One Attack to Rule Them All:
Cardinality Sketches under Adaptive Inputs

Edith Cohen

Google Research & Tel Aviv University

Jelani Nelson Tamas Sarlos Mihir Singhal Uri Stemmer

Outline

Background
e Cardinality Queries

 Composable Sketches

290 non-adaptive queries for sketch
size k

qgueries

* Positive results: 0(k?) adaptive
queries via wrapper methods

* Negative results via attacks

Our Contributions

A unified universal attack on cardinality
sketches

Structural properties of union-composable
sketches

* Tight O(k?) attacks for monotone
composable sketches and linear sketches
(Boolean, Reals, Finite Fields) and (with
some assumptions) Integers

» 0(k*) attack on any composable sketch

* Single-batch O (k) attack on optimal
estimator

Cardinality Queries
FO frequency moment / €, norm /distinct count statistic

D = = "N X X = ID| =5

D =(0,0,3,-2,1,0,0,-1,10,0,0) = |ID|ly =5

Applications: Distinct Search Queries, Users, Source-Destination pairs in IP flows......

Sketch Maps

Maps of data to small representations D S(D)

—
f($(D))

f(D)? E

Cardinality sketch: The cardinality of D (or || D||y) can be estimated from S(D)

Design goals:

« Small |S(D)| « |D| (efficient storage/communication)
* Accurate [(S(D)) = f(D)

 Composable

Composable Sketch Maps D - S(D)

S(AU B) = S(4) @ S(B)

Why Composable?
Efficiency on Distributed/ Streaming
data (operate in sketch space!)

Practice: dataset in each location /
time-period is sketched and then
discarded. Queries are localized or

Data A U B on unions of datasets.

Composable sketches for Cardinality

First Try: Explicit representation or a Bloom Filter = |S(D)| =.0(|D])

®

small

Composable sketches for Cardinality

Very small sketches! @

Flajolet Martin '85

Cohen '97

Alon Marias Szegedy 99

Bar-Yoseff, Jayram, Kumar, Siva,
Trevissan ‘02

Cormode, Datar, Indyk, Muthu '03

Ganguly ‘07

Flajolet et al ‘07 (Hyperloglog)

Kane, Nelson, Woordruff ‘10

Implementations
Apache DataSketches
Google BigQuery

Il Randomness is necessary
Sketching map S ~ D is sampled from a distribution

Il For composability, same sampled map S must be
used for all sets

Sketch size loglog n + k (n is dimension)
Statistical guarantees on accuracy:

e NMSE: -
k

arsli=
o k= Og(a) = Pr|RelError > ¢] <6
G S~D

Non-Adaptive Queries

Sketch size loglogn + k
log

— 52 =‘RelErmr >¢c|l <6

Queries U, U,, Us, ... processed in Sketch Space U;~> S(U;) 2/ (S(U;))

How many queries can we answer accurately? = exponential in k

Caveat! We use the sam

queries
olds when inputs Uy, U,, Us, ... are non-adaptive — do not depend on 5 |

ed map S for all

? What about the adaptive setting?

Adaptive Queries

Non-adaptive Setting:

The input sequence l-Tzl does not ?
depend on the outputs / (S(/;) -
Adaptive Setting: What guarantees can we give
i—1 when inputs are adaptive?
Each input [/: may depend on (, 1 (5())
j=1

| —ry =3 A system with feedback

y . . :
Zgj’ Adversarial: Aims to construct a bad input

Background: Positive Results
Quadratic boost via Wrapper Methods

1 with nonadaptive guarantees = adaptive guarantees
Simple: A X k = Q(k) adaptive queries

Advanced: A x k = ((k?) adaptive queries

 Statistical Queries: [Dwork et al., ‘15, Bassily et al., ‘21]
* General Application: [Hassidim et al. “20]
e Subsampling: [Blanc ‘23]

Non-adaptive queries: 2°(%)

Negative Results on Cardinality Sketches

0(k?) universal attack for adaptive statistical queries (queries over
samples of size k) [Hardt and Ullman’14, Steinke and Ullman ‘15]
based on Fingerprinting Codes [Boneh and Shaw ‘98].

