Approximating the Held-Karp Bound for
Metric TSP in Nearly Linear Work and
Polylogarithmic Depth

Sorrachai Yingchareonthawornchai (ETH ZUrich)

Joint work with
Zhuan Khye Koh (Boston University)
Omri Weinstein (Hebrew University)

Data Structure and Optimization Reunion Workshop
20 March 2025

Work-Depth Model

 Work = total number of operations
 Depth = the length of a longest chain of dependent operations

» Fast parallel algorithm = nearly linear work and polylog depth

N,
A

e Metric TSP
* Input: a complete graph graph G = (V,E,c) where Yu,v,w € V, C,, < Cpp+ Cypy
* Output: a min-cost Hamiltonian cycle

* Implicit input: the instance is implicitly defined as the metric completion of the underlying
graph G = (V,E,c)

* Output: a min-cost Eulerian multigraph of G
 APX-hard [Lampis’12]
» 1.5-approximation algorithm by [Christofide’76]
* 1.5 - 10/7{-36} approximation by [Karlin, Klein, Gharan’22]

Subtour Elimination LP

SE(G, &) =min ZC{“ VY {u,v)
s.t. Zy{uv}:Z VveV
Z y{u,v}>2 V(D,C-S,C«-V

ueS,v¢S -
0 < ypuoy <1 Vu,veV.

The optimal value of the SE coincides with the Held-Karp bound
The Held-Karp bound is defined based on the notion of 1-trees [Held and Karp’70]
The integrality gap of SE is conjectured to be 4/3 [Goemans’95]

k-ECSM: Given an undirected graph G = (V, E) with n nodes, m edges
and edge costs ¢ € RT,, find a minimum cost k-edge-connected

spanning multi-subgraph.

e LP relaxation:

Fact: Held-Karp Bound = LP value of SE = LP value of 2ECSM
Cunningham [via Monma, Munson, and Pulleyblank, 1990] and Goemans and Bertsimas [GB93]:

k-ECSM: Given an undirected graph G = (V, E) with n nodes, m edges
and edge costs ¢ € RT,, find a minimum cost k-edge-connected

spanning multi-subgraph.

e LP relaxation:

e Covering LP with €(2") constraints.

Goal: Compute a (1 + €)-approximate LP solution in nearly linear
work and polylog depth.

*Slides from Zhuan Khye Koh

Multiplicative Weights Update (MWU)

e Many MWU variants

MWU “compiles” KECSM into a sequence of mincut problems

*Slides from Zhuan Khye Koh

Multiplicative Weights Update (MWU)

e Many MWU variants [Luby Nisan '93

Konemann '07] [Fleischer '00] [Young '01
[Mahoney Rao Wang Zhang '16] ...

e We consider epoch-based MWU.

Plotkin Shmoys Tardos '95]

Young '14] [Allen-Zhu Orrec

(Garg

hia "15]

e In iteration t, let w(t) € RT, be the edge weights. Given a lower bound

)\ on the mincut and € > 0, define

Clt) .= {C cut : w(C) < (1 +¢)AL

*Slides from Zhuan Khye Koh

Multiplicative Weights Update (MWU)

e Many MWU variants

e We consider epoch-based MWU.

e In iteration t, let w(t) ¢ RY, be the edge weights. Given a lower bound
A on the mincut and € > 0, define

ClY) = {C cut : w(C) < (1+¢e)A}.

While C(*) £ (;
© Select cut(s) from C(*). an epoch

® Multiplicatively increase wt) along these cuts.

e A\ A(1+¢€) and a new epoch begins.

*Slides from Zhuan Khye Koh

Multiplicative Weights Update (MWU)

While C(Y) £ (:
©® Select cut(s) from C(9),

® Multiplicatively increase w't) along these
cuts.

*Slides from Zhuan Khye Koh

Multiplicative Weights Update (MWU)

While C(Y) £ (:
©® Select cut(s) from C(9),

® Multiplicatively increase w't) along these
cuts.

