How can artificial intelligence help mathematicians?

Amaury Hayat CERMICS - Ecole des Ponts - Institut Polytechnique de Paris

AI for Mathematics and Theoretical Computer Science

April, 9th

Simons Institute and SLMath

POLYTECHNIQU DE PARIS

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Social networks

Emails and apps

Virtual assistants

Platforms

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

From computer scientists awareness...

Convolutional Neural Networks (LeNet-5, 1998,..., ResNet, 2015)

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

- Generative adversarial networks (2014)
- Transformer (2017)
- AlphaZero (2018)
- ... to global awareness
 - ChatGPT (followed by Llama, Mistral, etc.)
 - Diffusion model (Dall·E, Midjourney, Stable Diffusion)
 - 2024 Nobel Prizes in Physics and in Chemistry

An idea that started taking roots:

How can AI help mathematicians ?

Basic usage:

asking a math question to an LLM / asking to prove a small lemma

・ロト ・ 目 ・ ・ ヨト ・ ヨ ・ うへつ

An idea that started taking roots:

How can AI help mathematicians ?

Basic usage:

asking a math question to an LLM / asking to prove a small lemma
terrible answers (2022-2023)

・ロト ・ 目 ・ ・ ヨト ・ ヨ ・ うへつ

An idea that started taking roots:

How can AI help mathematicians ?

Basic usage:

 \blacksquare asking a math question to an LLM / asking to prove a small lemma

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- terrible answers (2022-2023)
- but models are evolving quickly

An idea that started taking roots:

How can AI help mathematicians ?

Basic usages:

- Finding citations (information retrieval)
- Learning about a new field; explaining a paper (in-context or retrieval)

Reviewing process (!)

Al for mathematics \neq generic LLM

Outline of the talk

1. Al tools for math discovery

2. When will AI prove theorems?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Outline of the talk

1. Al tools for math discovery

2. When will AI prove theorems?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Conjecture (Euler, 1769)

If there exist integers a_1 , a_2 ,..., a_k , b, and n such that

$$a_1^n + a_2^n + \ldots + a_k^n = b^n,$$

then $k \geq n$.

A problem open for almost 200 years

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Lander and Parkin (1966)

Lander and Parkin (1966)

$27^5 + 84^5 + 110^5 + 133^5 = 144^5$

・ロト ・ 目 ・ ・ ヨト ・ ヨ ・ うへつ

COUNTEREXAMPLE TO EULER'S CONJECTURE ON SUMS OF LIKE POWERS

BY L. J. LANDER AND T. R. PARKIN

Communicated by J. D. Swift, June 27, 1966

A direct search on the CDC 6600 yielded

 $27^5 + 84^5 + 110^5 + 133^5 = 144^5$

as the smallest instance in which four fifth powers sum to a fifth power. This is a counterexample to a conjecture by Euler [1] that at least n nth powers are required to sum to an nth power, n > 2.

Reference

1. L. E. Dickson, *History of the theory of numbers*, Vol. 2, Chelsea, New York, 1952, p. 648.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Proof of Keller's Conjecture (Brakensiek, Heule, Mackey, Narváez, 2019)

- A proof with many "simple cases" to check
- Many = far too many for a human

Proof of Keller's Conjecture (Brakensiek, Heule, Mackey, Narváez, 2019)

- A proof with many "simple cases" to check
- Many = far too many for a human
- Size of the proof:

(日)

Proof of Keller's Conjecture (Brakensiek, Heule, Mackey, Narváez, 2019)

- A proof with many "simple cases" to check
- Many = far too many for a human
- Size of the proof: 200Gb \sim 10 Wikipedias

(日)

Proof of Keller's Conjecture (Brakensiek, Heule, Mackey, Narváez, 2019)

A proof with many "simple cases" to check

- Many = far too many for a human
- Size of the proof:

Several impressive results using SAT solvers (see the talk of Giles Gardam and Bernardo Subercaseaux)

(日) (四) (日) (日) (日)

Conclusion: Computers have been used to prove theorems for a long time.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Conclusion: Computers have been used to prove theorems for a long time.

Can AI be useful to solve more complicated problems?

Problems where the difficulty is not just a high number of case-checking?

