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For more: see Pomerance’s survey “A Tale of Two Sieves”!
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Integer Factorisation

• Fastest classical algorithm for general : timeN exp (Õ(n1/3))
• Quantum algorithms:  time! (Shor 1994)𝗉𝗈𝗅𝗒(n)

 Given an -bit integer , find its prime factorisation in  time.n N < 2n 𝗉𝗈𝗅𝗒(n)
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• Okamoto-Uchiyama ( ) or Takagi ( ) cryptography: 

• Completely broken if the eavesdropper has a large quantum computer (learn 
Bob’s secret key by factoring )

r = 2 r > 2

N = prq

𝗌𝗄 = (p, q)

Coming up: even better quantum circuits for factoring prq (r > 1)

“Hi Bob!”
𝗉𝗄 = N ( = prq) 𝖼𝗍

Goal: faster 
decryption 
than RSA
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We’ve successfully built a 
big quantum computer!

Okay but I don’t believe you

N = 4250350537

4250350537 = 60449 × 70313

I believe you now!

Q: How can XYZABC Labs convince Alice that they really do have a large quantum computer? 

One answer: By factoring a large integer of Alice’s choice!
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Proofs of Quantumness from Factoring
Authors Types of inputs Gates Space Depth

Shor (1994) Any

LPDS (2012)

KCVY (2021) N/A

Regev (2023) Any

RV (2024) Any

KRVV (2024)

Õ(n2) Õ(n) Õ(n)

Õ(n) Õ(n) Õ(n)

Õ(n) Õ(n) Õ(1)

Õ(n1.5) O(n1.5) Õ(n0.5)

Õ(n1.5) O(n) Õ(n0.5)

Õ(n) Õ(m) Õ(n/m + m)

N = P2Q

N = P2Q (Q < 2m)

 is the number of bits in the input  

 hides constant and  factors 

All results in this talk are using fast integer 
multiplication (multiply -bit integers in  time)

n N

Õ( ⋅ ) 𝗉𝗈𝗅𝗒(log n)

n Õ(n)
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Any input: would break RSA cryptography, and suffice as a proof of quantumness 

: only suffices as a proof of quantumnessN = P2Q
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• Pro: easier than actually factoring

• Con: quantum prover needs to store state between rounds
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This work: LPDS with space and depth proportional to  rather than log Q log N
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Setting Parameters

• Balancing act:

• If  is too large: our quantum circuit is no better than the LPDS12 circuitQ

• If  is too small: classical algorithms could exploit this structure to run faster than 
general-purpose classical factoring algorithms

Q

• General NFS: exp(Õ(n1/3))

• Lenstra elliptic curve method/Mulder ’24: exp(Õ(m1/2))

• Sweet spot:  → gates , space , depth m = Õ(n2/3) Õ(n) Õ(n2/3) Õ(n2/3)

How should we set ?m = log Q



Our Result
Authors Types of inputs Gates Space Depth

Shor (1994) Any

LPDS (2012)

KCVY (2021) N/A

Regev (2023) Any

RV (2024) Any

KRVV (2024)

Õ(n2) Õ(n) Õ(n)

Õ(n) Õ(n) Õ(n)

Õ(n) Õ(n) Õ(1)

Õ(n1.5) O(n1.5) Õ(n0.5)

Õ(n1.5) Õ(n) Õ(n0.5)

Õ(n) Õ(n2/3) Õ(n2/3)

N = P2Q

N = P2Q (Q < 2n2/3)

An algorithm that factors special-form integers (that are still classically as 
hard as RSA integers to factor) in sublinear space and depth!



Factoring  with LPDS12: 
A Sketch
P2Q
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• Strictly periodic function  with unknown period f : ℤ → ℤ T

• x ≡ y (mod T) ⇔ f(x) = f(y)
• Informal theorem statement: can quantumly recover a uniformly random multiple 

of  (and hence  itself ) using essentially only the gates/space needed to compute 
 for 

1/T T
f(x) |x | ≤ 𝗉𝗈𝗅𝗒(T)



Preliminary: General Quantum Period Finding

• Strictly periodic function  with unknown period f : ℤ → {−1,1} T

• x ≡ y (mod T) ⇒ f(x) = f(y)

Hales-Hallgren ’98, May-Schlieper ’22



Preliminary: General Quantum Period Finding

• Strictly periodic function  with unknown period f : ℤ → {−1,1} T

• x ≡ y (mod T) ⇒ f(x) = f(y)

• Linearity of the Fourier transform → the same algorithm still outputs a (not necessarily 
uniform) random multiple of 1/T

Hales-Hallgren ’98, May-Schlieper ’22



Preliminary: General Quantum Period Finding

• Strictly periodic function  with unknown period f : ℤ → {−1,1} T

• x ≡ y (mod T) ⇒ f(x) = f(y)