Sequential MWU: Select one cut from C(t)
— O(m/e?) iterations ’

Parallel MWU: Select all cuts from C(%)
— O(log(|C(®)])/e*) iterations

o [CD| < # (14 €)-mincuts = O(n?) [N

*Slides from Zhuan Khye Koh

Implementing MWU for k-ECSM LP

e Sequential MWU has a O(m/sz) time
implementation |Chekuri Quanrud "17].

e Parallel MWU incurs Q(n?) work, because
IC(Y)| = Q(n?) for some graphs.

*Slides from Zhuan Khye Koh

Implementing MWU for k-ECSM LP

e Sequential MWU has a O(m/sz) time
implementation

e Parallel MWU incurs Q(n?) work, because
IC(Y)| = Q(n?) for some graphs.

New Selection Rule

Let S = (S51,...,S¢) be a sequence of sets of cuts. In iteration t, select
Si(t) Nl

where i(t) is the smallest index such that S;;) N C) # 0.

*Slides from Zhuan Khye Koh

Implementing MWU for k-ECSM LP

e Sequential MWU has a O(m/sz) time
implementation

e Parallel MWU incurs Q(n?) work, because
IC(Y)| = Q(n?) for some graphs.

New Selection Rule

Let S = (S51,...,S¢) be a sequence of sets of cuts. In iteration t, select
Si(t) Nl

where i(t) is the smallest index such that S;;) N C) # 0.

o IfUL,S5;NCH =0 = CY) = (), then S is a core-sequence of the
epoch.

*Slides from Zhuan Khye Koh

Core-Sequence MWU

e Special cases:
» S=(51,...,5) where |5;| =1 for all i € [{] = sequential MWU.
» S =(C)) = parallel MWU.

*Slides from Zhuan Khye Koh

Core-Sequence MWU

e Special cases:
» S=(51,...,5) where |5;| =1 for all i € [{] = sequential MWU.
» S =(CY)) = parallel MWU.

Theorem [KWY’25]

If every epoch has a core-sequence of length < £, in which every set has
size < k, then core-sequence MWU returns a (1 + €)-appproximate

solution In P los(k
(1)
g

Iiterations.

e |ldeally, we want a short core-sequence consisting of small sets.

*Slides from Zhuan Khye Koh

Core-Sequence for the k-ECSM LP

Theorem [KWY’25]

For the k-ECSM LP, every epoch has a core-sequence of length O(log n),
in which every set has size O(n).

Theorem [KWY’25]

There is a parallel PTAS for the k-ECSM LP using O(m/e*) work and
O(1/e*) depth.

e 2-ECSM LP optimum = Held—Karp bound for metric TSP.

e Extends to the k-edge-connected spanning subgraph (k-ECSS) LP.
Using weight thresholding technique from [CHNSSY’22]

Combinatorial Tools

Def: A cut C k-respectsatree Tif |E(T)NC| =k

A 1-respecting cut in a tree

A 2-respecting cut in a tree

Combinatorial Tools

The Tree Packing Theorem: There is a set of O(log n) spanning trees [Karger'00]
such that every (1+eps)-mincut 1-or-2 respects some tree (cf. [CQ'17])

Def: A cut C k-respectsatree Tif |E(T)NC| =k

A 1-respecting cut in a tree A 2-respecting cut in a tree

Combinatorial Tools

The Tree Packing Theorem: There is a set of O(log n) spanning trees [Karger'00]
such that every (1+eps)-mincut 1-or-2 respects some tree (cf. [CQ'17])

Can be computed in nearly linear work and polylog depth [Geissmann and Gianinazzi'18]

Sauce: A Corollary of [Tutte’61][Nash-Williams’61]
Al2 L 75 < Ag

7 := The maximum number of disjoint spanning trees

A := The edge connectivity

Combinatorial Tools

The Tree Packing Theorem: There is a set of O(log n) spanning trees [Karger'00]
such that every (1+eps)-mincut 1-or-2 respects some tree

For Te T,
CY = {{el, e,} C E(T): w(cutr(e;,e,)) < (1+¢)- ,1}
While C(t) £ (: \

©® Select cut(s) from C(t). > an epoch = While C}f) + &
® Multiplicatively increase w(t) along these cuts.

Cl) = {C cut : wl(C) < (1+¢)A}.