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

AI in Mathematics Today

Three examples

Stability of dynamical systems

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

- Control theory
- Combinatorics

AI in Mathematics Today

Three examples

Stability of dynamical systems

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- Control theory
- Combinatorics

AI in Mathematics Today

Three examples

- Stability of dynamical systems
- Control theory
- Combinatorics

Discovering Lyapunov function (Alfarano, Charton, H.)

$$\begin{cases} \dot{x}_0 = -7x_0^5 - 4x_0^3x_1^2 - 5x_0^3\\ \dot{x}_1 = 7x_0^4 - 3x_1 - 2x_2\\ \dot{x}_2 = -8x_0^2 - 9x_2 \end{cases}$$

$$V(x) = 2x_0^4 + 2x_0^2x_1^2 + 3x_0^2 + 2x_1^2 + x_2^2$$

(see tutorial by Sean Welleck)

・ロト・西・・田・・田・・日・

A system of differential equations

 $\dot{x}(t)=f(x(t)),$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ◆ □ ◆ ○ ◇ ◇ ◇

$$\dot{x}(t)=f(x(t)),$$
 where $x(t)\in \mathbb{R}^n,~f\in C^1(\mathbb{R}^n)$ and $f(0)=0.$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

$$\dot{x}(t)=f(x(t)),$$
 where $x(t)\in \mathbb{R}^n,~f\in C^1(\mathbb{R}^n)$ and $f(0)=0.$

Question (System Stability)

Is it true that for every $\varepsilon > 0$, there exists $\delta > 0$ such that if the initial condition satisfies $||x(0)|| \le \delta$ then the solution x(t) exists for all $t \in [0, +\infty)$ and

 $\|x(t)\| \leq \varepsilon, \ \forall \ t \in [0, +\infty).$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

 $\dot{x}(t)=f(x(t)),$ where $x(t)\in \mathbb{R}^n,~f\in C^1(\mathbb{R}^n)$ and f(0)=0.

Question (System Stability)

Is it true that for every $\varepsilon > 0$, there exists $\delta > 0$ such that if the initial condition satisfies $||x(0)|| \le \delta$ then the solution x(t) exists for all $t \in [0, +\infty)$ and

 $\|x(t)\| \leq \varepsilon, \ \forall \ t \in [0, +\infty).$

Are all solutions arbitrarily bounded if the initial condition is sufficiently small?

$$\dot{x}(t)=f(x(t)),$$
 where $x(t)\in \mathbb{R}^n,~f\in C^1(\mathbb{R}^n)$ and $f(0)=0.$

Question (System Stability)

Is it true that for every $\varepsilon > 0$, there exists $\delta > 0$ such that if the initial condition satisfies $||x(0)|| \le \delta$ then the solution x(t) exists for all $t \in [0, +\infty)$ and

 $\|x(t)\| \leq \varepsilon, \ \forall \ t \in [0, +\infty).$

• Are all solutions arbitrarily bounded if the initial condition is sufficiently small?

A problem that has interested mathematicians for over a hundred years.

CIXIN:LIU THE THREE-BODY	٨
PROBLEM	24-30 mars 2024 Three Body Problem 100
24 sept. 202	3 28 janv. 2024

A significant advancement: Lyapunov functions

Theorem

If there exists a function $V \in C^1(\mathbb{R}^n; \mathbb{R})$ such that for all $x \in \mathbb{R}^n$

$$V(x) > V(0),$$
 and $\nabla V(x) \cdot f(x) \le 0,$

and

$$\lim_{\|x\|\to+\infty}V(x)=+\infty,$$

then the system is stable.

A. Lyapunov (1857-1918)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

A significant advancement: Lyapunov functions

Theorem

If there exists a function $V \in C^1(\mathbb{R}^n; \mathbb{R})$ such that for all $x \in \mathbb{R}^n$

$$V(x) > V(0)$$
, and $\nabla V(x) \cdot f(x) \le 0$,

and

$$\lim_{\|x\|\to+\infty}V(x)=+\infty,$$

then the system is stable.

A. Lyapunov (1857-1918)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Nothing tells us how to find such a function V...

Nothing tells us how to find such a function V...

And it's not a simple problem.

Nothing tells us how to find such a function V...

And it's not a simple problem.

$$\dot{x}(t) = \begin{pmatrix} -6x_1^4(t)x_2^5(t) - 3x_1^7(t)x_3^2(t) \\ 3x_1^9(t) - 6x_1^2(t)x_2^5(t)x_3^2(t) \\ -4x_1^2(t)x_3^5(t) \end{pmatrix}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへぐ

Nothing tells us how to find such a function V...

