
Adventures with an Automatic Prover

Jeffrey Shallit

School of Computer Science
University of Waterloo
Waterloo, ON N2L 3G1

Canada
shallit@uwaterloo.ca

https://cs.uwaterloo.ca/~shallit/

Davis Centre, U. Waterloo
Jeffrey Shallit Adventures with Automatic Prover SLMath Joint Workshop 1 / 52

The familiar research methodology for mathematics

Advantages:

it’s familiar

it’s worked for
centuries

Disadvantages:

need to be clever

might be preposterously difficult if
sought description is complicated

Jeffrey Shallit Adventures with Automatic Prover SLMath Joint Workshop 2 / 52

Using a proof assistant

Jeffrey Shallit Adventures with Automatic Prover SLMath Joint Workshop 3 / 52

A new (?) research methodology for mathematics

Advantages:

you don’t need to be very
clever

sometimes it can even
generate the “right”
conjecture, automatically

Disadvantages:

decision procedures don’t
exist for most of
mathematics

sometimes they take
ridiculous amounts of
space and time

proof may not give much
insight as to “why”

Jeffrey Shallit Adventures with Automatic Prover SLMath Joint Workshop 4 / 52

Hilbert’s dreams

David Hilbert
(1862–1943)

German mathematician.

To show that every true
statement is provable (killed by
Gödel)

To provide an algorithm to
decide if a given statement is
provable (killed by Turing)

Nevertheless, some subclasses
of problems are decidable —
i.e., an algorithm exists
guaranteed to prove or disprove
any statement in the class

Jeffrey Shallit Adventures with Automatic Prover SLMath Joint Workshop 5 / 52

A decidable theory: Presburger arithmetic

Let 〈N,+〉 denote the set of all first-order logical formulas in the
natural numbers with addition.

Here we are allowed to use any number of variables, logical
connectives like “and”, “or”, “not”, etc., addition of natural numbers,
comparison of natural numbers, and quantifiers like “there exists” (∃)
and “for all” (∀).

This is sometimes called Presburger arithmetic.

Example: ∀x , y x + y = y + x . What does this assert?

Jeffrey Shallit Adventures with Automatic Prover SLMath Joint Workshop 6 / 52

Another example: the Chicken McNuggets problem

A famous problem in elementary arithmetic books:

At McDonald’s, Chicken McNuggets are available in packs of either 6, 9,
or 20 nuggets. What is the largest number of McNuggets that one cannot
purchase?

Jeffrey Shallit Adventures with Automatic Prover SLMath Joint Workshop 7 / 52

Presburger arithmetic

In Presburger arithmetic we can express the “Chicken McNuggets
theorem” that 43 is the largest integer that cannot be represented as a
non-negative integer linear combination of 6, 9, and 20, as follows:

(∀n > 43 ∃x , y , z ≥ 0 such that n = 6x + 9y + 20z) ∧
¬(∃x , y , z ≥ 0 such that 43 = 6x + 9y + 20z).

Here, of course, “6x” is shorthand for the expression
“x + x + x + x + x + x”, and similarly for 9y and 20z .

Jeffrey Shallit Adventures with Automatic Prover SLMath Joint Workshop 8 / 52

Presburger’s theorem

Mojżesz Presburger
(1904–1943)

Murdered by the Nazis.

Presburger proved that
FO(N,+) is decidable: that is,
there exists an algorithm that,
given a sentence in 〈N,+〉 with
no free variables, will decide its
truth.

He used quantifier elimination.

His master’s thesis was one of
the most influential of all time
in mathematics.

Jeffrey Shallit Adventures with Automatic Prover SLMath Joint Workshop 9 / 52

Büchi’s proof of Presburger’s theorem

Julius Richard Büchi
(1924–1984)
Swiss logician

Büchi found a completely dif-
ferent proof of Presburger’s
theorem.

Numbers are represented in
base-k for some integer k ≥ 2.