1. Select pairs of tree edges from C}t)

® A< A(l+¢) and a new epoch begins. 2. Multiplicatively increase w'” along these cuts

Combinatorial Tools

The Tree Packing Theorem: There is a set of O(log n) spanning trees [Karger'00]
such that every (1+eps)-mincut 1-or-2 respects some tree

For Te T,
CY = {{el, e,} C E(T): w(cutr(e;,e,)) < (1+¢)- ,1}
While C(t) £ (: \

©® Select cut(s) from C(t). > an epoch = While C}f) + &
® Multiplicatively increase w(t) along these cuts.

Cl) = {C cut : wl(C) < (1+¢)A}.

1. Select pairs of tree edges from C}t)

® A< A(l+¢) and a new epoch begins. 2. Multiplicatively increase w'” along these cuts

Goal for the inner loop:

O(n) work per iteration, O(1) iterations

Combinatorial Tools

The Tree Packing Theorem: There is a set of O(log n) spanning trees [Karger0Q]
such that every (1+eps)-mincut 1-or-2 respects some tree

n2 work, 1 iteration if select all pairs

Cl) = {C cut : wl(C) < (14)AL a

While C(®) £ \

CY = {{el,ez} E(T): w(cutr(e;,e,) < (1 +¢) -/1}

> anepoch =y while CY# @

©® Select cut(s) from C(t).

® Multiplicatively increase w{t) along these cuts.

e A\ < A(1+¢) and a new epoch begins.

1. Select pairs of tree edges from C}t)

2. Multiplicatively increase w® along these cuts

Goal for the inner loop:

O(n) work per iteration, O(1) iterations

Intuition: Select a representative/maximal set of cuts so that

Updating weights of these cuts = increase weights of every cut

Intuition: Select a representative/maximal set of cuts so that

Updating weights of these cuts = increase weights of every cut

This talk: assume T is a path and show ‘good’ core sequence exists

(In general, reduce to path via heavy/light decomposition [MN’20].)

T = path

1 3
(\ / Tree edge Non-tree edge
(B) (o) (E) (E) (a) O
A—8———) E/D (e)—r 7O N
2

4 1

w(cutr(ey, e,))

T = path

Tree edge Non-tree edge
@ H A

w(cuty(BC, DE)) =

T = path

1

3
/ Tree edge Non-tree edge
A wy@) @ H N ° O\/O
1
2
4 1

w(Cut(BC,DE)) = 14+3+1+4+2=7

T = path

1 3
{ \ / Tree edge Non-tree edge
() (=) O
wlz/@ © : ’ 1 ’ N
2
4 1

w(CUut{(BC,DE)) = 7
W(CUt{AB,FG) =1 +3+2+4+2=28

T = path

1 3
(\ / Tree edge Non-tree edge
(=) () e () () O
| : | 3 E/D = : ’ 1) \/O
2

4 1

W(CUtT(el, 62))
CY = { {e,e,} C E(T): w(cuty(e;,e,)) < (1+e¢)- z}

|G| < n?

0

r-crossing

v

0

x NOT r-crossing

Lemma: Fix a node r in a path, if every small pair is r-crossing, then there are O(n) small pairs

0

r-crossing

v

Representation of all pairs

O

@

@

log n levels

@

O

O

Representation of all pairs

The recursion tree

) /Q\@
D¢ S

—/

Property: every pair of edges in T is mapped to the first node that splits it

Lemma 1: Fix a node r in a path, if every small pair is r-crossing, then there are O(n) small pairs

level I-1 @ @
At level i %—/\%3— G/ E%
54

51 S, 53

Lemma 1: Fix a node r in a path, if every small pair is r-crossing, then there are O(n) small pairs

level I-1 @ @
At level i %—/\%3— G/ E%
54

51 S, 53

At level |

Compute B, := US] where S] = the set of small pairs in j-th path

J

Lemma 1: Fix a node r in a path, if every small pair is r-crossing, then there are O(n) small pairs

level I-1 @ @
At level i J\%}— G/ XQ—
54

51 S, 53

At level |

Compute B, := US] where SJ = the set of small pairs in j-th path

J
By Lemma1, |Bj|=) |S|=) 0n)=0®n)
J J

Lemma 1: Fix a node r in a path, if every small pair is r-crossing, then there are O(n) small pairs

