
One Attack to Rule Them All:
Cardinality Sketches under Adaptive Inputs

Edith Cohen

Google Research & Tel Aviv University

Sara Ahmadian Tamás Sarlós Uri StemmerJelani Nelson Mihir Singhal

Outline

Background

• Cardinality Queries

• Composable Sketches
2𝑂(𝑘) non-adaptive queries for sketch
size 𝑘

• Adaptive queries
• Positive results: ෨𝑂(𝑘2) adaptive

queries via wrapper methods

• Negative results via attacks

Our Contributions

A unified universal attack on cardinality
sketches

Structural properties of union-composable
sketches

• Tight ෨𝑂(𝑘2) attacks for monotone
composable sketches and linear sketches
(Boolean, Reals, Finite Fields) and (with
some assumptions) Integers

• ෨𝑂(𝑘4) attack on any composable sketch

• Single-batch ෨𝑂(𝑘) attack on optimal
estimator

Cardinality Queries
 𝐹0 frequency moment / ℓ0 norm /distinct count statistic

𝑫 = (0 , 0 , 3 , −2 , 1 , 0 , 0 , −1, 10 , 0 , 0)

𝑫 = |𝑫| = 5

𝑫 𝟎 = 5

⇒ ⇒

⇒

Applications: Distinct Search Queries, Users, Source-Destination pairs in IP flows……

Sketch Maps

Data D Sketch 𝑺(𝑫)

𝑓(𝑫) ? መ𝑓(𝑺(𝑫))

D ↦ 𝑆(𝐷)

Cardinality sketch: The cardinality of 𝑫 (or 𝑫 𝟎) can be estimated from 𝑺(𝑫)

Maps of data to small representations

Estimator መ𝑓

𝜎 ↦ መ𝑓(𝜎)

Design goals:
• Small 𝑆 𝐷 ≪ |𝐷| (efficient storage/communication)

• Accurate መ𝑓 𝑺 𝑫 ≈ 𝑓(𝑫)
• Composable

Composable Sketch Maps

Data 𝐴 S (A)

Data 𝐵 S (B)

Data 𝐴 ∪ 𝐵 S (A∪ B)

𝐃 ↦ 𝑆(𝑫)

Why Composable?
Efficiency on Distributed/ Streaming
data (operate in sketch space!)

𝑆 𝑨 ∪ 𝑩 = 𝑆 𝑨 ⊕ 𝑆(𝑩)

Practice: dataset in each location /
time-period is sketched and then
discarded. Queries are localized or
on unions of datasets.

Composable sketches for Cardinality

First Try: Explicit representation or a Bloom Filter 𝑆 𝐃 = O(𝐃)⇒

 Want a

small sketch!

Composable sketches for Cardinality

Very small sketches!
Flajolet Martin ’85
Cohen ’97
Alon Marias Szegedy ’99
Bar-Yoseff, Jayram, Kumar, Siva,
 Trevissan ‘02
Cormode, Datar, Indyk, Muthu ’03
Ganguly ‘07
Flajolet et al ‘07 (Hyperloglog)
.
Kane, Nelson, Woordruff ‘10
.
.

Implementations
Apache DataSketches
Google BigQuery
.
.

Sketch size loglog 𝑛 + 𝑘 (𝑛 is dimension)

Statistical guarantees on accuracy:

• NMSE:
1

𝑘

𝑘 =
log

1

𝛿

𝜀2 ⇒ Pr
𝑆∼𝐷

RelE𝑟𝑟𝑜𝑟 > 𝜀 < 𝛿

!! Randomness is necessary

Sketching map 𝑆 ∼ 𝐷 is sampled from a distribution

!! For composability, same sampled map 𝑆 must be
used for all sets

Non-Adaptive Queries

⇒ exponential in 𝑘

Caveat! We use the same sampled map 𝑆 for all
queries

Sketch size loglog 𝑛 + 𝑘

 𝑘 =
log

1

𝛿

𝜀2 ⇒ Pr
𝑆∼𝐷

RelE𝑟𝑟𝑜𝑟 > 𝜀 < 𝛿

Queries 𝑈1, 𝑈2, 𝑈3, … processed in Sketch Space 𝑈𝑖→ 𝑆(𝑈𝑖) → መ𝑓(𝑆 𝑈𝑖)

How many queries can we answer accurately?

? What about the adaptive setting?

⇒ Holds when inputs 𝑈1, 𝑈2, 𝑈3, … are non-adaptive – do not depend on 𝑆 !

Adaptive Queries

Non-adaptive Setting:

The input sequence 𝑈𝑖 𝑖=1
𝑇 does not

depend on the outputs መ𝑓(𝑆 𝑈𝑖

Adaptive Setting:

Each input 𝑈𝑖 may depend on 𝑈𝑗 , መ𝑓(𝑆 𝑈𝑖
𝑗=1

𝑖−1

A system with feedback

Adversarial: Aims to construct a bad input

What guarantees can we give
when inputs are adaptive?

