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Classical Factoring: A Crash Course

Factoring general integers Factoring special-form integers
* Brute force: exp(O(n)) « Lenstra ECM ('87): exp (0((log PV 2)))
* Quadratic sieve (many works from where Pis a factor of N
Fermat to Pomerance ‘82): exp(O(n''?))  « Boneh, Durfee, Howgrave-Graham ('909):
* General number field sieve (Pollard '88; it N = P'Qandr > log P, can factor in
Buhler-Lenstra-Pomerance '93): poly(n) time
exp(O(n'"))

For more: see Pomerance’s survey “A Tale of Two Sieves”!
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Integer Factorisation

 Fastest classical algorithm for general NV: exp (O(nl/ 3))time

e Quantum algorithms: poly(n) time! (Shor 1994)
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Implication 1: Breaking Cryptography

* Okamoto-Uchiyama (r = 2) or Takagi (r > 2) cryptography:

pk=N(=p'q) ct sk = (p, q)

Goal: faster
decryption
than RSA

 Completely broken if the eavesdropper has a large quantum computer (learn
Bob’s secret key by factoring N = p'q)

Coming up: even better quantum circuits for factoring p'g (r > 1)
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We've successfully built a
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4250350537 = 60449 x 70313
Al

1717

RER!

N = 4250350537

Q: How can XYZABC Labs convince Alice that they really do have a large quantum computer?

One answer: By factoring a large integer of Alice’s choice!
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The Current State of Affairs

* Known for 30 years: if we had a large-scale quantum computer, we could verifiably
demonstrate quantum advantage (by factoring large integers)

e Slight catch: no-one has managed to build a large-scale quantum computer
yet

“Our qubits are constantly trying to fall aparz...
It’s like you're trying to write in the sand and
the wind is blowing it away.”

Quantum algorithmic improvements



Proofs of Quantumness from Factoring

Authors

Types of inputs

Gates

Space

Depth

Shor (1994)

Any

O(n?)

O(n)

O(n)

n is the number of bits in the input N

O( -) hides constant and poly(log n) factors

All results in this talk are using fast integer

multiplication (multiply n-bit integers in O(n) time)




Proofs of Quantumness from Factoring

Authors Types of inputs Gates Space Depth
Shor (1994) Any O(n?) O(n) O(n)
LPDS (2012) N = P*Q O(n) O(n) O(n)

ART ACTIVITIES
' AFTER WORK




Proofs of Quantumness from Factoring

Authors Types of inputs Gates Space Depth
Shor (1994) Any O(n?) O(n) O(n)
LPDS (2012) N = P*Q O(n) O(n) O(n)

Any input: would break RSA cryptography, and suffice as a proof of quantumness

N = P?Q: only suffices as a proof of quantumness

ART ACTIVITIES
, AFTER WORK




Proofs of Quantumness from Factoring

Authors Types of inputs Gates Space Depth
Shor (1994) Any O(n?) O(n) O(n)
LPDS (2012) N = P?Q O(n) O(n) O(n)
KCVY (2021) N/A O(n) O(n) O(1)




Proofs of Quantumness from Factoring

Authors Types of inputs Gates Space Depth
Shor (1994) Any O(n?) O(n) O(n)
LPDS (2012) N = P2Q O(n) O(n) O(n)
KCVY (2021) N/A O(n) O(n) O(1)

Note: KCVY is not a factoring algorithm!

* 3-round interactive proof of quantumness (building on previous work by BCMVV18)

assuming factoring is classically hard




Proofs of Quantumness from Factoring

Authors Types of inputs Gates Space Depth
Shor (1994) Any O(n?) O(n) O(n)
LPDS (2012) N = P2Q O(n) O(n) O(n)
KCVY (2021) N/A O(n) O(n) O(1)

Note: KCVY is not a factoring algorithm!