Linear Sketches [Gribelyuk et al. 2024]
» O(poly(k)) over reals

* 0(k®) over integers

* 0(k?) over finite fields

Questions:
Gap —is there an O (k?) attack against any cardinality sketch?
Union-composable sketches (prevalent in practice)

Interaction Model
Queries Uy, U,, Us, ... processed in Sketch Space U;=> S(U;) 2>/ (S(U,))

* “player” (attacker) specifies query set U; knows: S), U, S(U)

« “system” : sketches U;=> S(U;)

* “estimator” (query responder) [Knows.
returns estimate/ (S(U;)) of |U;| U, f (S(V))

“(S())

Knows: S(), S(U)]

*Model corresponds to how sketches are used in practice

Attack on sketching map S

Queries U, U,, U;, ... processed in Sketch Space U;=> S(U;) 2/ (S(U;))

Attack Size: Number of adaptive queries needed to
compromise (force incorrect responses) S of size k

Attack types: SW)

* Tailored: Applies with a specific estimator

* Universal: Applies with any query responder (S(U)) ©

Our Results

A Unified Universal Attack (applies with any estimator)

Composable Sketch Map S :
* General: O(k*) adaptive queries Tight!
 Monotone: O (k?) adaptive queries

Linear Sketch Maps O (k?) adaptive queries
* Boolean, reals R, Finite Fields Fp
e (with some assumptions) Integer

Principled Technique: Structural properties of composable sketching maps

Tailored Attacks:
* Single-Batch O (k) attack on the optimal estimator

Statistical Queries as Cardinality Sketches

Sketching map by a sample R of size k from the groundset U
e S(U):=UNR

|JUNR

o . accurate on large inputs (a fraction of U)

* Estimate
* Adaptive attacks aim to identify R , query responder aims to be accurate while
protecting R

MinHash sketches (most used in practice) including Hyperloglog are glorified
drilled-down samples

Cardinality Sketches

Property facilitating unified O (k?) attack:

Composable cardinality sketches (can be caused to)
“behave like” statistical queries

Only few keys “determine” the sketch

Composable Cardinality Sketches

Multiple known designs. One basic idea™.

* Assign random priorities h(x) to keys x € U
e Sketch of set U < U is (derived from) its k keys of highest
priority
{h(x) | x € U}

Sketching map S = priorities h
Analysis Idea: Larger cardinality & Higher top priorities

Composable: The top priorities in A U B can be recovered from top priorities in each of 4, B

* Implicit also in linear sketches

Composable Cardinality Sketches

Multiple known designs. One basic idea™.

* Assign random priorities h(x) to keys x € U
e Sketch of set U < U is (derived from) its k keys of highest
priority
{h(x) | x € U}
Sketching map S = priorities h
“Determining Pool” Property:
For random sets U ~ Bern[q]u , few keys “matter” , most keys are “transparent” to S
Just like SQ!
Theorem: Any composable sketching map has a “small” pool

Corollary: Inherent vulnerability to adaptive inputs (and privacy)

Determining Pool

Groundset U Sketching map S
Set L © U such that for randomly sampled U ~ Bern[g|" with g = Q(1)

S(U)=SWUnNL)

e A determining pool always exists (take L = U).
* To be useful, it needs to be small, depend on sketch size k not on ground set size ||

Example: SQ — the pool is the sample R of size k

Example: Pool for MinHash Sketches
HyperLoglog (Stochastic Averaging)

 Randomly prioritize keys
* Randomly partition universe to k bucket
Sketch: highest priority key in each bucket

1 2

x

:

Flajolet Martin "85
Flajolet et al ‘07 (Hyperloglog)

e oo o oo o

:

oo @ .o@

200 oooo@ooo”

oo @ .@.®. ®

006
©B0
OO0
0006

Example: Pool for HyperLoglLog MinHash sketch

 Randomly prioritize keys
* Randomly partition universe to k bucket
Sketch: highest priority key in each bucket

Flajolet Martin "85
Flajolet et al ‘07 (Hyperloglog)

VAN

O(log (k/6)

A4

A EEEEEEIS
0000 0 0 O
EEEEEXKEK
EEEEEKK
EEEEEKK
EEEEREEEXKX
000000 0™

006
006
©B0
OO0
©606
0006
006

Example: Pool for Bottom-k MinHash Sketches

 Randomly prioritize keys
Sketch: k highest priority keys

ooo@ooooo@ooooo@oooo@oooo@o 000

< %

0(k log (k/8)

Small Determining Pool L is a Vulnerability
Attack Pradigm

* Fix agroundset U ofsize 1000 - |L]
e Attack identifies M = L (approximate the determining pool)

For query sets

e U ~ Bern[g]¥ for different g > 0.2

e U/« UUM

We have S(U')) ~ S(M) (= M masks U)

= it is not possible to estimate |U’| (|U'| > 0.1 |U| > |L]

Generalizes the Fingerprinting attacks of
[Hardt and Ullman’14 , Steinke and Ullman ‘15]