And logical formulas are imple-
mented by means of finite au-
tomata.

Jeffrey Shallit Adventures with Automatic Prover SLMath Joint Workshop 10 / 52

What are finite automata?

Finite automata are a model of a very simple kind of computing machine,
having only finite memory (called the “states”).

Their inputs are strings of symbols (“words”) chosen from a finite
alphabet Σ.

As each letter is processed from left to right, the automaton looks up in a
table (the “transition function”) which state to go to, based on the
current state and current input letter.

Certain states are called “final”. If, after reading the entire input, the
automaton ends in a final state, the input is accepted ; otherwise it is
rejected . This is the basic automaton model.

The set of all accepted strings is called a regular language.

Jeffrey Shallit Adventures with Automatic Prover SLMath Joint Workshop 11 / 52

Example of an automaton

Here is an automaton accepting those words over {1, 2, 3} whose first
symbol is the same as the last symbol:

start

1

1

22

3

3

1

1'
2,3

2

2'
1,3

3

3'
1,2

1

2,3

2

1,3

3

1,2

Double circle: indicates final state.
Jeffrey Shallit Adventures with Automatic Prover SLMath Joint Workshop 12 / 52

An automaton can also compute a finite-range function

This automaton computes n modulo 3, where n is expressed in base 2:

0

0

11
1

20
0

1

Here the output associated with each state is the number of that state.
The meaning of state i is “number represented in binary by the input seen
so far is congruent to i (mod 3)”.

Jeffrey Shallit Adventures with Automatic Prover SLMath Joint Workshop 13 / 52

What is Walnut?

Walnut is a free, open-source theorem prover that is based on an
extension of Presburger arithmetic.

It can provide rigorous proofs or disproofs of certain claims stated in
first-order logic.

It is not a general-purpose proof assistant.

It has been used in over 100 published papers and books to verify existing
results (often replacing pages and pages of tedious inductions), correct
false published results, solve previously-unproved conjectures, and prove
new results.

For some theorems, the Walnut proofs are the only known ones.

Jeffrey Shallit Adventures with Automatic Prover SLMath Joint Workshop 14 / 52

Example: Chicken McNuggets in Walnut

(∀n > 43 ∃x , y , z ≥ 0 such that n = 6x + 9y + 20z) ∧
¬(∃x , y , z ≥ 0 such that 43 = 6x + 9y + 20z).

eval chicken "(A n (n>43) => E x,y,z n=6*x+9*y+20*z) &

(~E x,y,z 43=6*x+9*y+20*z)";

computed ~:1 states - 25ms

computed ~:2 states - 2ms

TRUE

Jeffrey Shallit Adventures with Automatic Prover SLMath Joint Workshop 15 / 52

Going beyond Presburger

With a small extension to Presburger’s logical theory—adding the
function Vk(n), the largest power of k dividing n—we still get a
decidable theory!

And now we can also verify statements that are much more
interesting!

Ideas are based on a beautiful logical theory due to Büchi and
Bruyère-Hansel-Michaux-Villemaire, called Büchi arithmetic.

Can be extended to numeration systems other than base k , such as
Fibonacci (Zeckendorf) representation (theory due to Christiane
Frougny and her co-authors)

Also implemented in the free software Walnut, originally designed by
Hamoon Mousavi

Many old results from the literature can been verified with this
technique, and many new ones can be proved.

Jeffrey Shallit Adventures with Automatic Prover SLMath Joint Workshop 16 / 52

How does the decision procedure work?

Walnut compiles a first-order statement into a series of basic operations
on finite automata, which are then executed.

Basic operations include: Boolean operations on languages (union,
intersection, negation, etc.), addition, projection of coordinates
(corresponding to ∃), etc.

If an expression contains free variables, the automaton constructed accepts
those inputs corresponding to tuples of integers making the expression
evaluate to TRUE.