* 3-round interactive proof of quantumness (building on previous work by BCMVV18)
assuming factoring is classically hard

* Pro: easier than actually factoring




Proofs of Quantumness from Factoring

Authors Types of inputs Gates Space Depth
Shor (1994) Any O(n?) O(n) O(n)
LPDS (2012) N = P2Q O(n) O(n) O(n)
KCVY (2021) N/A O(n) O(n) O(1)

Note: KCVY is not a factoring algorithm!

* 3-round interactive proof of quantumness (building on previous work by BCMVV18)
assuming factoring is classically hard

* Pro: easier than actually factoring

* Con: quantum prover needs to store state between rounds




Proofs of Quantumness from Factoring

Authors Types of inputs Gates Space Depth
Shor (1994) Any O(n?) O(n) O(n)
LPDS (2012) N = P?Q O(n) O(n) O(n)
_ N/A O(n) O(n) O(1)
Regev (2023) Any O(n'~) O(n'~) O(n"~)




Proofs of Quantumness from Factoring

Authors Types of inputs Gates Space Depth
Shor (1994) Any O(n?) O(n) O(n)
LPDS (2012) N = P2Q O(n) O(n) O(n)
KCVY (2021) N/A O(n) O(n) O(1)

Regev (2023) Any O(n'>) O(n'>) On">)
RV (2024) Any O(n') O(n) O(n">)




Proofs of Quantumness from Factoring

Authors Types of inputs Gates Space Depth
Shor (1994) Any O(n?) O(n) O(n)
LPDS (2012) N = P20 O(n) O(n) O(n)
KCVY (2021) N/A O(n) O(n) O(1)

Regev (2023) Any O(n'>) O(n'>) On">)
RV (2024) Any O(n'") O(n) O(n’>)
KRVV (2024) N = P?Q (Q < 2™) O(n) O(m) O(n/m + m)

This work: LPDS with space and depth proportional to log O rather than log N
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Setting Parameters

How should we set m = log 0?

* Balancing act:

 If Qistoo large: our quantum circuit is no better than the LPDS12 circuit

 If Oistoo small: classical algorithms could exploit this structure to run faster than
general-purpose classical factoring algorithms

» General NFS: exp(O(n'?))
 Lenstra elliptic curve method/Mulder "24: exp(@(ml/ 2))

+ Sweet spot: m = O(n*?) — gates O(n), space O(n*?), depth O(n*?)



Our Result

Authors Types of inputs Gates Space Depth
Shor (1994) Any O(n?) O(n) O(n)
LPDS (2012) N = P2Q O(n) O(n) O(n)
KCVY (2021) N/A O(n) O(n) O(1)

Regev (2023) Any O(n'») O(n'?) O(n"-)
RV (2024) Any O(n') O(n) O(n">)
KRVV (2024) N = P2Q (Q < 2"") O(n) O(n*") O(n*?)

An algorithm that factors special-form integers (that are still classically as

hard as RSA integers to factor) in

sublinear space and depth!




Factoring P*Q with LPDSI12:

ART ACTIVITIES
AFTER WORK

N
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o Strictly periodic function f : Z — Z with unknown period T

+ x=y (mod T) & f(x) = f(y)

* Informal theorem statement: can quantumly recover a uniformly random multiple

of 1/T (and hence T itself) using essentially only the gates/space needed to compute
J(x) tor | x| < poly(T)
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Preliminary: General Quantum Period Finding
Hales-Hallgren ‘98, May-Schlieper '22

o Striethy periodic functionf: Z — {—1,1} with unknown period T
* x=y (mod T) = f(x) = f(y)

* Linearity of the Fourier transform — the same algorithm still outputs a (not necessarily
uniform) random multiple of 1/T

 Informal theorem statement: for “reasonable” f, this is still sufficient to recover T
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Hales-Hallgren ‘98, May-Schlieper '22

a
. Approximate probability of obtaining P fora € |T)):

2

. = 2
f| == ;Oﬂx) - exp( ”;“x)
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Whatis a Reasonable f’