?

Background: Positive Results
Quadratic boost via Wrapper Methods

Simple:

Advanced:

𝒜 with nonadaptive guarantees ⇒ adaptive guarantees

𝒜 × 𝑘 ⇒ ෩Ω(𝑘) adaptive queries

𝒜 × 𝑘 ⇒ ෩Ω(𝑘2) adaptive queries

• Statistical Queries: [Dwork et al., ‘15, Bassily et al., ‘21]
• General Application: [Hassidim et al. ‘20]
• Subsampling: [Blanc ‘23]

Non-adaptive queries: 2𝑂(𝑘)

Negative Results on Cardinality Sketches

෨𝑂(𝑘2) universal attack for adaptive statistical queries (queries over
samples of size 𝑘) [Hardt and Ullman’14 , Steinke and Ullman ‘15]
based on Fingerprinting Codes [Boneh and Shaw ‘98].

Linear Sketches [Gribelyuk et al. 2024]

• ෨𝑂(poly(𝑘)) over reals

• ෨𝑂(𝑘8) over integers

• ෨𝑂(𝑘3) over finite fields

Questions:
Gap – is there an ෨𝑂(𝑘2) attack against any cardinality sketch?
Union-composable sketches (prevalent in practice)

Interaction Model

player

system

estimator

𝑈

𝑆(𝑈)

መ𝑓(𝑆 𝑈)

• “system” : sketches 𝑈𝑖→ 𝑆 𝑈𝑖

Knows: 𝑆 , 𝑈, S(𝑈)

Queries 𝑈1, 𝑈2, 𝑈3, … processed in Sketch Space 𝑈𝑖→ 𝑆(𝑈𝑖) → መ𝑓(𝑆 𝑈𝑖)

*Model corresponds to how sketches are used in practice

Knows:

𝑈, መ𝑓 (S(𝑈))

• “player” (attacker) specifies query set 𝑈𝑖

Knows: 𝑆 , S(𝑈)

• “estimator” (query responder)

returns estimate መ𝑓(𝑆 𝑈𝑖) of |𝑈𝑖|

Attack on sketching map 𝑆

player

system

estimator

𝑈

𝑆(𝑈)

መ𝑓(𝑆 𝑈)

Queries 𝑈1, 𝑈2, 𝑈3, … processed in Sketch Space 𝑈𝑖→ 𝑆(𝑈𝑖) → መ𝑓(𝑆 𝑈𝑖)

Attack types:
• Tailored: Applies with a specific estimator
• Universal: Applies with any query responder

Attack Size: Number of adaptive queries needed to
compromise (force incorrect responses) 𝑆 of size 𝑘

Our Results
A Unified Universal Attack (applies with any estimator)

Tailored Attacks:

• Single-Batch ෨𝑂(𝑘) attack on the optimal estimator

Composable Sketch Map 𝑆 :

• General: ෨𝑂(𝑘4) adaptive queries

• Monotone: ෨𝑂(𝑘2) adaptive queries

Linear Sketch Maps ෨𝑂(𝑘2) adaptive queries

• Boolean, reals ℝ, Finite Fields Fp

• (with some assumptions) Integer

Principled Technique: Structural properties of composable sketching maps

Tight!

Statistical Queries as Cardinality Sketches

Sketching map by a sample 𝑅 of size 𝑘 from the groundset 𝒰

• 𝑆 𝑈 ∶= 𝑈 ∩ 𝑅

MinHash sketches (most used in practice) including Hyperloglog are glorified
drilled-down samples

• Estimate
𝑈∩𝑅

𝒰
 -- accurate on large inputs (a fraction of 𝒰)

• Adaptive attacks aim to identify 𝑅 , query responder aims to be accurate while
protecting 𝑅

Cardinality Sketches

Property facilitating unified ෨𝑂(𝑘2) attack:

Composable cardinality sketches (can be caused to)
“behave like” statistical queries

Only few keys “determine” the sketch

Composable Cardinality Sketches
Multiple known designs. One basic idea*.

• Assign random priorities ℎ(𝑥) to keys 𝑥 ∈ 𝒰
• Sketch of set 𝑈 ⊂ 𝒰 is (derived from) its 𝑘 keys of highest

priority
ℎ 𝑥 𝑥 ∈ 𝑈 (1:𝑘)

Composable: The top priorities in 𝐴 ∪ 𝐵 can be recovered from top priorities in each of 𝐴, 𝐵

Sketching map 𝑆 = priorities ℎ

Analysis Idea: Larger cardinality ⇔ Higher top priorities

* Implicit also in linear sketches

Composable Cardinality Sketches
Multiple known designs. One basic idea*.

