0 𝗌𝗍𝖺𝗍𝖾 ka

• At time , add to ift 2ta 𝗌𝗍𝖺𝗍𝖾

• Stop when and are “close” in some senseN 𝗌𝗍𝖺𝗍𝖾 (= ka)

Key observation: it is very easy at time to decide based on
whether we just added ; simply check whether

t 𝗌𝗍𝖺𝗍𝖾
2ta 𝗌𝗍𝖺𝗍𝖾 ≥ 2ta

Implementing Backwards Long Division

• Instead of constructing from MSB to LSB, let’s construct it from LSB to MSB

• Algorithm (assume for simplicity that is odd):

• Initialise (will eventually be our multiple)

• At time , add to if and differ in the th least significant bit

• Stop when and are “close” in some sense

k

a

𝗌𝗍𝖺𝗍𝖾 = 0 𝗌𝗍𝖺𝗍𝖾 ka

t 2ta 𝗌𝗍𝖺𝗍𝖾 N 𝗌𝗍𝖺𝗍𝖾 t

N 𝗌𝗍𝖺𝗍𝖾 (= ka)

Key observation: it is very easy at time to decide based on
whether we just added ; simply check whether

t 𝗌𝗍𝖺𝗍𝖾
2ta 𝗌𝗍𝖺𝗍𝖾 ≥ 2ta

Implementing Backwards Long Division

• Instead of constructing from MSB to LSB, let’s construct it from LSB to MSBk

• Algorithm (assume for simplicity that is odd):a

• Initialise (will eventually be our multiple)𝗌𝗍𝖺𝗍𝖾 = 0 𝗌𝗍𝖺𝗍𝖾 ka

• At time , add to if and differ in the th least significant bitt 2ta 𝗌𝗍𝖺𝗍𝖾 N 𝗌𝗍𝖺𝗍𝖾 t

• Stop when and agree on the least significant bitsN 𝗌𝗍𝖺𝗍𝖾 (= ka) n − m

Key observation: it is very easy at time to decide based on
whether we just added ; simply check whether

t 𝗌𝗍𝖺𝗍𝖾
2ta 𝗌𝗍𝖺𝗍𝖾 ≥ 2ta

Implementing Backwards Long Division

• Instead of constructing from MSB to LSB, let’s construct it from LSB to MSBk

• Algorithm (assume for simplicity that is odd):a

• Initialise (will eventually be our multiple)𝗌𝗍𝖺𝗍𝖾 = 0 𝗌𝗍𝖺𝗍𝖾 ka

• At time , add to if and differ in the th least significant bitt 2ta 𝗌𝗍𝖺𝗍𝖾 N 𝗌𝗍𝖺𝗍𝖾 t

• Stop when and agree on the least significant bitsN 𝗌𝗍𝖺𝗍𝖾 (= ka) n − m

• Equivalently: N ≡ ka (mod 2n−m)

Key observation: it is very easy at time to decide based on
whether we just added ; simply check whether

t 𝗌𝗍𝖺𝗍𝖾
2ta 𝗌𝗍𝖺𝗍𝖾 ≥ 2ta

Tracing Through Our Algorithm Recall:
𝗌𝗍𝖺𝗍𝖾 = ka

Tracing Through Our Algorithm Recall:
𝗌𝗍𝖺𝗍𝖾 = ka

Tracing Through Our Algorithm Recall:
𝗌𝗍𝖺𝗍𝖾 = ka

Tracing Through Our Algorithm Recall:
𝗌𝗍𝖺𝗍𝖾 = ka

Tracing Through Our Algorithm Recall:
𝗌𝗍𝖺𝗍𝖾 = ka

Tracing Through Our Algorithm

• Our earlier observation: a simple comparison between and suffices for
uncomputation at each step

𝗌𝗍𝖺𝗍𝖾 2ta

Recall:
𝗌𝗍𝖺𝗍𝖾 = ka

Tracing Through Our Algorithm

• Our earlier observation: a simple comparison between and suffices for
uncomputation at each step

𝗌𝗍𝖺𝗍𝖾 2ta

• Second observation:

• The trailing bits of and are classically known; and𝗌𝗍𝖺𝗍𝖾 N

Recall:
𝗌𝗍𝖺𝗍𝖾 = ka

Tracing Through Our Algorithm

• Our earlier observation: a simple comparison between and suffices for
uncomputation at each step