If an expression contains no free variables, the resulting automaton is a
single state, with no inputs, that either accepts everything (TRUE) or
rejects everything (FALSE).

Jeffrey Shallit Adventures with Automatic Prover SLMath Joint Workshop 17 / 52

The bad news and the good news

The worst-case running time of the automaton-based algorithm above
is bounded above by

22..
.2p(N)

,

where the number of 2’s in the exponent is equal to the number of
quantifier alternations, p is a polynomial, and N is the size of the
logical formula.

Despite the awful worst-case bound on running time, an
implementation often succeeds in verifying statements in the theory in
a reasonable amount of time and space.

Jeffrey Shallit Adventures with Automatic Prover SLMath Joint Workshop 18 / 52

What can we prove things about?

One large class of objects: the class of k-automatic sequences

These are infinite sequences

a = a0a1a2 · · ·

taking their values in a finite set, and computed by a finite-state
machine (automaton).

The automaton is given n as input, written in base k ≥ 2, and an
equals the output provided by the last state reached.

Examples include the Thue-Morse sequence, the Rudin-Shapiro
sequence, the infinite binary Fibonacci word, Sturmian words of
quadratic slope, the paperfolding words, etc.

Jeffrey Shallit Adventures with Automatic Prover SLMath Joint Workshop 19 / 52

The canonical example of automatic sequence: the
Thue-Morse sequence

By determining the parity of the number of 1’s in the base-2 expansion of
the input n, this automaton generates the Thue-Morse sequence

t = (tn)n≥0 = 0110100110010110 · · · ,

a famous sequence with many amazing properties.

Jeffrey Shallit Adventures with Automatic Prover SLMath Joint Workshop 20 / 52

A result of Currie and Saari

A word is bordered if it can be expressed as uvu for words u, v with u
nonempty, and otherwise it is unbordered.

Example: the English word ionization has border ion.

James Currie and Kalle Saari proved that if n 6≡ 1 (mod 6) then t has
an unbordered factor of length n.

Let’s prove this with Walnut.

Jeffrey Shallit Adventures with Automatic Prover SLMath Joint Workshop 21 / 52

A result of Currie and Saari

i o ni i z a t i o n

i i+ j − 1 i+ n− j i+ n− 1

· · · · · ·

j j

We can express the property that the factor of t of length n, beginning at
position i , has a border of length j , as follows:

Bordered(i , j , n) := ∀k (k < j) =⇒ ti+k = ti+n−j+k .

We can express the assertion that t[i ..i + n − 1] is an unbordered factor of
t as follows:

Unbordered(i , n) := ∀j (j ≥ 1 ∧ j ≤ n/2) =⇒ ¬Bordered(i , j , n).

Jeffrey Shallit Adventures with Automatic Prover SLMath Joint Workshop 22 / 52

Unbordered factors

We can express the assertion that t has an unbordered factor of length n
as follows:

Currie(n) := ∃i Unbordered(i , n).

Let’s translate all this to Walnut:

Bordered(i , j , n) := ∀k (k < j) =⇒ ti+k = ti+n−j+k .

def bordered "A k (k<j) => T[i+k]=T[(i+n+k)-j]":

Unbordered(i , n) := ∀j (j ≥ 1 ∧ j ≤ n/2) =⇒ ¬Bordered(i , j , n).

def unbordered "A j (j>=1 & j<=n/2) => ~$bordered(i,j,n)":

Currie(n) := ∃i Unbordered(i , n).

def currie "E i $unbordered(i,n)":

Jeffrey Shallit Adventures with Automatic Prover SLMath Joint Workshop 23 / 52

Unbordered factors

Now we can verify the Currie-Saari theorem: if n 6≡ 1 (mod 6), then t has
an unbordered factor of length n:

[Walnut]$ eval checkcs "A n (1!=n-6*(n/6)) => $currie(n)";

TRUE

Walnut returns TRUE. The theorem is proved!