And it's not a simple problem.

$$\dot{x}(t) = egin{pmatrix} -6x_1^4(t)x_2^5(t) - 3x_1^7(t)x_3^2(t) \ 3x_1^9(t) - 6x_1^2(t)x_2^5(t)x_3^2(t) \ -4x_1^2(t)x_3^5(t) \end{pmatrix}$$

The system is stable, a Lyapunov function is

$$V(x) = x_1^6 + 2(x_2^6 + x_3^4)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ
A globally asymptotically stable polynomial vector field with no polynomial Lyapunov function

 Publisher: IEEE
 Cite This
 PDF

 Amir Ali Ahmadi ; Miroslav Krstic ; Pablo A. Parrilo
 All Authors

 39
 399

 Cites in
 Full

 Papers
 Text Views

・ロト・日本・日本・日本・日本・日本

Today, more than a hundred years later, it is still an open question:

there is still no systematic way to construct a Lyapunov function.

Today, more than a hundred years later, it is still an open question:

there is still no systematic way to construct a Lyapunov function.

 \rightarrow We resort to intuition

Intuition, an important concept in mathematics.

- Intuition, an important concept in mathematics.
- In a number of cases, intuition resembles a kind of pattern recognition. You've seen plenty of examples, and this gives you an idea of how to proceed in a case you've never seen.

- Intuition, an important concept in mathematics.
- In a number of cases, intuition resembles a kind of pattern recognition. You've seen plenty of examples, and this gives you an idea of how to proceed in a case you've never seen.

・ロト ・ 目 ・ ・ ヨト ・ ヨト ・ シック

Can we train an AI to have better mathematical intuition than us?

- Intuition, an important concept in mathematics.
- In a number of cases, intuition resembles a kind of pattern recognition. You've seen plenty of examples, and this gives you an idea of how to proceed in a case you've never seen.
- Can we train an AI to have better mathematical intuition than us?

Task: guessing Lyapunov functions

$$\dot{x}(t) = \begin{pmatrix} -6x_1^4(t)x_2^5(t) - 3x_1^7(t)x_3^2(t) \\ 3x_1^9(t) - 6x_1^2(t)x_2^5(t)x_3^2(t) \\ -4x_1^2(t)x_3^5(t) \end{pmatrix} \quad \rightarrow \quad \text{Yes, } V(x) = x_1^6 + 2(x_2^6 + x_3^4)$$

Train an AI to have an intuition of Lyapunov functions (Alfarano, Charton, A.H., 2024).

Neural network architecture: Transformer (~1000 smaller than GPT-3)

Procedure:

1. Generate a set of systems and associated Lyapunov functions.

- 2. Encode the examples
- 3. Train the language model (supervised learning)

Train an AI to have an intuition of Lyapunov functions (Alfarano, Charton, A.H., 2024).

Neural network architecture: Transformer (~1000 smaller than GPT-3)

Procedure:

1. Generate a set of systems and associated Lyapunov functions.

- 2. Encode the examples
- 3. Train the language model (supervised learning)

How to generate examples of systems and solutions, for an open problem?

How to generate examples of systems and solutions, for an open problem?

 \rightarrow Use a backward approach: instead of finding a solution from the problem, we find the problem from the solution.

・ロト ・ 目 ・ ・ ヨト ・ ヨト ・ シック

How to generate examples of systems and solutions, for an open problem?

 \rightarrow Use a backward approach: instead of finding a solution from the problem, we find the problem from the solution.

Find a mathematical way to get:

 $\underbrace{V(x)}_{\text{positive, random}} \rightarrow \text{all systems with Lyapunov function} V$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Then sample at random.

In spirit: finding a Lyapunov function is a hard problem, checking that a function is a Lyapunov function is easier.

How to generate examples of systems and solutions, for an open problem?

 \rightarrow Use a backward approach: instead of finding a solution from the problem, we find the problem from the solution.

Find a mathematical way to get:

 $\underbrace{V(x)}_{\text{positive, random}} \rightarrow \text{all systems with Lyapunov function} V$

Then sample at random.

In spirit: finding a Lyapunov function is a hard problem, checking that a function is a Lyapunov function is easier.

Limitations: even with a perfect generator, it biases the distribution (and it matters).

Train an AI to have an intuition of Lyapunov functions (Alfarano, Charton, A.H., 2024).

Neural network architecture: Transformer (\sim 1000 smaller than ChatGPT)

Procedure:

- 1. Generate a set of systems and associated Lyapunov functions.
- 2. Encode the examples

$$(x_1^2+\sin(x_2)) \rightarrow \bigwedge_{x_1}^{+} \sum_{x_2}^{+} \longrightarrow "+", "\wedge", "x_1", "2", "\sin", "x_2"$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

3. Train the language model (supervised learning)

Results

It works! The AI learns a mathematical intuition of Lyapunov functions.

¹Existing method for some polynomial systems.