𝗌𝗍𝖺𝗍𝖾 2ta

• Second observation:

• The trailing bits of and are classically known; and𝗌𝗍𝖺𝗍𝖾 N

• We only need the leading-order bits of to make the above comparison with 𝗌𝗍𝖺𝗍𝖾
2ta

Recall:
𝗌𝗍𝖺𝗍𝖾 = ka

Tracing Through Our Algorithm

• Our earlier observation: a simple comparison between and suffices for
uncomputation at each step

• Second observation:

• The trailing bits of and are classically known; and

• We only need the leading-order bits of to make the above comparison with

This now gets us down to space!

𝗌𝗍𝖺𝗍𝖾 2ta

𝗌𝗍𝖺𝗍𝖾 N

𝗌𝗍𝖺𝗍𝖾
2ta

O(m)

Recall:
𝗌𝗍𝖺𝗍𝖾 = ka

Efficiency of Our Algorithm

• Space: O(m) = O(log a)

Efficiency of Our Algorithm

• Space: O(m) = O(log a)

• Computation boils down to additions of -bit integersO(n) m

Efficiency of Our Algorithm

• Space: O(m) = O(log a)

• Computation boils down to additions of -bit integersO(n) m

• Gates: O(mn)

• Depth: Õ(n)

Efficiency of Our Algorithm

• Space: O(m) = O(log a)

• Computation boils down to additions of -bit integersO(n) m

• Gates: O(mn)

• Depth: Õ(n)
This is already nice, but we can do better…

Pushing Down the Gates and Depth

• Idea: instead of setting one bit of at a time, we will set bits at a timek m

Pushing Down the Gates and Depth

• Idea: instead of setting one bit of at a time, we will set bits at a timek m

• Enables us to benefit from fast integer multiplication algorithms (for -bit inputs)m

Pushing Down the Gates and Depth

• Idea: instead of setting one bit of at a time, we will set bits at a timek m

• Enables us to benefit from fast integer multiplication algorithms (for -bit inputs)m

• To decide what multiple of to add at each step: start by computing a a−1 mod 2m

Pushing Down the Gates and Depth

• Idea: instead of setting one bit of at a time, we will set bits at a timek m

• Enables us to benefit from fast integer multiplication algorithms (for -bit inputs)m

• To decide what multiple of to add at each step: start by computing a a−1 mod 2m

Two options to compute :a−1 mod 2m

1. (Obnoxious; concretely inefficient) Use Schönhage to achieve this in gates/space/depthÕ(m)

Pushing Down the Gates and Depth

• Idea: instead of setting one bit of at a time, we will set bits at a timek m

• Enables us to benefit from fast integer multiplication algorithms (for -bit inputs)m

• To decide what multiple of to add at each step: start by computing a a−1 mod 2m

Two options to compute :a−1 mod 2m

1. (Obnoxious; concretely inefficient) Use Schönhage to achieve this in gates/space/depthÕ(m)

2. (Using the modulus; can be made concretely efficient) Recurse down to computing 2m a−1 mod 2m/2

a. Recursion step just does some multiplications and bit shifts on -bit integersm

Pushing Down the Gates and Depth

• Idea: instead of setting one bit of at a time, we will set bits at a timek m

• Enables us to benefit from fast integer multiplication algorithms (for -bit inputs)m

• To decide what multiple of to add at each step: start by computing a a−1 mod 2m

• Space usage: still Õ(m)

Pushing Down the Gates and Depth

• Idea: instead of setting one bit of at a time, we will set bits at a timek m

• Enables us to benefit from fast integer multiplication algorithms (for -bit inputs)m

• To decide what multiple of to add at each step: start by computing a a−1 mod 2m

• Space usage: still Õ(m)

• Computational work: multiplications of -bit integersO(n/m) m

Pushing Down the Gates and Depth

• Idea: instead of setting one bit of at a time, we will set bits at a timek m

• Enables us to benefit from fast integer multiplication algorithms (for -bit inputs)m

• To decide what multiple of to add at each step: start by computing a a−1 mod 2m

• Space usage: still Õ(m)

• Computational work: multiplications of -bit integersO(n/m) m

• Gates: O(n/m) × Õ(m) = Õ(n)

• Depth: O(n/m) × Õ(1) = Õ(n/m)