Composable Maps

Groundset 1 Sketching map S from 2% to =
Binary composition operation @ : S(AUB) = S(A) @ S(B)

Core of a sketch ¢ € 2: Minimal U € U suchthatS(U) = o

Monotonicity: Core size can only increase with subset size
Rank of S : Minimum cardinality of a Core

Examples: Monotone
e Statistical Queries: X are subsets of the sample R. S(U) = UNR
* Vectors Spaces (o is the spanned subspace, cores are basis) Unique

 MinHash: Cores are the low priority keys Core

Composable Maps

Groundset 1 Sketching map S from 2% to =
Binary composition operation @ : S(AUB) = S(A) @ S(B)

Core of a sketch ¢ € 2: Minimal U € U suchthatS(U) = o

Monotonicity: Core size can only increase with subset size
Rank of S : Minimum cardinality of a Core

Lemma: Maximum sketch size max |o| < k= Rank< k
geS(2W)

Thm: Pool size for composable maps of rank k
General: 0(k%)
Monotone: O (k)

Constructive proof via Core Peeling, O (k) for general, O(1) for monotone S

Single Batch O(|L|) Attack on Estimator

Fix a groundset U of size 100 - |L|; Initialize scores c|x| < 0 for x € U
Repeat O(|L|) times:

Select U € U to independently include each x € U with prob%

Get cardinality estimate [(S(U))

Forx e U: c|x]| += -

(s(v))
Output U/ ordered by score

Single batch: Only the post processing is dependent on prior outputs!

Lemma: The O(|L|) highest scores includes the pool keys

Optimal estimate depends only on intersection with L
“Transparent” keys do not get biased scores, Pool keys more likely to be scores

k=104

5000

=3
[=}
[=]
o

3000

2000

The estimated cardinality

1000

5000

B
(=]
o
o

3000

2000

The estimated cardinality

1000

Single Batch Attack on

Attack on HLL++ (k = 104) with different number of queries.

Attack with 1 queries
Attack with 4 queries
Attack with 16 queries
Attack with 64 queries
Attack with 256 queries
Attack with 1024 queries
Attack with 4096 queries
Attack with 16384 queries

1000 2000 3000 4000 5000
The cardinality of input set

Attack on HLL++ (k = 104) with different number of queries.

Attack with 1 queries
—— Attack with 4 queries
—— Attack with 16 queries
—— Attack with 64 queries
—— Attack with 256 queries
—— Attack with 1024 queries
—— Attack with 4096 queries
—— Attack with 16384 queries

1000 2000 3000 4000 5000

The cardinality of input set

The estimated cardinality

The estimated cardinality

5000

4000

3000

2000

1000

5000

4000

3000

2000

1000

—— Attack with 1 queries
—— Attack with 4 queries
—— Attack with 16 queries
—— Attack with 64 queries
—— Attack with 256 queries
—— Attack with 1024 queries
—— Attack with 4096 queries
—— Attack with 16384 queries

LL++

k=416

Attack on HLL++ (k = 416) with different number of queries.

1000 2000 3000 4000 5000

The cardinality of input set

Attack on HLL++ (k = 416) with different number of queries.

Attack with 1 queries
—— Attack with 4 queries
—— Attack with 16 queries
—— Attack with 64 queries
—— Attack with 256 queries
—— Attack with 1024 queries
—— Attack with 4096 queries
—— Attack with 16384 queries

1000 2000 3000 4000 5000

The cardinality of input set

Cardinality is

underestimated for suffixes.

Cardinality is
overestimated for prefixes.

Soft Threshold Queries

Task: Soft threshold queries
olf |[Ul > 2A = return 1 “large”
olf |U| < A = return 0 “small”
o Otherwise = unrestricted 0 /

= Soft Threshold can be solved with Approximate Cardinality with V2 X error.

Unified Universal Attack

Fix a ground set U/ ; Initialize scores c|x]| < 0 for x € U ; Initialize mask M < @ ; Set threshold A = 0.1 ||

Repeat O(|L|?) times:
e Samplerategq ~ Q
* Select U by including each x € U with probability g
* Receive for the sketch S(U U M) from the query responder
e Foreachx e U,
e clx] e« clx]+2Z
« |If c|x] is statistically above the median score, then M « M U {x}

e Attack works against any query responder (powerful, strategic, adaptive)

Theorem: When Sketching map has a determining pool L, attack forces an error rate of
after O(|L|?) queries

Linear Sketches

A = I II II v =(0,30,0,-2,0,0,---,0,0)

Query vector v — the set are the nonzero entries

Sketching matrix

S(v)=Av
Sketch

Multiple representations for the same set, not union-composable

Linear Sketches: Boolean

Values are Boolean, V instead of +, A\ instead of *

Boolean linear sketches are monotone and composable = 0 (k?) attack

O(k) Determining pool: All columns that have 1 value in some sparse measurement

i1l

A; = (0,1,0,0,-+,0,1,1)
A;, = (1,0,0,0,+-,0,0,0)

Idea: Dense measurements do not matter, as whp they are hit with a member of
a random set and sketch entryis 1.