However, we can do much more!

The lengths n 6≡ 1 (mod 6) are not the only lengths with an unbordered
factor.

For example,
0011010010110100110010110100101

is an unbordered factor of t of length 31.

Jeffrey Shallit Adventures with Automatic Prover SLMath Joint Workshop 24 / 52

Unbordered factors: Walnut tells you the theorem

Walnut compiles our currie definition into a 6-state automaton that
recognizes the base-2 representation of all n for which t has a length-n
unbordered factor.

0

0

11

2
0

3

1

0

1

0

41 50, 1

0, 1

So (by inspection of this automaton) we have improved the Currie-Saari
result as follows:

Theorem. The Thue-Morse sequence t has an unbordered factor of length
n if and only if (n)2 6∈ 1(01∗0)∗10∗1.

Jeffrey Shallit Adventures with Automatic Prover SLMath Joint Workshop 25 / 52

Finding an object with a given property ‘automatically’

We just saw an example of proving (and improving) a result from the
literature.

Sometimes we can do even more: we can merely state the properties we
want the desired object to have, and then find it “automatically”.

Jeffrey Shallit Adventures with Automatic Prover SLMath Joint Workshop 26 / 52

The best possible (?) research methodology

Advantages:

no work at all: just state the desired properties of the object, and the
program finds an example and proves its correctness.

Disadvantages:

Having to explain why you should be paid for something that easy!

Jeffrey Shallit Adventures with Automatic Prover SLMath Joint Workshop 27 / 52

Thue’s problem

Probably the most famous problem in
combinatorics on words: is there an
infinite word over a 3-letter alphabet
containing no two consecutive identical
nonempty blocks?

Two consecutive identical blocks are
called a square. Example: murmur.

First posed (and solved) by Thue in
1906.

Can’t do it over a 2-letter alphabet:
every word of length ≥ 4 over {0, 1}
contains a square.

Axel Thue (1863–1922)
Norwegian

mathematician

Jeffrey Shallit Adventures with Automatic Prover SLMath Joint Workshop 28 / 52

Solving Thue’s problem

Two steps:

1 Identify a candidate infinite word.

2 Prove that the candidate word avoids squares.

A backtracking search quickly finds very long finite words over {0, 1, 2}
avoiding squares.

We’d like an infinite word where the avoidance property is easy to prove.

Let us guess that such a word a0a1a2 · · · could be generated by a finite
automaton reading inputs n in base 2.

Jeffrey Shallit Adventures with Automatic Prover SLMath Joint Workshop 29 / 52

Finding a candidate automaton

There is an algorithm that, given a finite word a0a1 · · · an−1, finds a
smallest automaton whose outputs are consistent with that word.

We can then do a breadth-first search (BFS) of the space of all words over
{0, 1, 2}, keeping only the squarefree words, and making sure that they
can be generated by an automaton of at most t states.

If t = 2, 3 then the search terminates with no automaton found.

Jeffrey Shallit Adventures with Automatic Prover SLMath Joint Workshop 30 / 52

A candidate is found!

But for t = 4 we quickly hit on the following candidate automaton TA.

It generates the following sequence:

0120210121020120210201210120210121020121012021020120210121 · · ·

which certainly appears to have no squares in it...
But we need a proof...

Jeffrey Shallit Adventures with Automatic Prover SLMath Joint Workshop 31 / 52

Proving that the candidate works

eval squarefree "~E i,n n>=1 & A t (t<n)

=> TA[i+t]=TA[i+n+t]":

And here’s the output:

And so we have found an infinite squarefree sequence and proved it correct!

Jeffrey Shallit Adventures with Automatic Prover SLMath Joint Workshop 32 / 52

Application: Additive number theory

Let S ⊆ N be a subset of the natural numbers.