Hales-HaIIgren '98, May-Schlieper 2

Approximate probability of obtaining —, fora € |T)):

T
2
. 2 1 | 2rwiax
fla)| =— Z,)f(x)-exp( - )

Obvious failure mode: when f concentrates on multiples of some divisord > 1 of T
(equivalently, f has a smaller period 77/d)

As long as this is not the case, we can succeed after taking enough samples!
» Example: random periodic f (by Chernoff bound)

Even better, we can recover T from one sample if f concentrates on values a such that
ocd(a, T) =1
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Preliminary: The Legendre Symbol

* ais a quadratic residue modulo an odd prime p if there exists integer x such that
a =x- (mod p)

» Legendre symbol essentially indicates whether this is the case:
1, if a is a nonzero quadratic residue modulo p; and

<ﬁ> = < —1, if a is not a quadratic residue modulo p; and
P 0. if a divisible by p.
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* Essentially generalises the Legendre symbol to odd composite moduli
» For N =p"...p,", define:

(3)-G) G)-G)

* Note for intuition: the quadratic residue characterisation does not carry over from
the Legendre symbol

. Could have (%) = 1 without a being a quadratic residue modulo N
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Preliminary: The Jacobi Symbol

Essentially generalises the Legendre symbol to odd composite moduli

For N =p"...p,", define:

(3)-G) ) -()

b

a
Useful property:a=b (mod N)= | — | = —
ul property ( ) (N) (N)

Theorem (from Euclid to Schonhage 1971): can compute (

knowing the factorisation of N — in fact, in time O(log N)

a,

d

N

) efficiently without
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ft. Euclid, 2000 years ago

Jacobi Properties

S a a mod b
, Periodicity: | — ) = | ————
b b
. . a N
. Reciprocity:* | — | = (=1 —
b a

for a very simple f

0,ifa=1 (mod4)orb=1 (mod 4)
f(dab)={ o
l,lfa=b=3 (m0d4)
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Algorithms Computing the Jacobi Symbol

ft. Euclid, 2000 years ago

Jacobi Properties Greatest Common Divisor (GCD)
a a mod b Properties
, Periodicity: | — ) = | ———— o
b b * Periodicity:
a b cd(a, b) = ecd(a mod b, b
a

* Reciprocity: gcd(a, b) = gcd(b, a)
for a very simple f

Extended Euclidean algorithm solves both these problems!
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common divisor of two integers «, v and of the continued fraction for /v is modified
in such a way that only O(%(lg #)?(Iglg #)) elementary steps are used for u,v < 2"

Zusammenfassung. Ein von D. E. Knuth angegebenes Verfahren, fiir ganze Zahlen
#, v den gro8ten gemeinsamen Teiler und den Kettenbruch fiir #/v zu berechnen, wird
so modifiziert, da8 fiir n-stellige Zahlen nur O (% (Ig #)?(lglg #)) elementare Schritte
gebraucht werden.
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ft. Euclid, 2000 years ago

» Extended Euclidean recursion: if a < b, swap a, b. Else, update a < a mod b.

 Standard runtime: O(log a log b)

* Schonhage 1971: complicated (and little-known!) divide-and-conquer algorithm
that outputs the “transcript” of extended Euclidean in O(log a + log b) time

Acta Informatica 1, 139—144 (1971)
© by Springer-Verlag 1971

Schnelle Berechnung von Kettenbruchentwicklungen

A. SCHONHAGE

Eingegangen am 16. September 1970

Summary. A method, given by D. E. Knuth for the computation of the greatest
common divisor of two integers «, v and of the continued fraction for /v is modified
in such a way that only O(%(lg #)?(Iglg #)) elementary steps are used for u,v < 2"

Zusammenfassung. Ein von D. E. Knuth angegebenes Verfahren, fiir ganze Zahlen
#, v den gro8ten gemeinsamen Teiler und den Kettenbruch fiir #/v zu berechnen, wird
so modifiziert, da8 fiir n-stellige Zahlen nur O (% (Ig #)?(lglg #)) elementare Schritte
gebraucht werden.

