A SECURITY INSTITUTE

Asymptotic guarantees for alignment

Geoffrey Irving, 15 April 2025

Please ask questions throughout!

Claim: Theory can tell us what empirics should measure

We're far from asymptotic guarantees currently!

- Theory expects debate will not converge to approximate honesty
 - (Same for other existing scalable oversight methods.)
- **Obfuscated arguments** (<u>Barnes 2020</u>)
 - Honesty can be intractably harder than deception in some debate games
 - Worse than "no proof": we actively expect scalable oversight to break down as a result
- Exploration hacking (<u>Hubinger 2023</u>)
 - Need some reason to believe that converged training implies game equilibria
- Low vs. high stakes / deceptive alignment (<u>Christiano 2021</u>)
 - Learning theory will give you at most a 1ε success rate. Can we to get to o(1) failures?
 - Sometimes 1 ε might be enough (sufficiently sandboxed alignment research)
- There are more problems! Systematic human errors, etc.

Problem:

Existing scalable oversight methods fail even ignoring deceptive alignment

Hopeful claim:

We have a meaningful shot at better theory (including translation to empirics)

Complexity theory and obfuscated arguments

- Goal: Use ML to accelerate an expensive computation
 - Write down a huge tree computation
 - Use heuristics to skip a bunch of steps
 - AlphaGo uses this for go, debate uses it for safety
- Problem: Obfuscated arguments (Barnes 2020)
 - The heuristics will not always work!
 - **Risk:** We drop from a tractable node to intractable nodes
 - Applies to all scalable oversight methods
 - Amplification, Scientist AI, etc.
- Obfuscation may be an attractor
 - Arose naturally in human experiments (Barnes 2020)
 - Winning strategy in easy theory examples

Intractable nodes 🔒

Example: "This kind of Python code likely has vulnerabilities, but we don't know where yet."

Needs to work despite **fragile**, alien heuristics

- Subtlety: Tractable is relative to the ML model
 - ML models can be narrowly superhuman, or much weaker
 - We don't know where in advance!
- Good news! Problem is...
- Easy to model, with two oracles (Brown-Cohen, Irving, 2024)
 - Human oracle to capture human judge
 - Debater oracle to capture alien machine reasoning
 - Protocol can't call the debater oracle directly
- Novel: complexity theory hasn't tackled it yet
 - So no reason to believe it's hard!
 - Complexity theory is often either impossible or easy

In-progress attempt: **prover-estimator debate**

- In original debate:
 - Alice decomposes the problem
 - Bob chooses where to recurse
- Bad: Alice wins if both Alice + Bob are confused

Prover-estimator debate:

- Alice decomposes
- Alice and Bob assign probabilities
- If they disagree a lot, recurse
- If they're close, use Bob's probabilities
- Goal: Bob wins if they're both confused

Joint work with Jonah Brown-Cohen + Georgios Piliouras at GDM

Two caveats: proof holes + stability

Still nailing down the proof!

- Only a few pages, but super fiddly
- I'm at **80%** on true in ~current form
- Theorem will have messy details
 - $O(\rho^{2d}/(1-\rho)^2m^2d^2/\epsilon^2)$ and such
- But still would be progress!
 - Deals nicely with alien heuristics

Need to assume stability

- Small L[∞] -changes to child probabilities change node probabilities only a bit
 - Likely required, in some form
- Jonah's optimistic intuition
 - Holds if independent evidence can be found for subnodes
- Beth's pessimistic take
 - Just says when obfuscation applies :)
- Needed only for capability, not safety
 - Bob defeats unstable lies

We have many scalable oversight schemes, with different advantages

Learning theory and exploration hacking

- Learning theory says when we can converge to near-optimum
 - ...if everything is convex
- Multiple hopes for theory closer to neural nets...
- Singular learning theory (Hoogland et al. 2023)
 - Might get us nonlinear Bayesian models (near equilibrium)
 - Substitutes for mech interp by modeling variation in behavior as a function of variation in dataset
- Deep learning theory
 - Might get us deep linear models or similar DNN proxies
- Goal: Find training algorithms with fewer exploration-hacked equilibria

Can learning theory say something about **residual error**?

- Learning theory might say we get within ε of the optimum
- What does that ε behaviour look like, according to model M?
 - Some possibilities are worse than others!

This kind of theory will only say fake things are safe

- Need empirics to confirm our toy models resemble the truth!
- Assumptions theory might make
 - We're almost converged
 - Human data is sufficiently accurate
 - The model is exact Bayesian reasoning

Empirical validation

- Do the learning curves say so?
- Is it really?
- Hope we don't depend on that

Empirics

Analogy: The Lax-Wendroff theorem

- We're numerically solving a hyperbolic PDE, and
 - Our discretization scheme is **conservative**
 - We **converge** to something
- Theorem (Lax-Wendroff, 1960):
 - Then we converge to a (weak) solution
- How do we check these two properties?
- **Conservative (theory):** Straightforward calculation
- Convergence (empirics): Refine the grid a few times. Does it look okay?

Zooming out: Trying to map all the holes

What asymptotic guarantees could look like for scalable oversight

AISI Alignment Team plan:

Decompose alignment, then fund subproblems in parallel

Sketch safety cases for multiple alignment plans

Fund as many subproblems in parallel as possible

Fund both theory and empirics

- First one will be scalable oversight + whitebox
- Will do more internally, and would love to fund external sketches
- Tons of people with relevant expertise not yet working on safety
- Independent subproblems \rightarrow lower entry barriers + parallelism
- Theory is neglected + accessible outside labs (academia, nonprofits)
- More theory needs more empirics to target issues theory uncovers

We have funding for alignment research, including theory

https://forms.office.com/e/BFbeUeWYQ9

Mapping the blackbox / whitebox boundary

- Many possible levels of interpretability success
 - Linear probes → ... → full circuit breakdown
- How far does partial success get us?
- **First:** Describe the lowest level where debate works
- Second: Find many independent routes
 - Mech interp, SLT, computational mechanics, self-other overlap, adversarial ML, automated interpretability, ...

A candidate level: eliciting bad contexts

- On context X, model M is innocuous
- But M "knows" that on context Y, it would defect
- Can we extract Y?
- Clearly requires whitebox search, but maybe not full understanding
- Alas, harder than automation might easily provide (<u>Pfau 2025</u>)

Irving et al. 2025

Why not outsource alignment to the machines?

We might need to understand alignment to outsource it

- Ways to check AI work:
- **Empirical** means we partly know an alignment scheme
- **Conceptual** means we understand, well enough
- **Trust** is bad: Als make mistakes too!
- Shouldn't give up trying to solve it ourselves!

Georgios and I managed to coordinate without communication!

Apologies, slide will make no sense outside of the <u>Simons workshop</u>...

Thank you!

AISI alignment research funding:

