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Work-Depth Model

 Work = total number of operations
 Depth = the length of a longest chain of dependent operations

» Fast parallel algorithm = nearly linear work and polylog depth

N,
A



e Metric TSP
* Input: a complete graph graph G = (V,E,c) where Yu,v,w € V, C,, < Cpp+ Cypy
* Output: a min-cost Hamiltonian cycle

* Implicit input: the instance is implicitly defined as the metric completion of the underlying
graph G = (V,E,c)

* Output: a min-cost Eulerian multigraph of G
 APX-hard [Lampis’12]
» 1.5-approximation algorithm by [Christofide’76]
* 1.5 - 10/7{-36} approximation by [Karlin, Klein, Gharan’22]



Subtour Elimination LP

SE(G, &) =min ZC{“ VY {u,v)
s.t. Zy{uv}:Z VveV
Z y{u,v}>2 V(D,C-S,C«-V

ueS,v¢S -
0 < ypuoy <1 Vu,veV.

The optimal value of the SE coincides with the Held-Karp bound
The Held-Karp bound is defined based on the notion of 1-trees [Held and Karp’70]
The integrality gap of SE is conjectured to be 4/3 [Goemans’95]



k-ECSM: Given an undirected graph G = (V, E) with n nodes, m edges
and edge costs ¢ € RT,, find a minimum cost k-edge-connected

spanning multi-subgraph.

e LP relaxation:

Fact: Held-Karp Bound = LP value of SE = LP value of 2ECSM
Cunningham [via Monma, Munson, and Pulleyblank, 1990] and Goemans and Bertsimas [GB93]:



k-ECSM: Given an undirected graph G = (V, E) with n nodes, m edges
and edge costs ¢ € RT,, find a minimum cost k-edge-connected

spanning multi-subgraph.

e LP relaxation:

e Covering LP with €(2") constraints.

Goal: Compute a (1 + €)-approximate LP solution in nearly linear
work and polylog depth.




*Slides from Zhuan Khye Koh

Multiplicative Weights Update (MWU)

e Many MWU variants

MWU “compiles” KECSM into a sequence of mincut problems
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Multiplicative Weights Update (MWU)

e Many MWU variants [Luby Nisan '93

Konemann '07] [Fleischer '00] [Young '01
[Mahoney Rao Wang Zhang '16] ...

e We consider epoch-based MWU.

Plotkin Shmoys Tardos '95]

Young '14] [Allen-Zhu Orrec

(Garg

hia "15]

e In iteration t, let w(t) € RT, be the edge weights. Given a lower bound

)\ on the mincut and € > 0, define

Clt) .= {C cut : w(C) < (1 +¢)AL
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Multiplicative Weights Update (MWU)

e Many MWU variants

e We consider epoch-based MWU.

e In iteration t, let w(t) ¢ RY, be the edge weights. Given a lower bound
A on the mincut and € > 0, define

ClY) = {C cut : w(C) < (1+¢e)A}.

While C(*) £ (;
© Select cut(s) from C(*). an epoch

® Multiplicatively increase wt) along these cuts.

e A\ A(1+¢€) and a new epoch begins.
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Multiplicative Weights Update (MWU)

While C(Y) £ (:
©® Select cut(s) from C(9),

® Multiplicatively increase w't) along these
cuts.
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Multiplicative Weights Update (MWU)

While C(Y) £ (:
©® Select cut(s) from C(9),

® Multiplicatively increase w't) along these
cuts.

Sequential MWU: Select one cut from C(t)
— O(m/e?) iterations ’

Parallel MWU: Select all cuts from C(%)
— O(log(|C(®)])/e*) iterations

o [CD| < # (14 €)-mincuts = O(n?) [N
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Implementing MWU for k-ECSM LP

e Sequential MWU has a O(m/sz) time
implementation |Chekuri Quanrud "17].

e Parallel MWU incurs Q(n?) work, because
IC(Y)| = Q(n?) for some graphs.
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Implementing MWU for k-ECSM LP

e Sequential MWU has a O(m/sz) time
implementation

e Parallel MWU incurs Q(n?) work, because
IC(Y)| = Q(n?) for some graphs.

New Selection Rule

Let S = (S51,...,S¢) be a sequence of sets of cuts. In iteration t, select
Si(t) Nl

where i(t) is the smallest index such that S;;) N C) # 0.
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Implementing MWU for k-ECSM LP

e Sequential MWU has a O(m/sz) time
implementation

e Parallel MWU incurs Q(n?) work, because
IC(Y)| = Q(n?) for some graphs.