A Unified Approach to HGCD Algorithms for

polynomials and integers

Klaus Thull and Chee K. Yap*

Freie Universitat Berlin
Fachbereich Mathematik
Arnimallee 2-6
D-1000 Berlin 33
West Germany

March, 1990

Abstract

We present a unified framework for the asymptotically fast Half-GCD
(HGCD) algorithms, based on properties of the norm. Two other benefits
of our approach are (a) a simplified correctness proof of the polynomial
HGCD algorithm and (b) the first explicit integer HGCD algorithm. The
integer HGCD algorithm turns out to be rather intricate.

Keywords: Integer GCD, Euclidean algorithm, Polynomial GCD, Half GCD
algorithm, efficient algorithm.

MATHEMATICS OF COMPUTATION

Volume 77, Number 261, January 2008, Pages 589-607
S 0025-5718(07)02017-0

Article electronically published on September 12, 2007

ON SCHONHAGE’S ALGORITHM
AND SUBQUADRATIC INTEGER GCD COMPUTATION

NIELS MOLLER

ABSTRACT. We describe a new subquadratic left-to-right Gcp algorithm, in-
spired by Schonhage’s algorithm for reduction of binary quadratic forms, and
compare it to the first subquadratic GCD algorithm discovered by Knuth and
Schonhage, and to the binary recursive GCD algorithm of Stehlé and Zimmer-
mann. The new GCD algorithm runs slightly faster than earlier algorithms, and
it is much simpler to implement. The key idea is to use a stop condition for
HGCD that is based not on the size of the remainders, but on the size of the
next difference. This subtle change is sufficient to eliminate the back-up steps
that are necessary in all previous subquadratic left-to-right GCD algorithms.
The subquadratic GCD algorithms all have the same asymptotic running time,
O(n(logn)? loglogn).
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Factoring from Jacobi Symbol Periodicity

* For RSA integers (N = PQ): product of two periodic functions with smaller periods

a a a
(%)= () (&)
* What about N = P*Q?
(ﬁ) — (ﬁ)z (i> — (ﬁ),which is periodic” with period Q!
N P 0 &

but itself only has period N
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Quantumly Factoring N = P*Q

Li, Peng, Du, Suter (2012)

a o °
We know ~ is periodic with period Q!

So quantum period finding — recover O (and hence P)
a

N) for a < poly(Q), which is O(log N)

Gate complexity: cost of computing (

Space and depth (if naively implemented): also O(log N)

ART ACTIVITIES -
% Ty m



Is the Jacobi Function “Reasonable”?

a
. Generalised quantum period finding: we recover — with probability
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Is the Jacobi Function “Reasonable”?

a
. Generalised quantum period finding: we recover — with probability

Q

f()2 ] Qz_l(x> <2ﬂiax)
a)| =— — ] - exp
0|~ \0 0
* Typically (and in Shor’s factoring algorithm): may need > 1 samples (runs of the
quantum circuit) to recover the period

2

* Troublesome case: we sample a such that gcd(a, Q) > 1

* Theorem (follows from Gauss sums): 1 sample always suffices for Jacobi!

* Proof: Gauss sums — f(a) = (0 whenever gcd(a, Q) > 1

. Special case for intuition: if Q is prime, we have f(()) = [ [(%)] = ()



Is the Jacobi Function “Reasonable”?

The Jacobi function isn’t just “reasonably good” for general

quantum period finding, it’s actually magically well-suited to it —
even more so than the periodic function used by Shor to factor!




Our Contribution: Pushing Space
and Depth Down to O(log Q)
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Why is There Any Hope for Sublinear Space?

Recall: to solve period finding when the period is 7, need to set up a superposition
poly(T)
). la)|fla)
a=1
Even just writing down | a) requires log poly(T) = O(log T') qubits!
In Shor (and Regev): the period is ~ N — stuck at O(log N) qubits

Hope 1: when factoring P?Q with Jacobi: the period is just Q — O(log Q) qubits
could suffice!
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Why is There Any Hope for Sublinear Space?