Summary and Open Questions

Summary of Our Algorithm
To compute for (where):(a

N) a < 2m m = O(log Q)

1. Compute N mod a

Summary of Our Algorithm
To compute for (where):(a

N) a < 2m m = O(log Q)

1. Compute N mod a

• Technical challenge: achieving this in gates , space , and depth Õ(n) Õ(m) Õ(n/m)

Summary of Our Algorithm
To compute for (where):(a

N) a < 2m m = O(log Q)

1. Compute N mod a

• Technical challenge: achieving this in gates , space , and depth Õ(n) Õ(m) Õ(n/m)

2. Finish by computing using Schönhage’s algorithm(N mod a
a)

Summary of Our Algorithm
To compute for (where):(a

N) a < 2m m = O(log Q)

1. Compute N mod a

• Technical challenge: achieving this in gates , space , and depth Õ(n) Õ(m) Õ(n/m)

2. Finish by computing using Schönhage’s algorithm(N mod a
a)

• Contributes an additional depth of (dominant term in depth if)Õ(m) m ≫ n

Summary: Our Factoring Circuit for P2Q

• Main theorem (KRVV24): for such that is squarefree and , we
can recover from in gates, qubits, and depth

N = P2Q < 2n Q < 2m

P, Q N Õ(n) Õ(m) Õ(n/m + m)

Summary: Our Factoring Circuit for P2Q

• Main theorem (KRVV24): for such that is squarefree and , we
can recover from in gates, qubits, and depth

N = P2Q < 2n Q < 2m

P, Q N Õ(n) Õ(m) Õ(n/m + m)

Central workhorse: an efficient quantum circuit for computing for
classical and quantum

N mod a
N < 2n a < 2m

Summary: Our Factoring Circuit for P2Q
Authors Types of inputs Gates Space Depth

Shor (1994) Any

LPDS (2012)

KCVY (2021) N/A

Regev (2023) Any

RV (2024) Any

KRVV (2024)

Õ(n2) Õ(n) Õ(n)

Õ(n) Õ(n) Õ(n)

Õ(n) Õ(n) Õ(1)

Õ(n1.5) O(n1.5) Õ(n0.5)

Õ(n1.5) Õ(n) Õ(n0.5)

Õ(n) Õ(m) Õ(n/m + m)

N = P2Q

N = P2Q (Q < 2m)

Open Questions
• (Ongoing work) What are the concrete costs of these algorithms?

Open Questions
• (Ongoing work) What are the concrete costs of these algorithms?

• Can error-correcting codes and fault tolerance be designed in a way that is
especially suited to computing the Jacobi symbol?

Open Questions
• (Ongoing work) What are the concrete costs of these algorithms?

• Can error-correcting codes and fault tolerance be designed in a way that is
especially suited to computing the Jacobi symbol?

• Better classical algorithms for factoring when is small?P2Q Q

Open Questions
• (Ongoing work) What are the concrete costs of these algorithms?

• Can error-correcting codes and fault tolerance be designed in a way that is
especially suited to computing the Jacobi symbol?

• Better classical algorithms for factoring when is small?P2Q Q

• What other integers can we factor using this algorithm (e.g. using number theory
magic)?

N

Open Questions
• (Ongoing work) What are the concrete costs of these algorithms?

• Can error-correcting codes and fault tolerance be designed in a way that is
especially suited to computing the Jacobi symbol?

• Better classical algorithms for factoring when is small?P2Q Q

• What other integers can we factor using this algorithm (e.g. using number theory
magic)?

N

• Current generalisation: can completely factor for distinct N = pα1
1 pα2

2 …pαr
r

α1, …, αr

Open Questions
• (Ongoing work) What are the concrete costs of these algorithms?

• Can error-correcting codes and fault tolerance be designed in a way that is
especially suited to computing the Jacobi symbol?

• Better classical algorithms for factoring when is small?P2Q Q

• What other integers can we factor using this algorithm (e.g. using number theory
magic)?

