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Outline

Background

• Cardinality Queries

• Composable Sketches 
2𝑂(𝑘)  non-adaptive queries for sketch 
size 𝑘

• Adaptive queries
• Positive results: ෨𝑂(𝑘2) adaptive 

queries via wrapper methods

• Negative results via attacks

Our Contributions

A unified universal attack on cardinality 
sketches

Structural properties of union-composable 
sketches 

• Tight ෨𝑂(𝑘2) attacks for monotone 
composable sketches and linear sketches 
(Boolean, Reals, Finite Fields) and (with 
some assumptions) Integers

• ෨𝑂(𝑘4) attack on any composable sketch

• Single-batch ෨𝑂(𝑘) attack on optimal 
estimator



Cardinality Queries 
 𝐹0 frequency moment / ℓ0 norm /distinct count statistic

𝑫 =  (0 , 0 , 3 , −2 , 1 , 0 , 0 , −1, 10 , 0 , 0 )

𝑫 = |𝑫|  = 5

𝑫 𝟎  = 5

⇒ ⇒

⇒

Applications:  Distinct  Search Queries, Users, Source-Destination pairs in IP flows…… 



Sketch Maps

Data D Sketch 𝑺(𝑫)

𝑓(𝑫) ? መ𝑓(𝑺(𝑫))

D ↦ 𝑆(𝐷) 

Cardinality sketch: The cardinality of 𝑫 (or 𝑫 𝟎) can be estimated from 𝑺(𝑫) 

Maps of data to small representations

Estimator  መ𝑓 

𝜎 ↦ መ𝑓(𝜎) 

Design goals:
• Small 𝑆 𝐷 ≪ |𝐷|    (efficient storage/communication)

• Accurate   መ𝑓 𝑺 𝑫 ≈  𝑓(𝑫) 
• Composable 



Composable Sketch Maps

Data 𝐴 S (A)

Data 𝐵 S (B)

Data 𝐴 ∪ 𝐵 S (A∪ B)

𝐃 ↦ 𝑆(𝑫) 

Why Composable? 
Efficiency on Distributed/ Streaming 
data (operate in sketch space!) 

𝑆 𝑨 ∪ 𝑩 = 𝑆 𝑨 ⊕ 𝑆(𝑩)

Practice: dataset in each location / 
time-period is sketched and then 
discarded. Queries are localized or 
on unions of datasets. 



Composable sketches for Cardinality

First Try:  Explicit representation or a Bloom Filter 𝑆 𝐃 = O( 𝐃 )⇒

 Want a 

small sketch!



Composable sketches for Cardinality

Very small sketches! 
Flajolet Martin ’85
Cohen ’97
Alon Marias Szegedy ’99
Bar-Yoseff, Jayram, Kumar, Siva, 
      Trevissan ‘02 
Cormode, Datar, Indyk, Muthu ’03
Ganguly ‘07
Flajolet et al ‘07 (Hyperloglog)
.
Kane, Nelson, Woordruff ‘10 
.
.

Implementations
Apache DataSketches
Google BigQuery
.
.

Sketch size loglog 𝑛 + 𝑘 (𝑛 is dimension)

Statistical guarantees on accuracy:  

• NMSE:  
1

𝑘
   

𝑘 =
log

1

𝛿

𝜀2      ⇒   Pr
𝑆∼𝐷

RelE𝑟𝑟𝑜𝑟 > 𝜀 < 𝛿

!! Randomness is necessary

Sketching map 𝑆 ∼ 𝐷 is sampled from a distribution

!! For composability, same sampled map 𝑆 must be 
used for all sets



Non-Adaptive Queries

⇒ exponential in 𝑘 

Caveat!   We use the same sampled map 𝑆 for all 
queries

Sketch size loglog 𝑛 + 𝑘 

  𝑘 =
log

1

𝛿

𝜀2      ⇒ Pr
𝑆∼𝐷

RelE𝑟𝑟𝑜𝑟 > 𝜀 < 𝛿

Queries 𝑈1, 𝑈2, 𝑈3, … processed in Sketch Space 𝑈𝑖→ 𝑆(𝑈𝑖) → መ𝑓(𝑆 𝑈𝑖 )

How many queries can we answer accurately?