. Goal: compute (%) fora < poly(Q)

* How could we compute this without ever writing down all of N quantumly?

e Hope 2: N is classically known — could quantumly “stream” through bits of N to
save space

Bits of NV, split into chunks of size O(log Q) Quantum computer with O(log () qubits

\ L |

Classical computer sending instructions to the quantum computer
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b oLl




Computing the Jacobi Symbol

It's all about N mod a

. Our task: compute (%) for a < poly(Q)



Computing the Jacobi Symbol

It's all about N mod a

. Our task: compute (%) for a < poly(Q)

(ﬁ) — (_1)f(a,N)(E) — (_1)f(a,N)(NmOd a)
N a a

e Recall:




Computing the Jacobi Symbol

It's all about N mod a

. Our task: compute (%) for a < poly(Q)

(ﬁ) — (_1)f(a,N)(E) — (_1)f(a,N)(NmOd a)
N a a

* Two step procedure:

e Recall:

1. Compute N mod a



Computing the Jacobi Symbol

It's all about N mod a

. Our task: compute (%) for a < poly(Q)

(ﬁ) — (_1)f(a,N)(E) — (_1)f(a,N)(Nm0d a)
N a a

* Two step procedure:

e Recall:

1. Compute N mod a

2. Now (N mod a) < a < poly(Q) — can finish in 5(10g ()) gates/space using
Schonhage



Computing the Jacobi Symbol

It's all about N mod a

. Our task: compute (%) for a < poly(Q)

(ﬁ) — (_1)f(a,N)(E) — (_1)f(a,N)(NmOd a)
N a a

* Two step procedure:

e Recall:

1. Compute N mod a

2. Now (N mod a) < a < poly(Q) — can finish in 5(10g ()) gates/space using
Schonhage

The “only” bottleneck: computing |a) — |a) | N mod a)
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Our Result, Distlled

* Theorem (KRVV24): for quantum a and classically known N, we can compute
|la) = |a)| N mod a)
in O(log N) gates (near-linear) and O(log a) qubits (enough qubits to write down )

» Corollary 1: all of the following can be computed in O(log N) gates (near-linear) and
O(log a) qubits for quantum a and classical NV:

a

. Jacobi symbol: (—)
N Open question:

+ GCD: gcd(a, N) other applications

of these results?
» Modular inverse: a~! mod N (provided gcd(a, N) = 1)



Our Result, Distlled

* Theorem (KRVV24): for quantum a and classically known N, we can compute
|la) = |a)| N mod a)
in O(log N) gates (near-linear) and O(log a) qubits (enough qubits to write down )
e Corollary 2: we can factor N = P?Qin é(log N) gates and 5(10g 0) qubits

e Just need the above theorem for a < poly(Q)



Computing N mod ¢ with Quantum Streaming

Notation: N has n
bits, a has

m = O(log Q) bits
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Computing N mod ¢ with Quantum Streaming

* Proceedsint .. = O(n/m) time steps (one for each m-bit chunk of N)

* After time step f: quantum computer has some state;
Notation: N has n

bits, a has

m = O(log Q) bits

Bits of NV, split into chunks of size O(log Q) Quantum computer with O(log () qubits

1
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* Proceedsint .. = O(n/m) time steps (one for each m-bit chunk of N)

* After time step f: quantum computer has some state;

, Notation: NV has n
 Desiderata:

bits, a has
* Correctness: N mod a is efficiently recoverable from state .
4 o m = O(log Q) bits
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* Proceedsint .. = O(n/m) time steps (one for each m-bit chunk of N)

* After time step f: quantum computer has some state;

, Notation: NV has n
 Desiderata:

bits, a has
* Correctness: N mod a is efficiently recoverable from state .
4 ma m = O(log O) bits
» Compactness: state; has O(m) bits for all ¢
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Computing N mod ¢ with Quantum Streaming