Results

It works! The AI learns a mathematical intuition of Lyapunov functions.

・ロト ・ 目 ・ ・ ヨト ・ ヨト ・ シック

It works exceptionnally with a priming approach: adding a few high quality examples in the train set (e.g. 50 out of 1M that is 0.005%)

¹Existing method for some polynomial systems.

Results

It works! The AI learns a mathematical intuition of Lyapunov functions.

It works exceptionnally with a priming approach: adding a few high quality examples in the train set (e.g. 50 out of 1M that is 0.005%)

Туре	n equations	SOS algorithms ¹	AI
polynomial (train distrib.)	2-5	15%	99%
polynomial (fwd distrib.)	2-3	47%	84-93%
Non-polynomial	2-3	\sim 0%	87%

・ロト ・ 目 ・ ・ ヨト ・ ヨト ・ シック

¹Existing method for some polynomial systems.

Results

It works! The AI learns a mathematical intuition of Lyapunov functions.

It works exceptionnally with a priming approach: adding a few high quality examples in the train set (e.g. 50 out of 1M that is 0.005%)

Туре	n equations	SOS algorithms ¹	AI
polynomial (train distrib.)	2-5	15%	99%
polynomial (fwd distrib.)	2-3	47%	84-93%
Non-polynomial	2-3	\sim 0%	87%

Master students accuracy: $\sim 10\%$

¹Existing method for some polynomial systems.

Results

It works! The AI learns a mathematical intuition of Lyapunov functions.

It works exceptionnally with a priming approach: adding a few high quality examples in the train set (e.g. 50 out of 1M that is 0.005%)

Туре	n equations	SOS algorithms ² .	AI
polynomial (train distrib.)	2-5	15%	99%
polynomial (fwd distrib.)	2-3	47%	84-93%
Non-polynomial	2-3	\sim 0%	87%

My accuracy (!): $\sim 25\%$

²Existing method for some polynomial systems

NewScientist

Meta says its AI could help mathematicians Tada Images/Shutterstock

An AI system developed by Meta can find solutions to maths problems that have eluded mathematicians for over a century, researchers at the firm claim.

Enter search keywords

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Q

Sign in 👤

The problems involve mathematical tools called Lyapunov functions, named after mathematician Aleksandr Lyapunov, which analyse whether a system will remain stable over time, meaning its behaviour can be predicted. One famous example of such a system is the motion of three celestial bodies as a result of their mutual gravitational interactions – describing the behaviour of this "three–body problem" is extremely challenging.

Read more Incredible maths proof..

AIがリアプノフ関数の発見に革新! 安定性理論に新たなプレイクスルー(2024-10)【論文解説 シリーズ】

Summary of the approach

Paradigm: Training a Transformer to have a mathematical intuition on a problem

Key points:

- Generating data in a backward fashion (solution \rightarrow problem)
- Test out-of-distribution on "real" instances of the problem.

Used in many frameworks: explicit solutions to ODE; local controllability; eigenvalues of random matrices; GCD; equilibrium of bio-networks, etc.

Try it yourself:

```
https://github.com/ahayat16/Lyapunov/
```

and customize on your favorite math problem

AI in Mathematics today

Three examples

Stability of dynamical systems

- Control theory
- Combinatorics

Evolution of the mosquito population

$$\begin{cases} \dot{E} = \beta_E F \left(1 - \frac{E}{K} \right) - \left(\nu_E + \delta_E \right) E \\ \dot{M} = (1 - \nu) \nu_E E - \delta_M M, \\ \dot{F} = \nu \nu_E E \frac{M}{M + M_s} - \delta_F F, \\ \dot{M}_s = u - \delta_s M_s, \end{cases}$$

E(t) represents mosquito eggs, F(t) fertilized females, M(t) males, $M_s(t)$ sterile males. u is the flow of sterile mosquitoes that we release. This is what is called *control*.

・ロト ・ 目 ・ ・ ヨト ・ ヨト ・ シック

Evolution of the mosquito population

$$\begin{cases} \dot{E} = \beta_E F \left(1 - \frac{E}{K} \right) - \left(\nu_E + \delta_E \right) E \\ \dot{M} = (1 - \nu) \nu_E E - \delta_M M, \\ \dot{F} = \nu \nu_E E \frac{M}{M + M_s} - \delta_F F, \\ \dot{M}_s = u - \delta_s M_s, \end{cases}$$

E(t) represents mosquito eggs, F(t) fertilized females, M(t) males, $M_s(t)$ sterile males. u is the flow of sterile mosquitoes that we release. This is what is called *control*.

$$u = f(M + M_s, F + F_s)$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

with $F_s = FM/M_s$.