N

• Current generalisation: can completely factor for distinct N = pα1
1 pα2

2 …pαr
r

α1, …, αr

• Other quantum factoring algorithms exploiting special structure in ? (Many such
algorithms in the classical world)

N

Bonus Slides

Our Result, Distilled
• Theorem (KRVV24): for (in our application,) and classically

known , we can compute
a < 2m m = O(log Q)

N < 2n

|a⟩ ↦ |a⟩ |N mod a⟩

 in gates, qubits, and depthÕ(n) Õ(m) Õ(n/m)

Our Result, Distilled
• Theorem (KRVV24): for (in our application,) and classically

known , we can compute
a < 2m m = O(log Q)

N < 2n

|a⟩ ↦ |a⟩ |N mod a⟩

 in gates, qubits, and depthÕ(n) Õ(m) Õ(n/m)

• Corollary 1: all of the following can be computed in gates, qubits, and
 depth for quantum and classical :

Õ(n) Õ(m)
Õ(n/m + m) a N

• Jacobi symbol: (a
N)

Our Result, Distilled
• Theorem (KRVV24): for (in our application,) and classically

known , we can compute
a < 2m m = O(log Q)

N < 2n

|a⟩ ↦ |a⟩ |N mod a⟩

 in gates, qubits, and depthÕ(n) Õ(m) Õ(n/m)

• Corollary 1: all of the following can be computed in gates, qubits, and
 depth for quantum and classical :

Õ(n) Õ(m)
Õ(n/m + m) a N

• Jacobi symbol: (a
N)

• GCD: gcd(a, N)

• Modular inverse: (provided)a−1 mod N gcd(a, N) = 1

Our Result, Distilled
• Theorem (KRVV24): for (in our application,) and classically

known , we can compute
a < 2m m = O(log Q)

N < 2n

|a⟩ ↦ |a⟩ |N mod a⟩

 in gates, qubits, and depthÕ(n) Õ(m) Õ(n/m)

• Corollary 1: all of the following can be computed in gates, qubits, and
 depth for quantum and classical :

Õ(n) Õ(m)
Õ(n/m + m) a N

• Jacobi symbol: (a
N)

• GCD: gcd(a, N)

• Modular inverse: (provided)a−1 mod N gcd(a, N) = 1

Open question:
other applications
of these results?

From Backwards Long Division to N mod a

• The example we just worked out:

• ()N = 55, a = 3 n = 6, m = 2

simplified presentation based on an
observation by Daniel J. Bernstein

From Backwards Long Division to N mod a

• The example we just worked out:

• ()N = 55, a = 3 n = 6, m = 2

• End up with ka = 𝗌𝗍𝖺𝗍𝖾 = 39 = 13 × 3 ≡ N (mod 2n−m = 16)

simplified presentation based on an
observation by Daniel J. Bernstein

From Backwards Long Division to N mod a

• The example we just worked out:

• ()N = 55, a = 3 n = 6, m = 2

• End up with ka = 𝗌𝗍𝖺𝗍𝖾 = 39 = 13 × 3 ≡ N (mod 2n−m = 16)

• Now define (informally, this is the “remainder”)N′￼ =
N − 𝗌𝗍𝖺𝗍𝖾

2n−m
=

N − ka
2n−m

simplified presentation based on an
observation by Daniel J. Bernstein

From Backwards Long Division to N mod a

• The example we just worked out:

• ()N = 55, a = 3 n = 6, m = 2

• End up with ka = 𝗌𝗍𝖺𝗍𝖾 = 39 = 13 × 3 ≡ N (mod 2n−m = 16)

• Now define (informally, this is the “remainder”)N′￼ =
N − 𝗌𝗍𝖺𝗍𝖾

2n−m
=

N − ka
2n−m

• Finally: , and the RHS is easily computable with
 gates!

N ≡ N′￼⋅ (2n−m mod a) (mod a)
Õ(m)

simplified presentation based on an
observation by Daniel J. Bernstein

From Backwards Long Division to N mod a

• The example we just worked out:

• ()N = 55, a = 3 n = 6, m = 2

• End up with ka = 𝗌𝗍𝖺𝗍𝖾 = 39 = 13 × 3 ≡ N (mod 2n−m = 16)

• Now define (informally, this is the “remainder”)N′￼ =
N − 𝗌𝗍𝖺𝗍𝖾

2n−m
=

N − ka
2n−m

• Finally: , and the RHS is easily computable with
 gates!

N ≡ N′￼⋅ (2n−m mod a) (mod a)
Õ(m)

That’s it! We computed !N mod a

simplified presentation based on an
observation by Daniel J. Bernstein