* Proceedsint .. = O(n/m) time steps (one for each m-bit chunk of N)

* After time step f: quantum computer has some state;

, Notation: NV has n
 Desiderata:

bits, a has
» Correctness: N mod a is efficiently recoverable from state,

max m = O(log Q) bits

» Compactness: state; has O(m) bits for all ¢

* Reversibility: state;_; can be reconstructed (and therefore uncomputed) from state;

Bits of NV, split into chunks of size O(log Q) Quantum computer with O(log () qubits

1
I \ = a
R
\ ’ > | &F |- state,

1510

1777

b oLl

Classical computer sending instructions to the quantum computer
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Our Construction, Simplified

» Attime? =0,...,n — m, let N, be a multiple of a such that N = N, (mod 2/)
» Equivalently: N, agrees with N on the ¢ lowest-order bits
* N, is easily constructible from N,_

» Bits of NV, split into two parts:

* tlow-order bits: these match N — classically known — no need to store quantumly

* Higher-order bits: this must be held quantumly, and is state,

* [t turns out that the final state state,_,, suffices to reconstruct N mod a



Our Construction, In Detail
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A Natural Atctempt: Long Division

< control bit for last step
_1d@te
a -11 |110111 - N
11 ]
oo
state 00 equired state
0 xcess state that
we cannot clean
state, previous state up
0
state; E current state
11
state, O1 - N mod a

* Pro: only need to look at O(m) bits of N at a time, and each state, is compact

* Con: no reversibility — end up using O(n) qubits anyway
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Long Division: A Bird’s Eye View

- 10010
a -11 (110111 -
11 “subtract 16a”
Required state
state 0]0, " "
1 subtract O L xcess state that
we cannot clean
state; Gg' “subtract 0" P
state
3 %% “subtract 2a”
state, O1 - N mod a

* Goal of long division: find £ such that N =~ ka, and output N — ka

* Does this by subtracting 2'a from state, starting with large r (most significant bit of k) and
going down to r = 0O (least significant bit of k)
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Our Idea: “Backwards Long Division”

Long division: initialise state = /N and subtract 2"a from state,
starting from large r (MSB of k) and going down to small » (LSB of k)

Multiple of a from long division: 7] 7] G) 11 G)

v 110111
From backwards long division: 1 (®) ()71 11

Backwards long division: initialise state = 0 and add 2’a to state,

starting from small  (LSB of k) and going up to large r (M

)
we
Q

-
N

(I



Our Idea: “Backwards Long Division”

After backwards long division: once we have a

multiple of a that matches /N in the least significant

bits, computing N mod a is straightforward!




Our Idea: “Backwards Long Division”

After backwards long division: once we have a

multiple of a that matches /N in the least significant

bits, computing N mod a is straightforward!

(I



Implementing Backwards Long Division

* Instead of constructing k from MSB to LSB, let’s construct it from LSB to MSB




Implementing Backwards Long Division

* Instead of constructing k from MSB to LSB, let’s construct it from LSB to MSB
* Algorithm (assume for simplicity that a is odd):

* Initialise state = O (state will eventually be our multiple ka)




Implementing Backwards Long Division

* Instead of constructing k from MSB to LSB, let’s construct it from LSB to MSB
* Algorithm (assume for simplicity that a is odd):

* Initialise state = O (state will eventually be our multiple ka)

* At time ¢, add 2'a to state if W




Implementing Backwards Long Division

* Instead of constructing k from MSB to LSB, let’s construct it from LSB to MSB
* Algorithm (assume for simplicity that a is odd):

* Initialise state = O (state will eventually be our multiple ka)

* At time ¢, add 2'a to state if W

» Stop when N and state ( = ka) are “close” in some sense @%

(I



Implementing Backwards Long Division

* Instead of constructing k from MSB to LSB, let’s construct it from LSB to MSB
* Algorithm (assume for simplicity that a is odd):