E(t) represents mosquito eggs, F(t) fertilized females, M(t) males, $M_s(t)$ sterile males. u is the flow of sterile mosquitoes that we release. This is what is called *control*.

$$u = f(M + M_s, F + F_s)$$

Question

Is it possible to find f such that the system is stable and

$$\lim_{t\to+\infty} \|E(t), M(t), F(t)\| = 0 \text{ and } \lim_{t\to+\infty} \|M_s(t)\| = \varepsilon,$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

with ε as small as desired?

E(t) represents mosquito eggs, F(t) fertilized females, M(t) males, $M_s(t)$ sterile males. u is the flow of sterile mosquitoes that we release. This is what is called *control*.

$$u = f(M + M_s, F + F_s)$$

Question

Is it possible to find f such that the system is stable and

$$\lim_{t\to+\infty} \|E(t), M(t), F(t)\| = 0 \text{ and } \lim_{t\to+\infty} \|M_s(t)\| = \varepsilon,$$

with ε as small as desired?

An open question

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Principle of the approach (Agbo Bidi, Coron, A.H., Lichtlé, 2023)

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Principle of the approach (Agbo Bidi, Coron, A.H., Lichtlé, 2023)

- **1** Transform the equations using a well-chosen numerical scheme.
- **2** Train a Reinforcement Learning (RL) model. The AI trains by trial and error and tries to maximize a well-chosen objective.
- **3** Deduce the mathematical control, from the numerical control.
- **4** Verify that it is a solution to the problem.

 $u = f(M + M_s, F + F_s)$

 $u = f(M + M_s, F + F_s)$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

$$u_{\rm reg}(M + M_s, F + F_s) = \begin{cases} u_{\rm reg}^{\rm left}(M + M_s, F + F_s) & \text{if } M + M_s < M^*, \\ u_{\rm reg}^{\rm right}(M + M_s, F + F_s) & \text{otherwise,} \end{cases}$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

$$u_{\rm reg}(M + M_s, F + F_s) = \begin{cases} u_{\rm reg}^{\rm left}(M + M_s, F + F_s) & \text{ if } M + M_s < M^*, \\ u_{\rm reg}^{\rm right}(M + M_s, F + F_s) & \text{ otherwise,} \end{cases}$$

$$u_{\text{reg}}^{\text{left}} = \begin{cases} \varepsilon & \text{if } f_1(F + F_s) > \alpha_2, \\ u_{\text{max}}(\alpha_2 - l_1) & \text{if } l_1 \in (\alpha_1, \alpha_2], \\ u_{\text{max}} & \text{otherwise, and} \end{cases} \qquad \qquad u_{\text{reg}}^{\text{right}} = \begin{cases} \varepsilon & \text{if } l_2 > \alpha_2, \\ u_{\text{max}}(\alpha_2 - l_2) & \text{if } l_2 \in (\alpha_1, \alpha_2], \\ u_{\text{max}} & \text{otherwise.} \end{cases}$$

where
$$I_1(x) = rac{\log M^*}{\log(F+F_s)}$$
 and $I_2(x,y) = rac{\log(M+M_s)}{\log(F+F_s)}$,

Final control

$$u(t) = \begin{cases} \varepsilon & \text{if } \frac{\log(M+M_s)}{\log(F+F_s)} > \alpha_2, \\ u_{\max} & \text{otherwise,} \end{cases}$$

Final control

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Final control

 $\varepsilon = 0$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ
Control of a Differential System

Final control

We can see a mathematical bifurcation with our "Al-augmented intuition".

Control of a Differential System

Robustness of the solution

Can the solution still work if there are uncertainties on the parameters ?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

,

$$\begin{cases} \dot{E} = \beta_E F \left(1 - \frac{E}{K} \right) - \left(\nu_E + \delta_E \right) E \\ \dot{M} = (1 - \nu) \nu_E E - \delta_M M, \\ \dot{F} = \nu \nu_E E \frac{M}{M + M_s} - \delta_F F, \\ \dot{M}_s = u - \delta_s M_s, \end{cases}$$

Control of a Differential System

Robustness of the solution

Can the solution still work if there are uncertainties on the parameters ?