Additive number theory is concerned with the following kinds of questions:

1 What numbers can be written as the sum of k numbers chosen from
S? (Distinct, or not necessarily distinct; exactly k or at most k)

2 Can all elements of N be written in that way?

3 Can all sufficiently large elements be written in that way?

These are all first-order statements, and so Walnut can solve all the basic
problems of additive number theory for automatic sequences.

Jeffrey Shallit Adventures with Automatic Prover SLMath Joint Workshop 33 / 52

Additive number theory

For example, consider the numbers

S = {1, 2, 4, 7, 8, 11, 13, 14, 16, 19, 21, 22, . . .},

the so-called odious numbers (those i for which ti = 1).

Theorem. Every natural number n > 15 is the sum of three distinct
odious numbers.

Proof. We use Walnut:

eval sum3do "A n (n>15) => E i,j,k (i!=j) & (i!=k) &

(j!=k) & (n=i+j+k) & (T[i]=@1) & (T[j]=@1) & (T[k]=@1)":

And Walnut returns TRUE.

Jeffrey Shallit Adventures with Automatic Prover SLMath Joint Workshop 34 / 52

Linear representations

The automaton approach entails additional “non-logic” techniques; for
example, enumeration.

Suppose we have an automaton computing a boolean function f of two
arguments i and n, and we want to compute the number of i for which
f (i , n) is true. Call this g(n).

Then, directly from the automaton, we can find a linear representation for
g as follows:

g(n) = v · γ(x) · w ,

where

(a) v is a 1× t vector;

(b) w is a t × 1 vector;

(c) γ is a t × t-integer-matrix-valued morphism;

(d) x is the base-k representation of n.

Jeffrey Shallit Adventures with Automatic Prover SLMath Joint Workshop 35 / 52

Linear representations

And given two linear representations, we can decide if they represent the
same function.

So we can test many kinds of conjectures about the number of
representations.

Example: count number g(n) of unbordered factors of length n of t.

Can’t just count the number of i for which t[i ..i + n − 1] is unbordered,
because the same unbordered factor appears infinitely often in t.

Solution: count the number of i for which t[i ..i + n− 1] is unbordered and
t[i ..i + n − 1] never appeared at an earlier position of t.

Jeffrey Shallit Adventures with Automatic Prover SLMath Joint Workshop 36 / 52

Linear representations

Let us count the novel unbordered factors of t: those that never appeared
before in t.

def eqfac "A t (t<n) => T[i+t]=T[j+t]":

def novel "A j $eqfac(i,j,n) => j>=i":

def unbord n "$novel(i,n) & $unbordered(i,n)":

This produces a linear representation for g(n) of rank 22.
From this linear representation we can, for example, prove that there are

1

3
(2n−1 + 4(−1)n)

unbordered factors of t of length 2n − 1, for n ≥ 3.
Idea involves looking at zeros of characteristic polynomial of γ(1).

Jeffrey Shallit Adventures with Automatic Prover SLMath Joint Workshop 37 / 52

Dombi’s conjecture

Let r(k ,A, n) be the number of representations of n as a sum of k
elements chosen from a set A.

In 2002 Gergely Dombi stated a conjecture in additive number theory:
there is no subset A ⊆ N with N \ A infinite and r(3,A, n) eventually
increasing.

I found a counterexample to Dombi’s conjecture, as follows:

Guess that there is a set A accepted by a finite automaton.

Find a candidate A via BFS with small automaton description.

Using Walnut, compute linear representations for r(3,A, n) and
r(3,A, n + 1).

Jeffrey Shallit Adventures with Automatic Prover SLMath Joint Workshop 38 / 52

Dombi’s conjecture

Compute a linear representation for r(3,A, n + 1)− r(3,A, n).

From empirical data, guess a simple expression En for this difference.

Form another linear representation for En directly, and then check that it is
indeed the same as that for r(3,A, n + 1)− r(3,A, n).

Using En, prove that r(3,A, n + 1)− r(3,A, n) is always positive.