New Selection Rule

Let S = (S51,...,S¢) be a sequence of sets of cuts. In iteration t, select
Si(t) Nl

where i(t) is the smallest index such that S;;) N C) # 0.

o IfUL,S5;NCH =0 = CY) = (), then S is a core-sequence of the
epoch.
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Core-Sequence MWU

e Special cases:
» S=(51,...,5) where |5;| =1 for all i € [{] = sequential MWU.
» S =(C)) = parallel MWU.
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Core-Sequence MWU

e Special cases:
» S=(51,...,5) where |5;| =1 for all i € [{] = sequential MWU.
» S =(CY)) = parallel MWU.

Theorem [KWY’25]

If every epoch has a core-sequence of length < £, in which every set has
size < k, then core-sequence MWU returns a (1 + €)-appproximate

solution In P los( k
(1)
g

Iiterations.

e |ldeally, we want a short core-sequence consisting of small sets.
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Core-Sequence for the k-ECSM LP

Theorem [KWY’25]

For the k-ECSM LP, every epoch has a core-sequence of length O(log n),
in which every set has size O(n).

Theorem [KWY’25]

There is a parallel PTAS for the k-ECSM LP using O(m/e*) work and
O(1/e*) depth.

e 2-ECSM LP optimum = Held—Karp bound for metric TSP.

e Extends to the k-edge-connected spanning subgraph (k-ECSS) LP.
Using weight thresholding technique from [CHNSSY’22]



Combinatorial Tools

Def: A cut C k-respectsatree Tif |E(T)NC| =k

A 1-respecting cut in a tree

A 2-respecting cut in a tree



Combinatorial Tools

The Tree Packing Theorem: There is a set of O(log n) spanning trees [Karger'00]
such that every (1+eps)-mincut 1-or-2 respects some tree (cf. [CQ'17])

Def: A cut C k-respectsatree Tif |E(T)NC| =k

A 1-respecting cut in a tree A 2-respecting cut in a tree



Combinatorial Tools

The Tree Packing Theorem: There is a set of O(log n) spanning trees [Karger'00]
such that every (1+eps)-mincut 1-or-2 respects some tree (cf. [CQ'17])

Can be computed in nearly linear work and polylog depth [Geissmann and Gianinazzi'18]

Sauce: A Corollary of [Tutte’61][Nash-Williams’61]
Al2 L 75 < Ag

7 := The maximum number of disjoint spanning trees

A := The edge connectivity



Combinatorial Tools

The Tree Packing Theorem: There is a set of O(log n) spanning trees [Karger'00]
such that every (1+eps)-mincut 1-or-2 respects some tree

For Te T,
CY = {{el, e,} C E(T): w(cutr(e;,e,)) < (1+¢)- ,1}
While C(t) £ (: \

©® Select cut(s) from C(t). > an epoch = While C}f) + &
® Multiplicatively increase w(t) along these cuts.

Cl) = {C cut : wl(C) < (1+¢)A}.

1. Select pairs of tree edges from C}t)

® A< A(l+¢) and a new epoch begins. 2. Multiplicatively increase w'” along these cuts
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Goal for the inner loop:

O(n) work per iteration, O(1) iterations



Combinatorial Tools

The Tree Packing Theorem: There is a set of O(log n) spanning trees  [Karger0Q]
such that every (1+eps)-mincut 1-or-2 respects some tree

n2 work, 1 iteration if select all pairs

Cl) = {C cut : wl(C) < (14 )AL a

While C(®) £ \

CY = {{el,ez} E(T): w(cutr(e;,e,) < (1 +¢) -/1}

> anepoch =y while CY# @

©® Select cut(s) from C(t).

® Multiplicatively increase w{t) along these cuts.

e A\ < A(1+¢) and a new epoch begins.

1. Select pairs of tree edges from C}t)

2. Multiplicatively increase w® along these cuts

Goal for the inner loop:

O(n) work per iteration, O(1) iterations



Intuition: Select a representative/maximal set of cuts so that

Updating weights of these cuts = increase weights of every cut



Intuition: Select a representative/maximal set of cuts so that

Updating weights of these cuts = increase weights of every cut

This talk: assume T is a path and show ‘good’ core sequence exists

(In general, reduce to path via heavy/light decomposition [MN’20].)