$$\begin{cases} \dot{E} = \beta_E F \left(1 - \frac{E}{K} \right) - \left(\nu_E + \delta_E \right) E, \\ \dot{M} = (1 - \nu) \nu_E E - \delta_M M, \\ \dot{F} = \nu \nu_E E \frac{M}{M + M_s} - \delta_F F, \\ \dot{M}_s = u - \delta_s M_s, \end{cases}$$

$$\begin{split} \hat{\beta}_E &\sim \mathcal{U}(0.65, 9.03) \\ \hat{\nu}_E &\sim \mathcal{U}(0.01, 0.35) \\ \hat{\delta}_E &\sim \mathcal{U}(0.03, 1.0) \\ \hat{\delta}_F &\sim \mathcal{U}(0.03, 0.1) \\ \hat{\delta}_M &\sim \mathcal{U}(0.09, 0.2) \\ \hat{\nu} &\sim \mathcal{U}(0.39, 1.0) \end{split}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Yes

AI tools for math discovery

Three examples

Stability of dynamical systems

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

- Control theory
- Combinatorics

PatternBoost: finding interesting constructions

Paradigm: couple a classical algorithm and a transformer. [Charton, Ellenberg, Wagner, Williamson, 2024]

- Step 1: a classical algorithm generate "good" constructions from random seeds
- Step 2: train a transformer on the best such constructions
- Step 3: use the transformer as seeds.

Repeat.

PatternBoost: finding interesting constructions

Paradigm: couple a classical algorithm and a transformer. [Charton, Ellenberg, Wagner, Williamson, 2024]

- Step 1: a classical algorithm generate "good" constructions from random seeds
- Step 2: train a transformer on the best such constructions
- Step 3: use the transformer as seeds.

Repeat.

In particular, closed a 30-years conjecture.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Combinatorial Optimization Augmented Machine Learning

Paradigm: couple a combinatorial optimization algorithm and a neural network and train the ensemble [Baty, Jungel, Klein, Parmentier, Schiffer, 2024].

Perform better than existing mathematical algorithm and machine learning algorithm

(winner of EURO NeurIPS challenge 2022)

(日) (四) (日) (日) (日)

Many other examples

- in topology feedforward and MPNNs to guess links between different mathematical quantities, in particular hyperbolic and algebraic invariant of knots (a conjecture that was later proved) [Davies et al., 2021]
- in partial differential equations PINNs to find an exact self-similar solution to 3D Euler [Wang, Lai, Gómez-Serrano, Buckmaster, 2023]
- in group theory path-finding for large graphs with ResMLP and RL [Chervov et al. 2025]

■ ... and in many others fields

AI tools for math discovery

- Al are already useful in the practice of mathematics and can help solve difficult problems.
- Al are trained to have better intuition than humans on a specific problem.
- This augmented intuition allows us to bypass the difficulty of the problem.

・ロト ・ 目 ・ ・ ヨト ・ ヨ ・ うへつ

Future of Mathematical AI

Can an AI prove a mathematical result on its own?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Outline of the talk

1. Al tools for math discovery

2. When will AI prove theorems?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Can a trained AI find a proof for a mathematical statement?

- A much harder problem
- Shocking question: calls into question our very vision of mathematics
- A science-fiction future that is probably closer than we imagine

First approach: training a Transformer (GPT-f, Polu, Sutskever, 2020)

Question

Let a > 0 and b > 0, such that ab = b - a, show that $\frac{a}{b} + \frac{b}{a} - ab = 2$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

First approach: training a Transformer (GPT-f, Polu, Sutskever, 2020)

Question

Let a > 0 and b > 0, such that ab = b - a, show that $\frac{a}{b} + \frac{b}{a} - ab = 2$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Ilva Sutskever

😪 SUIVRE

Co-Founder and Chief Scientist of OpenAl Adresse e-mail validée de openai.com - <u>Page d'accueil</u> Machine Learning Neural Networks Artificial Intelligence Deep Learning

ARTICLES CITÉE PAR ACCÈS PUBLIC COAUTEURS

▲□▶▲□▶▲□▶▲□▶ □ のQの

Ilya Sutskever: The OpenAI Genius Who Told Sam Altman He Was Fired

Company's chief scientist led a board coup against one of the most prominent figures in Silicon Valley

First approach: training a Transformer (GPT-f, Polu, Sutskever, 2020)

Question

Let a > 0 and b > 0, such that ab = b - a, show that $\frac{a}{b} + \frac{b}{a} - ab = 2$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

What does an autoregressive transformer do (in a nutshell) ?