• Linearity of the Fourier transform → the same algorithm still outputs a (not necessarily 
uniform) random multiple of 1/T

• Informal theorem statement: for “reasonable” , this is still sufficient to recover f T

Hales-Hallgren ’98, May-Schlieper ’22
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• Approximate probability of obtaining , for ):
a
T
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̂f(a)
2

=
1
T

T−1

∑
x=0

f(x) ⋅ exp ( 2πiax
T )

2
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• Approximate probability of obtaining , for ):
a
T

a ∈ [T]

̂f(a)
2

=
1
T

T−1

∑
x=0

f(x) ⋅ exp ( 2πiax
T )

2

• Obvious failure mode: when  concentrates on multiples of some divisor  of  
(equivalently,  has a smaller period )

̂f d > 1 T
f T/d

• As long as this is not the case, we can succeed after taking enough samples!

• Example: random periodic  (by Chernoff bound)f

• Even better, we can recover  from one sample if  concentrates on values  such that T ̂f a
gcd(a, T) = 1

Hales-Hallgren ’98, May-Schlieper ’22
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Preliminary: The Legendre Symbol

•  is a quadratic residue modulo an odd prime  if there exists integer  such that a p x
a ≡ x2 (mod p)

• Legendre symbol essentially indicates whether this is the case:

( a
p ) =

1, if a is a nonzero quadratic residue modulo p; and
−1, if a is not a quadratic residue modulo p; and
0, if a divisible by p .
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Preliminary: The Jacobi Symbol

• Essentially generalises the Legendre symbol to odd composite moduli

• For , define:N = pα1
1 …pαr

r

( a
N ) = ( a

p1 )
α1

( a
p2 )

α2

…( a
pr )

αr

• Useful property: a ≡ b (mod N) ⇒ ( a
N ) = ( b

N )
• Theorem (from Euclid to Schönhage 1971): can compute  efficiently without 

knowing the factorisation of  — in fact, in time 
( a

N )
N Õ(log N)
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Algorithms Computing the Jacobi Symbol

Jacobi Properties 

• Periodicity:  

• Reciprocity:*  

for a very simple 

( a
b ) = ( a mod b

b )
( a

b ) = (−1) f(a,b)( b
a )

f

ft. Euclid, 2000 years ago

* modulo minor technical caveats; requires  odda, b
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Jacobi Properties 

• Periodicity:  

• Reciprocity:*  

for a very simple 

( a
b ) = ( a mod b

b )
( a

b ) = (−1) f(a,b)( b
a )

f

ft. Euclid, 2000 years ago

* modulo minor technical caveats; requires  odda, b

Greatest Common Divisor (GCD) 
Properties 

• Periodicity: 
 

• Reciprocity: 

gcd(a, b) = gcd(a mod b, b)

gcd(a, b) = gcd(b, a)

Extended Euclidean algorithm solves both these problems!
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Factoring from Jacobi Symbol Periodicity

• For RSA integers : product of two periodic functions with smaller periods 
but itself only has period  

(N = PQ)
N

( a
N ) = ( a

P ) ( a
Q )

• What about ?N = P2Q

, which is periodic* with period !( a
N ) = ( a

P )
2

( a
Q ) = ( a

Q ) Q

* modulo minor technical caveats; could have 

 for a tiny fraction of inputs ( a
P ) = 0 a
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Quantumly Factoring N = P2Q

• We know is periodic with period !( a
N ) Q

• So quantum period finding → recover  (and hence )Q P

• Gate complexity: cost of computing for , which is ( a
N ) a ≤ 𝗉𝗈𝗅𝗒(Q) Õ(log N)

• Space and depth (if naively implemented): also Õ(log N)

Li, Peng, Du, Suter (2012)
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Is the Jacobi Function “Reasonable”?
• Generalised quantum period fi

 

• Typically (and in Shor’s factoring algorithm): may need  samples (runs of the 
quantum circuit) to recover the period 

• Troublesome case: we sample  such that  

• Theorem (follows from Gauss sums): 1 sample always suffi

• Proof: Gauss sums →  whenever  

• Special case for intuition: if  is prime, we have 

a
Q

̂f(a)
2

=
1
Q

Q−1

∑
x=0

( x
Q ) ⋅ exp ( 2πiax

Q )
2

> 1

a gcd(a, Q) > 1

̂f(a) = 0 gcd(a, Q) > 1

Q ̂f(0) = 0

The Jacobi function isn’t just “reasonably good” for general 
quantum period finding, it’s actually magically well-suited to it — 
even more so than the periodic function used by Shor to factor!
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• Recall: to solve period finding when the period is , need to set up a superpositionT
𝗉𝗈𝗅𝗒(T)

∑
a=1

|a⟩ | f(a)⟩

• Even just writing down  requires  qubits!|a⟩ log 𝗉𝗈𝗅𝗒(T) = O(log T)

• In Shor (and Regev): the period is  → stuck at  qubits≈ N O(log N)

• Hope 1: when factoring  with Jacobi: the period is just  →  qubits 
could suffice!

P2Q Q O(log Q)
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• Goal: compute  for ( a
N ) a ≤ 𝗉𝗈𝗅𝗒(Q)

• How could we compute this without ever writing down all of  quantumly?N

• Hope 2:  is classically known → could quantumly “stream” through bits of  to 
save space

N N

Bits of , split into chunks of size N O(log Q)

Classical computer sending instructions to the quantum computer

Quantum computer with  qubitsÕ(log Q)
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• Our task: compute  for ( a
N ) a ≤ 𝗉𝗈𝗅𝗒(Q)

• Recall:

( a
N ) = (−1) f(a,N)( N

a ) = (−1) f(a,N)( N mod a
a )

• Two step procedure:
1. Compute N mod a

2. Now  → can finish in  gates/space using 
Schönhage

(N mod a) < a < 𝗉𝗈𝗅𝗒(Q) Õ(log Q)

The “only” bottleneck: computing |a⟩ ↦ |a⟩ |N mod a⟩

It’s all about N mod a
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Õ(log N)
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Our Result, Distilled
• Theorem (KRVV24): for quantum  and classically known , we can computea N

|a⟩ ↦ |a⟩ |N mod a⟩

 in  gates (near-linear) and  qubits (enough qubits to write down )Õ(log N) Õ(log a) a

• Corollary 1: all of the following can be computed in  gates (near-linear) and 
 qubits for quantum  and classical :

Õ(log N)
Õ(log a) a N

• Jacobi symbol: ( a
N )

• GCD: gcd(a, N)

• Modular inverse:  (provided )a−1 mod N gcd(a, N) = 1

Open question: 
other applications 
of these results?



Our Result, Distilled
• Theorem (KRVV24): for quantum  and classically known , we can compute 

 

 in  gates (near-linear) and  qubits (enough qubits to write down ) 

• Corollary 2: we can factor  in  gates and  qubits 

• Just need the above theorem for 

a N

|a⟩ ↦ |a⟩ |N mod a⟩

Õ(log N) Õ(log a) a

N = P2Q Õ(log N) Õ(log Q)

a ≤ 𝗉𝗈𝗅𝗒(Q)
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• Compactness:  has  bits for all 𝗌𝗍𝖺𝗍𝖾t O(m) t

• Reversibility:  can be reconstructed (and therefore uncomputed) from 𝗌𝗍𝖺𝗍𝖾t−1 𝗌𝗍𝖺𝗍𝖾t
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Our Construction, Simplified

• At time , let  be a multiple of  such that t = 0,…, n − m Nt a N ≡ Nt (mod 2t)

• Equivalently:  agrees with  on the  lowest-order bitsNt N t

•  is easily constructible from Nt Nt−1

• Bits of  split into two parts:Nt

•  low-order bits: these match  → classically known → no need to store quantumlyt N

• Higher-order bits: this must be held quantumly, and is 𝗌𝗍𝖺𝗍𝖾t

• It turns out that the final state  suffices to reconstruct 𝗌𝗍𝖺𝗍𝖾n−m N mod a
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A Natural Attempt: Long Division

• Pro: only need to look at  bits of  at a time, and each  is compactO(m) N 𝗌𝗍𝖺𝗍𝖾t

• Con: no reversibility → end up using  qubits anywayO(n)

Na

N mod a
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Excess state that 
we cannot clean 
up 

Excess state that 
we can clean up

current state

previous state

control bit for last step
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Long Division: A Bird’s Eye View

• Goal of long division: find  such that , and output k N ≈ ka N − ka

• Does this by subtracting  from , starting with large  (most significant bit of ) and 
going down to  (least significant bit of )

2ra 𝗌𝗍𝖺𝗍𝖾 r k
r = 0 k

Na

N mod a

Required state 

Excess state that 
we cannot clean 
up 

Excess state that 
we can clean up

“subtract ”16a

“subtract ”2a

“subtract 0”

“subtract 0”
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Our Idea: “Backwards Long Division”

Backwards long division: initialise  and add  to , 
starting from small  (LSB of ) and going up to large  (MSB of )

𝗌𝗍𝖺𝗍𝖾 = 0 2ra 𝗌𝗍𝖺𝗍𝖾
r k r k

:N

Multiple of  from long division:a

From backwards long division:

Long division: initialise  and subtract  from , 
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• Stop when  and  agree on the  least significant bitsN 𝗌𝗍𝖺𝗍𝖾 ( = ka) n − m

• Equivalently: N ≡ ka (mod 2n−m)
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Tracing Through Our Algorithm

• Our earlier observation: a simple comparison between  and  suffices for 
uncomputation at each step 

• Second observation: 

• The trailing bits of  and  are classically known; and 

• We only need the leading-order bits of  to make the above comparison with 
 

This now gets us down to  space!

