
Joint work with

Zhuan Khye Koh (Boston University)

Omri Weinstein (Hebrew University)

Approximating the Held-Karp Bound for
Metric TSP in Nearly Linear Work and
Polylogarithmic Depth

Sorrachai Yingchareonthawornchai (ETH Zürich)

20 March 2025
Data Structure and Optimization Reunion Workshop

Work-Depth Model
• Work = total number of operations

• Depth = the length of a longest chain of dependent operations

• Fast parallel algorithm = nearly linear work and polylog depth

• Metric TSP

• Input: a complete graph graph G = (V,E,c) where

• Output: a min-cost Hamiltonian cycle

• Implicit input: the instance is implicitly defined as the metric completion of the underlying
graph G = (V,E,c)

• Output: a min-cost Eulerian multigraph of G

• APX-hard [Lampis’12]

• 1.5-approximation algorithm by [Christofide’76]

• 1.5 - 10^{-36} approximation by [Karlin, Klein, Gharan’22]

∀u, v, w ∈ V, cuv ≤ cuw + cwv

Subtour Elimination LP

The optimal value of the SE coincides with the Held-Karp bound

The Held-Karp bound is defined based on the notion of 1-trees [Held and Karp’70]

The integrality gap of SE is conjectured to be 4/3 [Goemans’95]

Cunningham [via Monma, Munson, and Pulleyblank, 1990] and Goemans and Bertsimas [GB93]:

Fact: Held-Karp Bound = LP value of SE = LP value of 2ECSM

*Slides from Zhuan Khye Koh

MWU “compiles” kECSM into a sequence of mincut problems

*Slides from Zhuan Khye Koh

*Slides from Zhuan Khye Koh

*Slides from Zhuan Khye Koh

*Slides from Zhuan Khye Koh

*Slides from Zhuan Khye Koh

*Slides from Zhuan Khye Koh

*Slides from Zhuan Khye Koh

*Slides from Zhuan Khye Koh

[KWY’25]

*Slides from Zhuan Khye Koh

[KWY’25]

[KWY’25]

[KWY’25]

*Slides from Zhuan Khye Koh

Using weight thresholding technique from [CHNSSY’22]

Combinatorial Tools

|E(T) ∩ C | = kA cut C k-respects a tree T ifDef:

 A 1-respecting cut in a tree A 2-respecting cut in a tree

Combinatorial Tools
The Tree Packing Theorem: There is a set of O(log n) spanning trees  
 such that every (1+eps)-mincut 1-or-2 respects some tree

[Karger’00]

|E(T) ∩ C | = kA cut C k-respects a tree T ifDef:

 A 1-respecting cut in a tree A 2-respecting cut in a tree

(cf. [CQ’17])

Combinatorial Tools
The Tree Packing Theorem: There is a set of O(log n) spanning trees  
 such that every (1+eps)-mincut 1-or-2 respects some tree

[Karger’00]

Can be computed in nearly linear work and polylog depth [Geissmann and Gianinazzi'18]

(cf. [CQ’17])

A Corollary of [Tutte’61][Nash-Williams’61]Sauce:

τG := The maximum number of disjoint spanning trees
λG := The edge connectivity

λG /2 ≤ τG ≤ λG

Combinatorial Tools
The Tree Packing Theorem: There is a set of O(log n) spanning trees  
 such that every (1+eps)-mincut 1-or-2 respects some tree

C(t)
T := {{e1, e2} ⊆ E(T) : w(cutT(e1, e2)) < (1 + ε) ⋅ λ}

For T ∈ 𝒯,

While C(t)
T ≠ ∅

1. Select pairs of tree edges from C(t)
T

2. Multiplicatively increase along these cuts w(t)

Goal for the inner loop:

 work per iteration, iterations
Õ(n) Õ(1)

[Karger’00]

Combinatorial Tools
The Tree Packing Theorem: There is a set of O(log n) spanning trees  
 such that every (1+eps)-mincut 1-or-2 respects some tree

C(t)
T := {{e1, e2} ⊆ E(T) : w(cutT(e1, e2)) < (1 + ε) ⋅ λ}

For T ∈ 𝒯,

While C(t)
T ≠ ∅

1. Select pairs of tree edges from C(t)
T

2. Multiplicatively increase along these cuts w(t)

[Karger’00]

Goal for the inner loop:

 work per iteration, iterations
Õ(n) Õ(1)