A: Hope is a good thing, maybe the best of things and no good thing ever dies.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Proof: Step 1; Step 2; ...; Step n.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Procedure: train it with examples: (exercises, proofs)

The hope is that by showing it enough examples, the AI will be capable of learning to reason, just by learning to predict the next step each time.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Procedure: train it with examples: (exercises, proofs)

The hope is that by showing it enough examples, the AI will be capable of learning to reason, just by learning to predict the next step each time.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Procedure: train it with examples: (exercises, proofs)

The hope is that by showing it enough examples, the AI will be capable of learning to reason, just by learning to predict the next step each time.

Enough = sufficiently diverse and sufficiently numerous

 \rightarrow Limitation: lack of data

We have very few data available (especially formal).

We have very few data available (especially formal).

Question

Let a > 0 and b > 0, such that ab = b - a, show that $\frac{a}{b} + \frac{b}{a} - ab = 2$

informal language

theorem Exercice_1
(a b : R)
(ho: a > 0)
(h1: b > 0)
(h2: a*b = b-a) :
a/b+b/a-2*(a*b) = 2 :=
begin
sorry,
end

formal language

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

We have very few data available (especially formal).

Question
Let $a > 0$ and $b > 0$, such that $ab = b - a$, show that
$\frac{a}{b} + \frac{b}{a} - ab = 2$

informal language

theorem Exercice_1 (a b : ℝ)
(h₀: a > 0)
(h1: b > 0)
(h2: a*b = b-a) :
a/b+b/a-2*(a*b) = 2 :=
begin
sorry,
end

formal language

Lean: ${\sim}150{,}000$ theorems. A large dataset for humans, a small dataset for Al.

We have very few data available (especially formal).

Question
Let $a > 0$ and $b > 0$, such that $ab = b - a$, show that
$\frac{a}{b} + \frac{b}{a} - ab = 2$

informal language

theorem Evercice 1
(ab:R)
$(h_0: a > 0)$
$(h_1: b > 0)$
$(h_2: a*b = b-a):$
a/b+b/a-2*(a*b) = 2 :=
heain
begin
sorry,
end

formal language

Lean: ${\sim}150{,}000$ theorems. A large dataset for humans, a small dataset for Al. ${\rightarrow}$ Limit of the approach

We have very few data available (especially formal).

Question
Let $a > 0$ and $b > 0$, such that $ab = b - a$, show that
$\frac{a}{b} + \frac{b}{a} - ab = 2$

informal language

```
theorem Exercice_1
(a b : R)
(ho: a > 0)
(h1: b > 0)
(h2: a*b = b-a) :
a/b+b/a-2*(a*b) = 2 :=
begin
sorry,
end
```

formal language

Lean: ${\sim}150{,}000$ theorems. A large dataset for humans, a small dataset for Al. ${\rightarrow}$ Limit of the approach

LeanLlama F. Glöckle et al. 2023 (Temperature-scaled large language models for Lean proofstep prediction)

Second approach: treat mathematics as a game (Lample, Lachaux, Lavril, Martinet, Hayat, Ebner, Rodriguez, Lacroix, 2022); (Gloeckle, Limperg, Synnaeve, Hayat, 2024)

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Second approach: treat mathematics as a game (Lample, Lachaux, Lavril, Martinet, Hayat, Ebner, Rodriguez, Lacroix, 2022); (Gloeckle, Limperg, Synnaeve, Hayat, 2024)

Deepmind (2017)

Second approach: treat mathematics as a game (Lample, Lachaux, Lavril, Martinet, Hayat, Ebner, Rodriguez, Lacroix, 2022); (Gloeckle, Limperg, Synnaeve, Hayat, 2024)

Deepmind (2017)

You won !

Main difficulties:

- two-player game vs. solo against a goal.
- In chess, when you play a move you always have a single game. In mathematics: one statement → multiple statements
- Difficult in mathematics to know automatically in the middle of a proof what the probability of succeeding is.
- The number of possibilities is much, much larger in mathematics

You won !

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Main difficulties:

- two-player game vs. solo against a goal.
- In chess, when you play a move you always have a single game. In mathematics: one statement → multiple statements
- Difficult in mathematics to know automatically in the middle of a proof what the probability of succeeding is.
- The number of possibilities is much, much larger in mathematics

Much more difficult than chess

You won !

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

In practice

- Two transformers: P_{θ} which predicts a tactic, c_{θ} which predicts the difficulty of proving a statement (goal, hypothesis, etc.).
- An intelligent proof search that sees the proof as a tree and combines P_{θ} , c_{θ} and a tree expansion.

• Continuously training of P_{θ} and c_{θ} on successful proofs

Results

Exercises at the undergraduate level...

...30 to 60% of middle school / high school exercises up to Olympiad level...