* Initialise state = O (state will eventually be our multiple ka)

At time t, add 2'a to state if N and state differ in the rth least significant bit

» Stop when N and state ( = ka) are “close” in some sense m

(I



Implementing Backwards Long Division

* Instead of constructing k from MSB to LSB, let’s construct it from LSB to MSB
* Algorithm (assume for simplicity that a is odd):

* Initialise state = O (state will eventually be our multiple ka)

At time t, add 2'a to state if N and state differ in the rth least significant bit

» Stop when N and state ( = ka) agree on the n — m least significant bits




Implementing Backwards Long Division

* Instead of constructing k from MSB to LSB, let’s construct it from LSB to MSB
* Algorithm (assume for simplicity that a is odd):

* Initialise state = O (state will eventually be our multiple ka)

At time t, add 2'a to state if N and state differ in the rth least significant bit

» Stop when N and state ( = ka) agree on the n — m least significant bits

e Equivalently: N = ka (mod 2"™™)

(I
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Tracing Through Our Algorithm

11 2"N1 a = 11 2N2 a = 11

11 R N = 111 , N = 0111
1 k = 01 k = 101
11 state = 011 state = 1111

Recall:
state = ka



270 a

=z
11l

state =

Recall:

Tracing Through Our Algorithm .. _,,

11 2"N1 a = 11 2N2 a = 11 23 a = 11

11 R N = 111 , N = 0111 , N = 110111
1 k = 01 k = 101 k = 1101

11 Sstate = 011 state = 1111 state = 100111



Recall:

Tracing Through Our Algorithm .. _,,

2"l a = 11 2N2 a = 11
N = 111 , N = 0111
k = k =

state = 011 state = 1111



Recall:

Tracing Through Our Algorithm .. _,,

271 a = 11 2N2 a = 11
N = 111 , N = 0111
k: k:

state = 011 state = 1111

» Our earlier observation: a simple comparison between state and 2’a suffices for
uncomputation at each step



Recall:

Tracing Through Our Algorithm .. _,,

271 a = 11 2N2 a = 11
N = 111 , N = 0111
k: k:

state = 011 state = 1111

» Our earlier observation: a simple comparison between state and 2’a suffices for
uncomputation at each step

 Second observation:

* The trailing bits of state and NV are classically known; and



Recall:

Tracing Through Our Algorithm .. _,,

271 a = 11 2N2 a = 11
N = 111 , N = 0111
k: k:

state = 011 state = 1111

» Our earlier observation: a simple comparison between state and 2’a suffices for
uncomputation at each step

* Second observation:
* The trailing bits of state and NV are classically known; and

* We only need the leading-order bits of state to make the above comparison with
2la



Recall:

Tracing Through Our Algorithm .. _,,

271 a = 11 2N2 a = 11
N = 11 , N = 01
k = k =

state = 01 state = 11

» Our earlier observation: a simple comparison between state and 2’a suffices for
uncomputation at each step

* Second observation:
* The trailing bits of state and NV are classically known; and

* We only need the leading-order bits of state to make the above comparison with
2la

This now gets us down to O(m) space!
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Efficiency of Our Algorithm

» Space: O(m) = O(log a)

* Computation boils down to O(n) additions of m-bit integers
e Gates: O(mn)
» Depth: O(n)

This is already nice, but we can do better...
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* Enables us to benefit from fast integer multiplication algorithms (for m-bit inputs)

» To decide what multiple of a to add at each step: start by computing a~' mod 2

Two options to compute @~ mod 2
1. (Obnoxious; concretely inefficient) Use Schonhage to achieve this in O(m) gates/space/depth
2. (Using the 2" modulus; can be made concretely efficient) Recurse down to computing a~! mod 22

a. Recursion step just does some multiplications and bit shifts on m-bit integers
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Pushing Down the Gates and Depth