Jeffrey Shallit Adventures with Automatic Prover SLMath Joint Workshop 39 / 52

How can we rely on Walnut’s results?

In general, there doesn’t seem to be any way to get a short certificate of
correctness that one can verify.

For many calculations, the only way to check them seems to be to run
them again.

Walnut consists of two parts: a parser that takes the first-order statement,
and compiles it into a short list of simple basic operations on finite
automata.

And an automata engine that performs those simple basic operations:
Cartesian product of automata, projection of transitions to smaller
alphabet, subset construction, minimization, etc.

It seems likely both parts are capable of formal verification.

Jeffrey Shallit Adventures with Automatic Prover SLMath Joint Workshop 40 / 52

How can we rely on Walnut’s results?

There are already libraries for automata theory in Isabelle, for example:
https://www.isa-afp.org/entries/CAVA_Automata.html.

So it should be possible to formally verify the code, or at least large parts
of it.

This would allow integration of Walnut proofs with existing proof
assistants.

Looking for collaborators!

Jeffrey Shallit Adventures with Automatic Prover SLMath Joint Workshop 41 / 52

https://www.isa-afp.org/entries/CAVA_Automata.html

Self verification and construction

Walnut’s basic algorithm to compute the automaton can sometimes take a
quite unreasonable amount of time and space.

For example, consider

def trib_eqfac "?msd_trib A t (t<n) => TR[i+t]=TR[j+t]":

which generates an automaton testing whether
tr[i ..i + n − 1] = tr[j ..j + n − 1]. Here tr is the Tribonacci word, fixed
point of 0→ 01, 1→ 02, 2→ 0.

This Walnut command generates an intermediate automaton with more
than 250,000,000 states, even though the final result has only 26 states.

The ‘eqfac’ predicate is one of the most basic ones we need in order to
understand a sequence. So we really need to be able to compute this
efficiently.

A new idea: generate the automaton “from the ground up” using
Angluin’s learning algorithm and self-verification.

Jeffrey Shallit Adventures with Automatic Prover SLMath Joint Workshop 42 / 52

New ideas

Angluin’s algorithm learns the automaton for a regular language L with the
help of a “teacher”.

When presented with a word w , the teacher says whether or not w ∈ L.

One can also present the teacher with a candidate automaton A for L and
ask if it is correct. If it is correct, you are done. Otherwise, the teacher
gives a counterexample, a member of (L(A) \ L) ∪ (L \ L(A)).

Jeffrey Shallit Adventures with Automatic Prover SLMath Joint Workshop 43 / 52

New ideas

As an analogy, consider building a house out of a pile of rubble with the
help of a master builder.

At every stage you can pick up an item,
like a brick, and ask if it goes in some
specific place. If it does, you can put
the brick there.

Furthermore, you can point to what you
have built so far and ask “Is it a house
yet?” If so, you are done. If not, the
master builder says something like, “No,
it is missing part of the roof.”

Jeffrey Shallit Adventures with Automatic Prover SLMath Joint Workshop 44 / 52

New ideas

To generate the ‘eqfac’ predicate for a given automatic sequence, we can
use Walnut to be the teacher! It can teach itself what the right
automaton is.

Here the language is

L = {(i , j , n) : X [i ..i + n − 1] = X [j ..j + n − 1]}.

When presented with a specific triple q like (23, 45, 56), we can evaluate
the predicate

(t<56) & X[23+t]!=X[45+t]

with Walnut and get an automaton out of it. We can then search this
automaton with breadth-first search to see if it accepts anything. It
accepts something iff q 6∈ L. So Walnut can answer membership queries.

Jeffrey Shallit Adventures with Automatic Prover SLMath Joint Workshop 45 / 52

New ideas

Now suppose we have a given candidate automaton A, and we wish to
check if it is correct.