𝗌𝗍𝖺𝗍𝖾 2ta

𝗌𝗍𝖺𝗍𝖾 N

𝗌𝗍𝖺𝗍𝖾
2ta

O(m)

Recall: 
𝗌𝗍𝖺𝗍𝖾 = ka
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Efficiency of Our Algorithm

• Space: O(m) = O(log a)

• Computation boils down to  additions of -bit integersO(n) m

• Gates: O(mn)

• Depth: Õ(n)
This is already nice, but we can do better…
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Pushing Down the Gates and Depth

• Idea: instead of setting one bit of  at a time, we will set  bits at a timek m

• Enables us to benefit from fast integer multiplication algorithms (for -bit inputs)m

• To decide what multiple of  to add at each step: start by computing a a−1 mod 2m

• Space usage: still Õ(m)

• Computational work:  multiplications of -bit integersO(n/m) m

• Gates: O(n/m) × Õ(m) = Õ(n)

• Depth: O(n/m) × Õ(1) = Õ(n/m)
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Summary of Our Algorithm
To compute  for  (where ):( a

N ) a < 2m m = O(log Q)

1. Compute N mod a

• Technical challenge: achieving this in gates , space , and depth Õ(n) Õ(m) Õ(n/m)

2. Finish by computing  using Schönhage’s algorithm( N mod a
a )

• Contributes an additional depth of  (dominant term in depth if )Õ(m) m ≫ n
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Summary: Our Factoring Circuit for P2Q

• Main theorem (KRVV24): for  such that  is squarefree and , we 
can recover  from  in  gates,  qubits, and  depth

N = P2Q < 2n Q < 2m

P, Q N Õ(n) Õ(m) Õ(n/m + m)

Central workhorse: an efficient quantum circuit for computing  for 
classical  and quantum 

N mod a
N < 2n a < 2m



Summary: Our Factoring Circuit for P2Q
Authors Types of inputs Gates Space Depth

Shor (1994) Any

LPDS (2012)

KCVY (2021) N/A

Regev (2023) Any

RV (2024) Any

KRVV (2024)

Õ(n2) Õ(n) Õ(n)

Õ(n) Õ(n) Õ(n)

Õ(n) Õ(n) Õ(1)

Õ(n1.5) O(n1.5) Õ(n0.5)

Õ(n1.5) Õ(n) Õ(n0.5)

Õ(n) Õ(m) Õ(n/m + m)

N = P2Q

N = P2Q (Q < 2m)
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Open Questions
• (Ongoing work) What are the concrete costs of these algorithms?

• Can error-correcting codes and fault tolerance be designed in a way that is 
especially suited to computing the Jacobi symbol?

• Better classical algorithms for factoring  when  is small?P2Q Q

• What other integers  can we factor using this algorithm (e.g. using number theory 
magic)?

N

• Current generalisation: can completely factor  for distinct N = pα1
1 pα2

2 …pαr
r

α1, …, αr

• Other quantum factoring algorithms exploiting special structure in ? (Many such 
algorithms in the classical world)

N
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Our Result, Distilled
• Theorem (KRVV24): for  (in our application, ) and classically 

known , we can compute
a < 2m m = O(log Q)

N < 2n

|a⟩ ↦ |a⟩ |N mod a⟩

 in  gates,  qubits, and  depthÕ(n) Õ(m) Õ(n/m)

• Corollary 1: all of the following can be computed in  gates,  qubits, and 
 depth for quantum  and classical :

Õ(n) Õ(m)
Õ(n/m + m) a N

• Jacobi symbol: ( a
N )

• GCD: gcd(a, N)

• Modular inverse:  (provided )a−1 mod N gcd(a, N) = 1

Open question: 
other applications 
of these results?
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From Backwards Long Division to N mod a

• The example we just worked out:

•  ( )N = 55, a = 3 n = 6, m = 2

• End up with ka = 𝗌𝗍𝖺𝗍𝖾 = 39 = 13 × 3 ≡ N (mod 2n−m = 16)

• Now define  (informally, this is the “remainder”)N′￼ =
N − 𝗌𝗍𝖺𝗍𝖾

2n−m
=

N − ka
2n−m

• Finally: , and the RHS is easily computable with 
 gates!

N ≡ N′￼⋅ (2n−m mod a) (mod a)
Õ(m)

That’s it! We computed !N mod a

simplified presentation based on an 
observation by Daniel J. Bernstein