A; = (1,0,1,1,-+,1,0,1)

Integer/Real Linear Sketches with sparsity
pattern estimators

Boolean linear sketches are monotone and composable = 0 (k?) attack

Folklore and other linear sketches [Cormode, Datar, Indyk, Muthu "03,
Ganguly '07] caused the sketch over integers to behave like Boolean. The
estimator only uses the sparsity pattern (set of nonzero indices in the
sketch and not values).

Result: 0(k?) Attack on linear sketches on reals/integers that only use the
sparsity structure in the sketch

ldea: We specify values randomly to attack queries = probability of any
cancelation is small = sketch sparsity behaves like a Boolean sketch

Linear Sketches: Reals, Finite Fields

A = I II II v =(0,30,0,-2,0,0,---,0,0)

The attack queries are vectors, augment attack specs with values for the nonzero entries

1/0 don’t work! sketch contains exact value

A= (111--,1,1) v =(,,0,0,1,0,0,--,0,0)

Approach: We specify values X(U) so that there is a determining pool L

Linear Sketches: Reals, Finite Fields

II v = (0,3,0,0,-2,0,0,-,0,0)

Result: O(k?) Attack on linear sketches on reals/finite fields

Idea: span of vectors U +— span(U) is a monotone composable map

 Take L to be the determining pool for the column vectors of A for span.
« We specify a particular way X (M, U) of sampling nonzero values to M, U in

the attack queries so that L is a pool:
S(M,U,X(U,M)) = S(M,UNL,X(UNL M)

Conclusion

Vulnerability to adaptive inputs by presenting attacks
. (7(k) gueries to attack popular cardinality sketches and estimators

* Tight ﬁ(kz) Universal Attacks (against any query responder) on any monotone composable and
linear sketches over reals, finite fields, Boolean, integers with limited estimators

« O(k*) for general composable sketches

Open:

* General composable sketches

* Determining pool property for other properties beyond cardinality
* Integer Linear Sketches

Follow up: When keys participate in a limited number of queries) where the
sketch is robust (bound is in terms of key participation)

Thank youl!

	Slide 1: One Attack to Rule Them All: Cardinality Sketches under Adaptive Inputs
	Slide 2: Outline
	Slide 3: Cardinality Queries F 0 frequency moment / ℓ 0 norm /distinct count statistic
	Slide 4: Sketch Maps
	Slide 5: Composable Sketch Maps
	Slide 6: Composable sketches for Cardinality
	Slide 7: Composable sketches for Cardinality
	Slide 8: Non-Adaptive Queries
	Slide 9: Adaptive Queries
	Slide 10: Background: Positive Results Quadratic boost via Wrapper Methods
	Slide 11: Negative Results on Cardinality Sketches
	Slide 12: Interaction Model
	Slide 13: Attack on sketching map S
	Slide 14: Our Results
	Slide 15: Statistical Queries as Cardinality Sketches
	Slide 16: Cardinality Sketches
	Slide 17: Composable Cardinality Sketches
	Slide 18: Composable Cardinality Sketches
	Slide 19: Determining Pool
	Slide 20: Example: Pool for MinHash Sketches HyperLogLog (Stochastic Averaging)
	Slide 21: Example: Pool for HyperLogLog MinHash sketch
	Slide 22: Example: Pool for Bottom-k MinHash Sketches
	Slide 23: Small Determining Pool L is a Vulnerability Attack Pradigm
	Slide 24: Composable Maps
	Slide 25: Composable Maps
	Slide 26: Single Batch O L Attack on Optimal Estimator
	Slide 27
	Slide 28: Soft Threshold Queries
	Slide 29: Unified Universal Attack
	Slide 30: Linear Sketches
	Slide 31: Linear Sketches: Boolean
	Slide 32: Integer/Real Linear Sketches with sparsity pattern estimators
	Slide 33: Linear Sketches: Reals, Finite Fields
	Slide 34: Linear Sketches: Reals, Finite Fields
	Slide 35: Conclusion
	Slide 36: Thank you!