Combinatorial Tools
The Tree Packing Theorem: There is a set of O(log n) spanning trees  
 such that every (1+eps)-mincut 1-or-2 respects some tree

C(t)
T := {{e1, e2} ⊆ E(T) : w(cutT(e1, e2)) < (1 + ε) ⋅ λ}

For T ∈ 𝒯,

While C(t)
T ≠ ∅

1. Select pairs of tree edges from C(t)
T

2. Multiplicatively increase along these cuts w(t)

Goal for the inner loop:

 work per iteration, iterations
Õ(n) Õ(1)

n2 work, 1 iteration if select all pairs

[Karger’00]

Intuition: Select a representative/maximal set of cuts so that

Updating weights of these cuts = increase weights of every cut

Intuition: Select a representative/maximal set of cuts so that

Updating weights of these cuts = increase weights of every cut

This talk: assume T is a path and show ‘good’ core sequence exists

(In general, reduce to path via heavy/light decomposition [MN’20].)

T = path

Tree edge Non-tree edge

A B C D E F G H

1 3

4 1
2

1

w(cutT(e1, e2))

T = path

Tree edge Non-tree edge

A B C D E F G H

1 3

4 1
2

1

w(cutT(BC, DE)) = ?

T = path

Tree edge Non-tree edge

A B C D E F G H

1 3

4 1
2

1

w(cutT(BC, DE)) = 1 + 3 + 1 + 2 = 7

T = path

Tree edge Non-tree edge

A B C D E F G H

1 3

4 1
2

1

w(cutT(BC, DE)) = 7
w(cutT(AB, FG)) = 1 + 3 + 2 + 2 = 8

T = path

Tree edge Non-tree edge

A B C D E F G H

1 3

4 1
2

1

w(cutT(e1, e2))

C(t)
T := {{e1, e2} ⊆ E(T) : w(cutT(e1, e2)) < (1 + ε) ⋅ λ}

|C(t)
T | ≤ n2

r

r-crossing

r

NOT r-crossing

Lemma: Fix a node r in a path, if every small pair is r-crossing, then there are O(n) small pairs

r

r-crossing

Representation of all pairs

n

log n levels

Representation of all pairs

n

The recursion tree

Property: every pair of edges in T is mapped to the first node that splits it

Lemma 1 : Fix a node r in a path, if every small pair is r-crossing, then there are O(n) small pairs

S1

At level i

Compute

S3S2
S4

Bi := ⋃
j

Sj where Sj := the set of small pairs in j-th path

At level i

 level i-1

|Bi | = ∑
j

|Sj | = ∑
j

O(ni) = O(n)By Lemma 1,

Repeat at level i-1 and so on (Blog n, Blog n−1, …, B1) is a good core sequence

Feed to the MWU framework to update weights along these cuts Bi

Lemma 1 : Fix a node r in a path, if every small pair is r-crossing, then there are O(n) small pairs

S1

At level i

Compute

S3S2
S4

Bi := ⋃
j

Sj where Sj := the set of small pairs in j-th path

At level i

 level i-1

|Bi | = ∑
j

|Sj | = ∑
j

O(ni) = O(n)By Lemma 1,

Repeat at level i-1 and so on (Blog n, Blog n−1, …, B1) is a good core sequence

Feed to the MWU framework to update weights along these cuts Bi

Lemma 1 : Fix a node r in a path, if every small pair is r-crossing, then there are O(n) small pairs

S1

At level i

Compute

S3S2
S4

Bi := ⋃
j

Sj where Sj := the set of small pairs in j-th path

At level i

 level i-1

|Bi | = ∑
j

|Sj | = ∑
j

O(ni) = O(n)By Lemma 1,

Repeat at level i-1 and so on (Blog n, Blog n−1, …, B1) is a good core sequence

Feed to the MWU framework to update weights along these cuts Bi

Lemma 1 : Fix a node r in a path, if every small pair is r-crossing, then there are O(n) small pairs

S1

At level i

Compute

S3S2
S4

Bi := ⋃
j

Sj where Sj := the set of small pairs in j-th path

At level i

 level i-1

|Bi | = ∑
j

|Sj | = ∑
j

O(ni) = O(n)By Lemma 1,

Repeat at level i-1 and so on (Blog n, Blog n−1, …, B1) is a good core sequence

Feed to the MWU framework to update weights along these cuts Bi

Lemma 1 : Fix a node r in a path, if every small pair is r-crossing, then there are O(n) small pairs