? What about the adaptive setting?

⇒ Holds when inputs 𝑈1, 𝑈2, 𝑈3, … are non-adaptive – do not depend on 𝑆 ! 



Adaptive Queries

Non-adaptive Setting:

The input sequence 𝑈𝑖 𝑖=1
𝑇  does not 

depend on the outputs መ𝑓(𝑆 𝑈𝑖  

Adaptive Setting:

Each input 𝑈𝑖  may depend on 𝑈𝑗 , መ𝑓(𝑆 𝑈𝑖  
𝑗=1

𝑖−1
 

A system with feedback

Adversarial:  Aims to construct a bad input

What guarantees can we give 
when inputs are adaptive?

?



Background: Positive Results
Quadratic boost via Wrapper Methods

Simple:

Advanced:

𝒜 with nonadaptive guarantees  ⇒  adaptive guarantees

𝒜 ×  𝑘 ⇒ ෩Ω(𝑘) adaptive queries

𝒜 ×  𝑘 ⇒ ෩Ω(𝑘2) adaptive queries

• Statistical Queries: [Dwork et al., ‘15, Bassily et al., ‘21]
• General Application: [Hassidim et al. ‘20]
• Subsampling: [Blanc ‘23]

Non-adaptive queries:  2𝑂(𝑘)



Negative Results on Cardinality Sketches

෨𝑂(𝑘2) universal attack for adaptive statistical queries (queries over 
samples of size 𝑘)  [Hardt and Ullman’14 , Steinke and Ullman ‘15] 
based on Fingerprinting Codes [Boneh and Shaw ‘98].

Linear Sketches [Gribelyuk et al. 2024]

• ෨𝑂(poly(𝑘)) over reals

• ෨𝑂(𝑘8) over integers

• ෨𝑂(𝑘3) over finite fields

Questions:
Gap – is there an ෨𝑂(𝑘2) attack against any cardinality sketch? 
Union-composable sketches (prevalent in practice)



Interaction Model

player

system

estimator

𝑈 

𝑆(𝑈) 

መ𝑓(𝑆 𝑈 )

• “system” : sketches 𝑈𝑖→ 𝑆 𝑈𝑖

Knows: 𝑆  , 𝑈, S(𝑈)

Queries 𝑈1, 𝑈2, 𝑈3, … processed in Sketch Space 𝑈𝑖→ 𝑆(𝑈𝑖) → መ𝑓(𝑆 𝑈𝑖 )

*Model corresponds to how sketches are used in practice

Knows: 

𝑈, መ𝑓 (S(𝑈))

• “player” (attacker) specifies query set 𝑈𝑖   

Knows: 𝑆  , S(𝑈)

• “estimator” (query responder) 

returns estimate መ𝑓(𝑆 𝑈𝑖 ) of |𝑈𝑖| 



Attack on sketching map 𝑆

player

system

estimator

𝑈 

𝑆(𝑈) 

መ𝑓(𝑆 𝑈 )

Queries 𝑈1, 𝑈2, 𝑈3, … processed in Sketch Space 𝑈𝑖→ 𝑆(𝑈𝑖) → መ𝑓(𝑆 𝑈𝑖 )

Attack types:
• Tailored: Applies with a specific estimator
• Universal: Applies with any query responder

Attack Size: Number of adaptive queries needed to 
compromise (force incorrect responses) 𝑆 of size 𝑘



Our Results
A Unified Universal Attack (applies with any estimator) 

Tailored Attacks:

• Single-Batch ෨𝑂(𝑘) attack on the optimal estimator

Composable Sketch Map 𝑆 :

• General: ෨𝑂(𝑘4) adaptive queries

• Monotone: ෨𝑂(𝑘2) adaptive queries

Linear Sketch Maps ෨𝑂(𝑘2) adaptive queries

• Boolean, reals ℝ, Finite Fields Fp

• (with some assumptions) Integer

Principled Technique: Structural properties of composable sketching maps

Tight!