...and a few exercises from the International Mathematical Olympiads

・ロト ・ 目 ・ ・ ヨト ・ ヨ ・ うへつ

Results

Exercises at the undergraduate level...

...30 to 60% of middle school / high school exercises up to Olympiad level...

...and a few exercises from the International Mathematical Olympiads

Exercise

Show that for all $n \in \mathbb{N}$, 7 does not divide $2^n + 1$.

Results

Exercises at the undergraduate level...

 $\dots 30$ to 60% of middle school / high school exercises up to Olympiad level...

...and a few exercises from the International Mathematical Olympiads

Exercise

Show that for all $n \in \mathbb{N}$, 7 does not divide $2^n + 1$.

(Lample, Lachaux, Lavril, Martinet, Hayat, Ebner, Rodriguez, Lacroix, 2022)
AI for Mathematical Proof

Results

Exercises at the undergraduate level...

 $\dots 30$ to 60% of middle school / high school exercises up to Olympiad level...

...and a few exercises from the International Mathematical Olympiads

Exercise

Show that for all $n \in \mathbb{N}$, 7 does not divide $2^n + 1$.

(Lample, Lachaux, Lavril, Martinet, Hayat, Ebner, Rodriguez, Lacroix, 2022)

Unexpected outcomes

French AI start-up Mistral reaches unicorn status, marking its place as Europe's rival to OpenAI

Mistral's value has increased more than sevenfold in six months. It raised nearly \leq 500 million in November and \leq 105 million in its first funding round.

(Euronews 11/12/2023)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Solo game \implies still need for a good base supervised model P_{θ} (trained on data)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Solo game \implies still need for a good base supervised model P_{θ} (trained on data)

How to get more formal data ? One idea: train a model to translate from "natural language proof" to formal and verifiable data.

informal language

theorem Exercice_1			
(a b : R)			
(h₀: a > 0)			
(h1: b > 0)			
(h₂: a*b = b−a) :			
a/b+b/a-2*(a*b) = 2 :=			
begin			
sorry,			
end			

formal language

Solo game \implies still need for a good base supervised model P_{θ} (trained on data)

How to get more formal data ? One idea: train a model to translate from "natural language proof" to formal and verifiable data.

informal language

theorem Exercice_1			
(a b : ℝ)			
(h₀: a > 0)			
(h1: b > 0)			
(h2: a*b = b-a) :			
a/b+b/a-2*(a*b) = 2 :=			
begin			
sorry,			
end			

formal language

ъ

Autoformalization: both a means and an end:

- a means: more data to train AI models
- an end: checking the correctness of new mathematical theories,

Solo game \implies still need for a good base supervised model (trained on data)

How to get more formal data ? One idea: train a model to translate from "natural language proof" to formal and verifiable data.

Autoformalization: both a means and an end:

- a means: more data to train AI models
- an end: checking the correctness of new mathematical theories

Example of contradictory papers:

Schumacher, G., & Tsuji, H. (2004). Quasi-projectivity of moduli spaces of polarized varieties. Annals of mathematics, 597-639.

Kollár, J. (2006). Non-quasi-projective moduli spaces. Annals of mathematics, 1077-1096.

Today, very good statement autoformalization for olympiad style exercise, challenges for proof autoformalization, very far from research level mathematics (e.g. arxiv).

AI and maths

A fast-moving field

2019	2022	2024
$(r_1 - r_2)r_3 = r_1r_3 - r_2r_3$	$\forall n \in \mathbb{N}, \ \neg 7 \mid 2^n + 1$	Silver medal Inter. Math. Olymp.
HOList, LPLG	GPT-f, Thor/DSP, HTPS	Llemma, LeanDojo, InternML, DeepSeek, ABEL, AlphaProof, etc.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

AI and maths

A fast-moving field

2019	2022	2024
$(r_1 - r_2)r_3 = r_1r_3 - r_2r_3$	$\forall n \in \mathbb{N}, \ \neg 7 \mid 2^n + 1$	Silver medal Inter. Math. Olymp.
HOList, LPLG	GPT-f, Thor/DSP, HTPS	Llemma, LeanDojo, InternML, DeepSeek, ABEL, AlphaProof, etc.

New approaches post 2024: end-to-end RL and reasoning models (o1, o3, R1, etc.).

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Conclusion

- Al methods are already useful in the practice of mathematics
- AI and LLM for proving theorems is only beginning, and there are many ideas... and much to do.
- LLMs will not be the final AI tool which will be used to mathematics.
- The practice of mathematics will probably change... and that's okay.

Al will not replace mathematicians but will instead enhance them.

Conclusion

Thank you for your attention