S1

At level i

Compute

S3S2
S4

Bi := ⋃
j

Sj where Sj := the set of small pairs in j-th path

At level i

 level i-1

|Bi | = ∑
j

|Sj | = ∑
j

O(ni) = O(n)By Lemma 1,

Repeat at level i-1 and so on (Blog n, Blog n−1, …, B1) is a good core sequence

Feed to the MWU framework to update weights along these cuts Bi

Lemma: Fix a node r in a path, if every small pair is r-crossing, then there are O(n) small pairs

Proof:

r
e1 e2 e3 e4f4 f3 f2 f1

r e1 e2 e3 e4

f1

f2

f3
f4

Mr(fi, ej) = w(cutT(fi, ej))

MrDefine

Lemma: Fix a node r in a path, if every small pair is r-crossing, then there are O(n) small pairs

Proof:

r
e1 e2 e3 e4f4 f3 f2 f1

r e1 e2 e3 e4

f1

f2

f3
f4

Mr(fi, ej) = w(cutT(fi, ej))

MrDefine

Lemma: Fix a node r in a path, if every small pair is r-crossing, then there are O(n) small pairs

Proof:

r
e1 e2 e3 e4f4 f3 f2 f1

r e1 e2 e3 e4

f1

f2

f3
f4

Mr(fi, ej) = w(cutT(fi, ej))

MrDefine

Lemma: Fix a node r in a path, if every small pair is r-crossing, then there are O(n) small pairs

Proof:

r
e1 e2 e3 e4f4 f3 f2 f1

Mr(fi, ej) = w(cutT(fi, ej))

MrDefine r e1 e2 e3 e4

f1

f2

f3
f4

Lemma: Fix a node r in a path, if every small pair is r-crossing, then there are O(n) small pairs

Proof:

r e1 e2 e3 e4

f1

f2

f3
f4

Mr(fi, ej) = w(cutT(fi, ej))

Mr

Qr(fi, ej) = 1 if Mr(fi, ej) < (1 + ε)λ

define Qr

Qr(fi, ej) = 0 else

Lemma: Fix a node r in a path, if every small pair is r-crossing, then there are O(n) small pairs

Proof:

r e1 e2 e3 e4

f1

f2

f3
f4

1

Qr(fi, ej) = 1 if Mr(fi, ej) < (1 + ε)λ

define Qr

Qr(fi, ej) = 0 else

⟹ |Q | ≤ 2n
1

1claim: Q avoids

Lemma: Fix a node r in a path, if every small pair is r-crossing, then there are O(n) small pairs

Proof:

r e1 e2 e3 e4

f1

f2

f3
f4

1

Qr(fi, ej) = 1 if Mr(fi, ej) < (1 + ε)λ

define Qr

Qr(fi, ej) = 0 else

⟹ |Q | ≤ 2n
1

1claim: Q avoids

Lemma: Fix a node r in a path, if every small pair is r-crossing, then there are O(n) small pairs

Proof:

r e1 e2 e3 e4

f1

f2

f3
f4

1

Qr(fi, ej) = 1 if Mr(fi, ej) < (1 + ε)λ

define Qr

Qr(fi, ej) = 0 else

⟹ |Q | ≤ 2n
1

1claim: Q avoids

≤ 6n
1

1
1

claim: Q can be computed

ex(n,)

number of probes in Mr

Lemma: Fix a node r in a path, if every small pair is r-crossing, then there are O(n) small pairs

Proof:

r e1 e2 e3 e4

f1

f2

f3
f4

Qr(fi, ej) = 1 if Mr(fi, ej) < (1 + ε)λ

define Qr

Qr(fi, ej) = 0 else

1

⟹ |Q | ≤ 2n
1

1claim: Q avoids

proof: Suppose Q contains 1
1

1

claim 2:
there is a small pair that does not cross r
contradiction

 Claim 2: there is a small pair that does not cross r

f(A) + f(B) ≥ f(A∖B) + f(B∖A) (Posi-modularity) 2λ(1 + ε) >

Lemma: if every small pair is r-crossing, Recall
then there are O(n) small pairs

min{f(A∖B), f(B∖A)} < (1 + ε)λ Therefore,

 Contradiction!

Concluding Remark

• Improve:

• Solving kECSM with high accuracy?

• Extension to streaming and distributed algorithms? [MN’20]

Õ(
m
ε4

) → Õ(
m
ε2

)?

• Core-sequence is generic