Statistical Queries as Cardinality Sketches

Sketching map by a sample 𝑅 of size 𝑘 from the groundset 𝒰

• 𝑆 𝑈 ∶= 𝑈 ∩ 𝑅

MinHash sketches (most used in practice) including Hyperloglog are glorified 
drilled-down samples

• Estimate 
𝑈∩𝑅

𝒰
 -- accurate on large inputs (a fraction of 𝒰)

• Adaptive attacks aim to identify 𝑅  , query responder aims to be accurate while 
protecting 𝑅 



Cardinality Sketches

Property facilitating unified ෨𝑂(𝑘2) attack: 

Composable cardinality sketches (can be caused to) 
“behave like” statistical queries

Only few keys “determine” the sketch



Composable Cardinality Sketches
Multiple known designs.  One basic idea*. 

• Assign random priorities ℎ(𝑥) to keys 𝑥 ∈ 𝒰
• Sketch of set 𝑈 ⊂ 𝒰  is (derived from) its 𝑘 keys of highest 

priority 
ℎ 𝑥  𝑥 ∈  𝑈 (1:𝑘)

Composable:  The top priorities in 𝐴 ∪ 𝐵 can be recovered from top priorities in each of 𝐴, 𝐵

Sketching map 𝑆 = priorities ℎ

Analysis Idea:  Larger cardinality ⇔ Higher top priorities

* Implicit also in linear sketches



Composable Cardinality Sketches
Multiple known designs.  One basic idea*. 

• Assign random priorities ℎ(𝑥) to keys 𝑥 ∈ 𝒰
• Sketch of set 𝑈 ⊂ 𝒰  is (derived from) its 𝑘 keys of highest 

priority 
ℎ 𝑥  𝑥 ∈  𝑈 (1:𝑘)

Sketching map 𝑆 = priorities ℎ

Corollary: Inherent vulnerability to adaptive inputs (and privacy) 

Theorem:  Any composable sketching map has a “small” pool

“Determining Pool” Property: 

For random sets 𝑈 ∼  Bern 𝑞 𝒰 , few keys “matter” , most keys are “transparent” to 𝑆 

Just like SQ!



Determining Pool

Groundset 𝒰 Sketching map 𝑆  

Set 𝐿 ⊂ 𝒰 such that for randomly sampled 𝑈 ∼  Bern 𝑞 𝒰  with q = Ω(1) 

𝑆 𝑈 ≈ 𝑆 𝑈 ∩ 𝐿

• A determining pool always exists (take L = 𝒰). 
• To be useful, it needs to be small, depend on sketch size 𝑘 not on ground set size |𝒰| 

Example: SQ – the  pool is the sample 𝑅 of size 𝑘



Example: Pool for MinHash Sketches
HyperLogLog (Stochastic Averaging)

• Randomly prioritize keys

• Randomly partition universe to 𝑘 bucket

Sketch: highest priority key in each bucket

Flajolet Martin ’85
Flajolet et al ‘07 (Hyperloglog)

…… … … … … …

1 2 k



Example: Pool for HyperLogLog MinHash sketch

• Randomly prioritize keys

• Randomly partition universe to 𝑘 bucket

Sketch: highest priority key in each bucket

Flajolet Martin ’85
Flajolet et al ‘07 (Hyperloglog)

…… … … … … …

1 2 k

𝑂(log (𝑘/𝛿) 



Example: Pool for Bottom-𝑘 MinHash Sketches

• Randomly prioritize keys

Sketch: 𝑘 highest priority keys

…

𝑂(𝑘 log (𝑘/𝛿) 



Small Determining Pool 𝐿 is a Vulnerability
Attack Pradigm

• Fix a groundset 𝒰  of size 1000 ⋅ |𝐿|
• Attack identifies 𝑀 ≈ 𝐿  (approximate the determining pool)

Generalizes the Fingerprinting attacks of
[Hardt and Ullman’14 , Steinke and Ullman ‘15] 

For query sets
• 𝑈 ∼  Bern 𝑞 𝒰  for different 𝑞 > 0.2
• 𝑈′ ← 𝑈 ∪ 𝑀 
We have 𝑆 𝑈′ ≈ 𝑆 𝑀       (⇒ 𝑀 masks 𝑈 )