We claim ‘eqfac’ is self-verifying (aka “self-reducible”): A computes
‘eqfac’ correctly if and only if both of the following hold:

(i) ∀i , j A(i , j , 0);

(ii) ∀i , j , n A(i , j , n + 1) ⇐⇒ (A(i , j , n) ∧ X [i + n] = X [j + n]).

We can check these conditions with Walnut.

And if either condition fails, Walnut can give us the smallest
counterexample.

Theorem. Using Angluin’s algorithm we can construct an automaton for
the ‘eqfac’ predicate in time polynomial in the number of states of the
original automaton X and the minimal ‘eqfac’ automaton.

Jeffrey Shallit Adventures with Automatic Prover SLMath Joint Workshop 46 / 52

Future challenges

We saw that direct translation of the Walnut query

def trib_eqfac "?msd_trib A t (t<n) => TR[i+t]=TR[j+t]":

results in an intermediate automaton of more than 250,000,000 states
after days of computation, although the final result has only 26 states.
By contrast, the equivalent statement

def trib_eqfac_2 "?msd_trib A u,v (u>=i & u<i+n & u+j=v+i)

=> TR[u]=TR[v]":

results in an intermediate of automaton of 384,498 states (and a final
result of 26 states), in 30 seconds of CPU time.

This and the previous trib eqfac differ only by some substitution of
variables.

Why do they have such different behavior?

Jeffrey Shallit Adventures with Automatic Prover SLMath Joint Workshop 47 / 52

Connections with the rest of this conference

Can we predict which kinds of queries might take inordinate amounts
of time and space? And if so “automatically” rewrite them into
equivalent statements that don’t?

Machine learning: use of Angluin’s algorithm.

Using a SAT solver: we found minimal automata for computing the
i ’th bit of ϕ = (1 +

√
5)/2, the golden ratio, by solving a more

general problem and then specializing to a specific class of inputs.

We used a MinDFA solver called DFA-Inductor to generate SAT
encodings, which are then passed to the CaDiCaL SAT solver.

Integration with tools like LEAN to prove correctness of output.

Auto-formalization: translate natural language specification directly
into first-order queries Walnut can process.

Looking for collaborators!

Jeffrey Shallit Adventures with Automatic Prover SLMath Joint Workshop 48 / 52

Summing up

Decision procedures are rare but can be quite useful in limited
domains.

The decision procedures can be combined with existing techniques to
resolve conjectures and simplify proofs.

Even nonelementary worst-case running times may not reflect running
time in practice! Don’t be scared to try to implement them.

Jeffrey Shallit Adventures with Automatic Prover SLMath Joint Workshop 49 / 52

Walnut demo and tutorial

4 PM in Simons Institute Room 116 today (Thursday April 10).

I would be glad to talk about Walnut any time!

Walnut tutorial at
https://cs.uwaterloo.ca/~shallit/walnut-tutorial.html

Jeffrey Shallit Adventures with Automatic Prover SLMath Joint Workshop 50 / 52

https://cs.uwaterloo.ca/~shallit/walnut-tutorial.html

The Walnut community

The Walnut theorem-prover and documentation
is available at

https://cs.uwaterloo.ca/~shallit/walnut.html

There is also a Discord server at
https://discord.gg/c5wzTXhMzT.

Jeffrey Shallit Adventures with Automatic Prover SLMath Joint Workshop 51 / 52

https://cs.uwaterloo.ca/~shallit/walnut.html
https://discord.gg/c5wzTXhMzT

Limits to the approach

Consider the morphism a→ abcc, b → bcc, c → c .

The fixed point of this morphism is

s = abccbccccbccccccbccccccccb · · ·

It encodes, in the positions of the b’s, the characteristic sequence of
the squares.

So the first-order theory FO(N,+, n→ s[n]) is powerful enough to
express the assertion that “n is a square”

With that, one can express multiplication, and so it is undecidable.

Jeffrey Shallit Adventures with Automatic Prover SLMath Joint Workshop 52 / 52