I[dea: instead of setting one bit of k at a time, we will set m bits at a time

* Enables us to benefit from fast integer multiplication algorithms (for m-bit inputs)
» To decide what multiple of a to add at each step: start by computing a~' mod 2
Space usage: still O(m)

Computational work: O(n/m) multiplications of m-bit integers

+ Gates: O(n/m) x O(m) = O(n)

e Depth: O(n/m) x O(1) = O(n/m)



Summary and Open Questions



Summary of Our Algorithm

To compute (%) fora < 2" (where m = O(log Q)):

1. Compute N mod a



Summary of Our Algorithm

To compute (%) fora < 2" (where m = O(log Q)):

1. Compute N mod a

» Technical challenge: achieving this in gates O(n), space O(m), and depth O(n/m)



Summary of Our Algorithm

To compute (%) fora < 2" (where m = O(log Q)):

1. Compute N mod a

» Technical challenge: achieving this in gates O(n), space O(m), and depth O(n/m)
N mod a

) using Schonhage’s algorithm
a

2. Finish by computing (



Summary of Our Algorithm

To compute (%) fora < 2" (where m = O(log Q)):

1. Compute N mod a

» Technical challenge: achieving this in gates O(n), space O(m), and depth O(n/m)
N mod a

) using Schonhage’s algorithm
a

2. Finish by computing (

» Contributes an additional depth of O(m) (dominant term in depth if m > \/Z)



Summary: Our Factoring Circuit for P~Q

+ Main theorem (KRVV24): for N = P?Q < 2" such that Q is squarefree and < 2, we
can recover P, O from N in O(n) gates, O(m) qubits, and O(n/m + m) depth



Summary: Our Factoring Circuit for P~Q

+ Main theorem (KRVV24): for N = P?Q < 2" such that Q is squarefree and < 2, we
can recover P, O from N in O(n) gates, O(m) qubits, and O(n/m + m) depth

Central workhorse: an efficient quantum circuit for computing N mod a for
classical N < 2" and quantum a < 2™

ol b




Summary: Our Factoring Circuit for P~Q

Authors Types of inputs Gates Space Depth
Shor (1994) Any O(n?) O(n) O(n)
LPDS (2012) N = P%Q O(n) O(n) O(n)
KCVY (2021) N/A O(n) O(n) O(1)

Regev (2023) Any O(n'>) O(n'>) On">)
RV (2024) Any O(n') O(n) O(n">)
KRVV (2024) N = P*Q (Q < 2™ O(n) O(m) O(n/m + m)
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Open Questions

(Ongoing work) What are the concrete costs of these algorithms?

Can error-correcting codes and fault tolerance be designed in a way that is
especially suited to computing the Jacobi symbol?

Better classical algorithms for factoring P?Q when Q is small?

What other integers N can we factor using this algorithm (e.g. using number theory
magic)?
+ Current generalisation: can completely factor N = p"'p =...p," for distinct

Apy .ees A,

Other quantum factoring algorithms exploiting special structure in N? (Many such
algorithms in the classical world)
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Our Result, Distlled

* Theorem (KRVV24): for a < 2" (in our application, m = O(log Q)) and classically
known N < 2", we can compute

|la) = |a)| N mod a)
in O(n) gates, O(m) qubits, and O(n/m) depth

» Corollary t: all of the following can be computed in O(n) gates, O(m) qubits, and
O(n/m + m) depth for quantum a and classical V:

a :
. Jacobi symbol: (—) Open question:

N other applications
» GCD: gcd(a, N) of these results?

» Modular inverse: a~! mod N (provided gcd(a, N) = 1)
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F'rom Backwards Long Division to N mod a

* The example we just worked out:
e N=55,a=3n=6,m=72)

 End up with ka = state =39 =13 X3 =N (mod 2" = 16)
N — state B N — ka

. Now define N' = - — (informally, this is the “remainder”)
e Finally: N = N"- (2”_’" mod a) (mod a), and the RHS is easily computable with
O(m) gates!

That’s it! We computed N mod d!