⇒ it is not possible to estimate 𝑈′    ( 𝑈′ > 0.1 |𝒰| ≫ |𝐿| 



Composable Maps

Examples: 

• Statistical Queries: Σ are subsets of the sample 𝑅. S U = U ∩ 𝑅 

• Vectors Spaces (𝜎 is the spanned subspace, cores are basis)

• MinHash: Cores are the low priority keys

Groundset 𝒰 Sketching map 𝑆 from 2𝒰  to Σ
Binary composition operation ⊕ :   𝑆 𝑨 ∪ 𝑩 = 𝑆 𝑨 ⊕ 𝑆(𝑩)

Core of a sketch 𝜎 ∈ Σ:  Minimal U ⊂ 𝒰  such that 𝑆 𝑈 = 𝜎

Monotonicity:  Core size can only increase with subset size
Rank of 𝑆 : Minimum cardinality of a Core

Monotone

Unique 
Core



Composable Maps

Lemma: Maximum sketch size max
𝜎∈S(2𝒰)

𝜎 ≤ 𝑘 ⇒ Rank ≤ 𝑘

Thm:   Pool size for composable maps of rank 𝑘 

General: ෨𝑂( 𝑘2)

Monotone:  ෨𝑂(𝑘)

Constructive proof via Core Peeling, ෨𝑂(𝑘) for general, ෨𝑂(1) for monotone 𝑆

Groundset 𝒰 Sketching map 𝑆 from 2𝒰  to Σ
Binary composition operation ⊕ :   𝑆 𝑨 ∪ 𝑩 = 𝑆 𝑨 ⊕ 𝑆(𝑩)

Core of a sketch 𝜎 ∈ Σ:  Minimal U ⊂ 𝒰  such that 𝑆 𝑈 = 𝜎

Monotonicity:  Core size can only increase with subset size
Rank of 𝑆 : Minimum cardinality of a Core



Single Batch ෨𝑂(|𝐿|) Attack on Optimal Estimator

Lemma:  The ෨𝑂(|𝐿|)  highest scores includes the pool keys 

Single batch: Only the post processing is dependent on prior outputs!

Fix a groundset 𝒰 of size 100 ⋅ |𝐿|; Initialize scores 𝑐 𝑥 ← 0 for 𝑥 ∈ 𝒰 

Repeat ෨𝑂(|𝐿|) times:

  Select U ⊂ 𝒰 to independently include each 𝑥 ∈ 𝒰 with prob 
1

2

  Get cardinality estimate መ𝑓(𝑆 𝑈 )

  For 𝑥 ∈ 𝑈 :  𝑐 𝑥 +=
1

መ𝑓(𝑆 𝑈 )

Output 𝒰 ordered by score

Optimal estimate depends only on intersection with L 
“Transparent” keys do not get biased scores, Pool keys more likely to be scores



Single Batch Attack on HLL++
𝑘 = 104 𝑘 = 416

Cardinality is 
overestimated for prefixes.

Cardinality is 
underestimated for suffixes.



Soft Threshold Queries

Task: Soft threshold queries
o If 𝑈 > 2𝐴  ⇒ return 1 “large”
o If 𝑈 <  𝐴 ⇒ return 0 “small”
o Otherwise  ⇒ unrestricted 0 / 1

⇒ Soft Threshold  can be solved with Approximate Cardinality with 2 × error.   



Unified Universal Attack

Fix a ground set 𝒰 ; Initialize scores 𝑐 𝑥 ← 0 for 𝑥 ∈ 𝒰 ; Initialize mask 𝑀 ← ∅ ;  Set threshold 𝐴 = 0.1 𝒰

Repeat ෨𝑂( 𝐿 2) times:
• Sample rate 𝑞 ∼ 𝑄 
• Select 𝑈 by including each x ∈ 𝒰 with probability 𝑞
• Receive soft threshold 𝑍 ∈ {0,1} for the sketch S(𝑈 ∪ 𝑀) from the query responder
• For each x ∈ 𝒰 , 

• 𝑐 𝑥 ← c x + Z
• If 𝑐 𝑥  is statistically above the median score, then 𝑀 ← 𝑀 ∪ {𝑥}