T = path

1 3
( \ / Tree edge Non-tree edge
(B) (o) (E) (E) (a) O
A—8———) E/D (e)—r 7O N
2

4 1

w(cutr(ey, e,))



T = path

Tree edge Non-tree edge
@ H A

w(cuty(BC, DE)) =



T = path

1

3
/ Tree edge Non-tree edge
A wy@) @ H N ° O\/O
1
2
4 1

w(Cut(BC,DE)) = 14+3+1+4+2=7




T = path

1 3
{ \ / Tree edge Non-tree edge
() (=) O
wlz/@ © : ’ 1 ’ N
2
4 1

w(CUut{(BC,DE)) = 7
W(CUt{AB,FG) =1 +3+2+4+2=28




T = path

1 3
( \ / Tree edge Non-tree edge
(=) () e () () O
| : | 3 E/D = : ’ 1 ) \/O
2

4 1

W(CUtT(el, 62))
CY = { {e,e,} C E(T): w(cuty(e;,e,)) < (1+e¢)- z}

|G| < n?
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Lemma: Fix a node r in a path, if every small pair is r-crossing, then there are O(n) small pairs

0

r-crossing

v




Representation of all pairs

O

@

@

log n levels

@

O

O



Representation of all pairs

The recursion tree

) /Q\@
D¢ S

—/

Property: every pair of edges in T is mapped to the first node that splits it



Lemma 1: Fix a node r in a path, if every small pair is r-crossing, then there are O(n) small pairs

level I-1 @ @
At level i %—/\%3— G/ E%
54

51 S, 53
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At level |

Compute B, := US] where S] = the set of small pairs in j-th path

J
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level I-1 @ @
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At level |
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Feed B; tothe MWU framework to update weights along these cuts



Lemma 1: Fix a node r in a path, if every small pair is r-crossing, then there are O(n) small pairs

level I-1 @ @
At level i J\%}— G/ XQ—
54

51 S, 53

At level |

Compute B, := US] where SJ = the set of small pairs in j-th path

J
By Lemma1, |Bj|=) |S|=) 0n)=0®n)
J J
Feed B; to the MWU framework to update weights along these cuts

Repeat at level i-1 and so on (Blog s B10g .1, ---,By) 18 @good core sequence



Lemma: Fix a node r in a path, if every small pair is r-crossing, then there are O(n) small pairs

Proof:
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Lemma: Fix a node r in a path, if every small pair is r-crossing, then there are O(n) small pairs

Proof:

Define M, (r) e e e e

M,(f;» e) = w(cutr(f;, e)) fi




Lemma: Fix a node r in a path, if every small pair is r-crossing, then there are O(n) small pairs

Proof: define Q.
@ e es s eu Q(f-e) = 11T M(f,e) <(l+¢e)k
Q.(f-e) =0 else
f+
MI"

fo M/(f, e) = w(cuty(f, e)

f3

f4
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1
fo claim: Q avoids | — |0 <2n
f3 1
fa
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Lemma: Fix a node r in a path, if every small pair is r-crossing, then there are O(n) small pairs

@ e es s eu Q(f-e) = 11T M(f,e) <(l+¢e)k
Q.(f-e) =0 else
f+
1
fo claim: Q avoids | — |0| <2n
f3 1 claim: O can be computed
f4
;

ex(n, 1 ] ) <6n

number of probes in M,



Lemma: Fix a node r in a path, if every small pair is r-crossing, then there are O(n) small pairs

@ e es s eu Q(f-e) = 11T M(f,e) <(l+¢e)k
Q.(f-e) =0 else
f+
1
fo 1 claim: Q avoids | — |0| <2n
fa 1 proof: Suppose Q contains ; 1
f4 claim 2:

there is a small pair that does not cross r

contradiction



Proposition 2.2. For every pair of subsets X,Y C V, we have
o (Submodularity) fu,(X)+ fu(Y) > fu(XNY)+ fu,(XUY), and

o (Posi-modularity) fu(X)+ fu(Y) 2 fu(X \Y) + fu(Y \ X).



Claim 2: there is a small pair that does not cross r

[, 7, £ 2A(1 4+ ) > f(A) + f(B) > f(A\B) + f(B\A) (Posi-modularity)
1 | | -
2 AT B Therefore, min{f(A\B), f(B\A)} < (1 + ¢)4
€ T A :
A Contradiction!
B\A . - .
Recall Lemma: if every small pair is r-crossing,
g j? fiz : then there are O(n) small pairs
e + B
A\B
e, | A

-------------------------------------



Concluding Remark

» Core-seguence is generic

» Improve: 0(=) » 0(—)?
E E
* Solving KECSM with high accuracy?

* Extension to streaming and distributed algorithms? [MN’20]