level I-1 @ @
At level i J\%}— G/ XQ—
54

51 S, 53

At level |

Compute B, := US] where SJ = the set of small pairs in j-th path

J
By Lemma1, |Bj|=) |S|=) 0n)=0®n)
J J

Feed B; tothe MWU framework to update weights along these cuts

Lemma 1: Fix a node r in a path, if every small pair is r-crossing, then there are O(n) small pairs

level I-1 @ @
At level i J\%}— G/ XQ—
54

51 S, 53

At level |

Compute B, := US] where SJ = the set of small pairs in j-th path

J
By Lemma1, |Bj|=) |S|=) 0n)=0®n)
J J
Feed B; to the MWU framework to update weights along these cuts

Repeat at level i-1 and so on (Blog s B10g .1, ---,By) 18 @good core sequence

Lemma: Fix a node r in a path, if every small pair is r-crossing, then there are O(n) small pairs

Proof:

Lemma: Fix a node r in a path, if every small pair is r-crossing, then there are O(n) small pairs

Proof:

Lemma: Fix a node r in a path, if every small pair is r-crossing, then there are O(n) small pairs

Proof:

Lemma: Fix a node r in a path, if every small pair is r-crossing, then there are O(n) small pairs

Proof:

Define M, (r) e e e e

M,(f;» e) = w(cutr(f;, e)) fi

Lemma: Fix a node r in a path, if every small pair is r-crossing, then there are O(n) small pairs

Proof: define Q.
@ e es s eu Q(f-e) = 11T M(f,e) <(l+¢e)k
Q.(f-e) =0 else
f+
MI"

fo M/(f, e) = w(cuty(f, e)

f3

f4

Lemma: Fix a node r in a path, if every small pair is r-crossing, then there are O(n) small pairs

Proof: define O,
@ e es s eu Q(f-e) = 11T M(f,e) <(l+¢e)k
Q,(fie) =0 else
f1
1
fo claim: Q avoids | — |0 <2n
f3 1
fa

Lemma: Fix a node r in a path, if every small pair is r-crossing, then there are O(n) small pairs

Proof: define O,
@ e es s eu Q(f-e) = 11T M(f,e) <(l+¢e)k
Q,(fie) =0 else
f1
1
fo claim: Q avoids | — |0 <2n
f3 1
fa

Lemma: Fix a node r in a path, if every small pair is r-crossing, then there are O(n) small pairs

@ e es s eu Q(f-e) = 11T M(f,e) <(l+¢e)k
Q.(f-e) =0 else
f+
1
fo claim: Q avoids | — |0| <2n
f3 1 claim: O can be computed
f4
;

ex(n, 1]) <6n

number of probes in M,

Lemma: Fix a node r in a path, if every small pair is r-crossing, then there are O(n) small pairs

@ e es s eu Q(f-e) = 11T M(f,e) <(l+¢e)k
Q.(f-e) =0 else
f+
1
fo 1 claim: Q avoids | — |0| <2n
fa 1 proof: Suppose Q contains ; 1
f4 claim 2:

there is a small pair that does not cross r

contradiction

Proposition 2.2. For every pair of subsets X,Y C V, we have
o (Submodularity) fu,(X)+ fu(Y) > fu(XNY)+ fu,(XUY), and

o (Posi-modularity) fu(X)+ fu(Y) 2 fu(X \Y) + fu(Y \ X).

Claim 2: there is a small pair that does not cross r

[, 7, £ 2A(1 4+) > f(A) + f(B) > f(A\B) + f(B\A) (Posi-modularity)
1 | | -
2 AT B Therefore, min{f(A\B), f(B\A)} < (1 + ¢)4
€ T A :
A Contradiction!
B\A . - .
Recall Lemma: if every small pair is r-crossing,
g j? fiz : then there are O(n) small pairs
e + B
A\B
e, | A

Concluding Remark

» Core-seguence is generic

» Improve: 0(=) » 0(—)?
E E
* Solving KECSM with high accuracy?

* Extension to streaming and distributed algorithms? [MN’20]