• Attack works against any query responder (powerful, strategic, adaptive) 

Theorem:  When Sketching map has a determining pool 𝐿, attack forces an error rate of 
1

4
 

after ෨𝑂(|𝐿|2) queries  



Linear Sketches

Query vector 𝒗 – the set are the nonzero entries

𝐴 =
𝒗 =  (0 , 3, 0 , 0 , −2 , 0 , 0 , ⋯ , 0 , 0 )

Sketching matrix

𝑆 𝒗  = A 𝒗

Multiple representations for the same set, not union-composable

Sketch



Linear Sketches: Boolean

Boolean linear sketches are monotone and composable ⇒ ෨𝑂(𝑘2) attack

Values are Boolean, ∨ instead of + , ⋀ instead of * 

෨𝑂(𝑘)  Determining pool: All columns that have 𝟏 value in some sparse measurement   

𝐴𝑖  =  (1,0,1,1, ⋯ , 1 , 0,1 )

𝐴𝑖  =  (0,1,0,0, ⋯ , 0, 1 , 1 )

Idea: Dense measurements do not matter, as whp they are hit with a member of 
a random set and sketch entry is 𝟏 . 

𝐴𝑖+1  =  (1,0,0,0, ⋯ , 0, 0 , 0 )



Integer/Real Linear Sketches with sparsity 
pattern estimators

Boolean linear sketches are monotone and composable ⇒ ෨𝑂(𝑘2) attack

Folklore and other linear sketches  [Cormode, Datar, Indyk, Muthu ’03, 
Ganguly ’07] caused the sketch over integers to behave like Boolean. The 
estimator only uses the sparsity pattern (set of nonzero indices in the 
sketch and not values). 

Result: ෨𝑂(𝑘2)  Attack on linear sketches on reals/integers that only use the 
sparsity structure in the sketch 

Idea: We specify values randomly to attack queries ⇒ probability of any 
cancelation is small ⇒ sketch sparsity behaves like a Boolean sketch



Linear Sketches: Reals, Finite Fields

𝐴 =
𝒗 =  (0 , 3, 0 , 0 , −2 , 0 , 0 , ⋯ , 0 , 0 )

The attack queries are vectors,  augment attack specs with values for the nonzero entries

Approach: We specify values 𝑋 𝑈   so that there is a determining pool 𝐿

1/0 don’t work!   sketch contains exact value 

𝒗 =  (0 , 1, 0 , 0 , 1 , 0 , 0 , ⋯ , 0 , 0 )𝐴 =  (1,1,1,1, ⋯ , 1 , 1 )



Linear Sketches: Reals, Finite Fields

• Take 𝐿  to be the determining pool for the column vectors of 𝐴 for  span. 
• We specify a particular way 𝑋 𝑀, 𝑈  of sampling nonzero values to  M, 𝑈 in 

the attack queries so that 𝐿 is a pool:
𝑆 𝑀, 𝑈, 𝑋(𝑈, 𝑀) ≈ 𝑆 𝑀, 𝑈 ∩ 𝐿, 𝑋(𝑈 ∩ 𝐿, 𝑀)

𝐴 =
𝒗 =  (0 , 3, 0 , 0 , −2 , 0 , 0 , ⋯ , 0 , 0 )

Idea:  span of vectors  𝑈 ↦ 𝑠𝑝𝑎𝑛 𝑈  is a monotone composable map

Result: ෨𝑂(𝑘2)  Attack on linear sketches on reals/finite fields



Conclusion
Vulnerability to adaptive inputs by presenting attacks 

• ෨𝑂(𝑘) queries to attack popular cardinality sketches and estimators

• Tight ෨𝑂(𝑘2) Universal Attacks (against any query responder) on any monotone composable and 
linear sketches over reals, finite fields, Boolean, integers with limited estimators

• ෨𝑂(𝑘4) for general composable sketches

Open:
• General composable sketches
• Determining pool property for other properties beyond cardinality
• Integer Linear Sketches

Follow up: When keys participate in a limited number of queries) where the 
sketch is robust (bound is in terms of key participation)



Thank you!
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