• Assign random priorities ℎ(𝑥) to keys 𝑥 ∈ 𝒰
• Sketch of set 𝑈 ⊂ 𝒰 is (derived from) its 𝑘 keys of highest

priority
ℎ 𝑥 𝑥 ∈ 𝑈 (1:𝑘)

Sketching map 𝑆 = priorities ℎ

Corollary: Inherent vulnerability to adaptive inputs (and privacy)

Theorem: Any composable sketching map has a “small” pool

“Determining Pool” Property:

For random sets 𝑈 ∼ Bern 𝑞 𝒰 , few keys “matter” , most keys are “transparent” to 𝑆

Just like SQ!

Determining Pool

Groundset 𝒰 Sketching map 𝑆

Set 𝐿 ⊂ 𝒰 such that for randomly sampled 𝑈 ∼ Bern 𝑞 𝒰 with q = Ω(1)

𝑆 𝑈 ≈ 𝑆 𝑈 ∩ 𝐿

• A determining pool always exists (take L = 𝒰).
• To be useful, it needs to be small, depend on sketch size 𝑘 not on ground set size |𝒰|

Example: SQ – the pool is the sample 𝑅 of size 𝑘

Example: Pool for MinHash Sketches
HyperLogLog (Stochastic Averaging)

• Randomly prioritize keys

• Randomly partition universe to 𝑘 bucket

Sketch: highest priority key in each bucket

Flajolet Martin ’85
Flajolet et al ‘07 (Hyperloglog)

…… … … … … …

1 2 k

Example: Pool for HyperLogLog MinHash sketch

• Randomly prioritize keys

• Randomly partition universe to 𝑘 bucket

Sketch: highest priority key in each bucket

Flajolet Martin ’85
Flajolet et al ‘07 (Hyperloglog)

…… … … … … …

1 2 k

𝑂(log (𝑘/𝛿)

Example: Pool for Bottom-𝑘 MinHash Sketches

• Randomly prioritize keys

Sketch: 𝑘 highest priority keys

…

𝑂(𝑘 log (𝑘/𝛿)

Small Determining Pool 𝐿 is a Vulnerability
Attack Pradigm

• Fix a groundset 𝒰 of size 1000 ⋅ |𝐿|
• Attack identifies 𝑀 ≈ 𝐿 (approximate the determining pool)

Generalizes the Fingerprinting attacks of
[Hardt and Ullman’14 , Steinke and Ullman ‘15]

For query sets
• 𝑈 ∼ Bern 𝑞 𝒰 for different 𝑞 > 0.2
• 𝑈′ ← 𝑈 ∪ 𝑀
We have 𝑆 𝑈′ ≈ 𝑆 𝑀 (⇒ 𝑀 masks 𝑈)

⇒ it is not possible to estimate 𝑈′ (𝑈′ > 0.1 |𝒰| ≫ |𝐿|

Composable Maps

Examples:

• Statistical Queries: Σ are subsets of the sample 𝑅. S U = U ∩ 𝑅

• Vectors Spaces (𝜎 is the spanned subspace, cores are basis)

• MinHash: Cores are the low priority keys

Groundset 𝒰 Sketching map 𝑆 from 2𝒰 to Σ
Binary composition operation ⊕ : 𝑆 𝑨 ∪ 𝑩 = 𝑆 𝑨 ⊕ 𝑆(𝑩)

Core of a sketch 𝜎 ∈ Σ: Minimal U ⊂ 𝒰 such that 𝑆 𝑈 = 𝜎

Monotonicity: Core size can only increase with subset size
Rank of 𝑆 : Minimum cardinality of a Core

Monotone

Unique
Core

Composable Maps

Lemma: Maximum sketch size max
𝜎∈S(2𝒰)

𝜎 ≤ 𝑘 ⇒ Rank ≤ 𝑘

Thm: Pool size for composable maps of rank 𝑘

General: ෨𝑂(𝑘2)

Monotone: ෨𝑂(𝑘)

Constructive proof via Core Peeling, ෨𝑂(𝑘) for general, ෨𝑂(1) for monotone 𝑆

Groundset 𝒰 Sketching map 𝑆 from 2𝒰 to Σ
Binary composition operation ⊕ : 𝑆 𝑨 ∪ 𝑩 = 𝑆 𝑨 ⊕ 𝑆(𝑩)

Core of a sketch 𝜎 ∈ Σ: Minimal U ⊂ 𝒰 such that 𝑆 𝑈 = 𝜎

Monotonicity: Core size can only increase with subset size
Rank of 𝑆 : Minimum cardinality of a Core

Single Batch ෨𝑂(|𝐿|) Attack on Optimal Estimator

Lemma: The ෨𝑂(|𝐿|) highest scores includes the pool keys

Single batch: Only the post processing is dependent on prior outputs!

Fix a groundset 𝒰 of size 100 ⋅ |𝐿|; Initialize scores 𝑐 𝑥 ← 0 for 𝑥 ∈ 𝒰

Repeat ෨𝑂(|𝐿|) times:

 Select U ⊂ 𝒰 to independently include each 𝑥 ∈ 𝒰 with prob
1

2

 Get cardinality estimate መ𝑓(𝑆 𝑈)

 For 𝑥 ∈ 𝑈 : 𝑐 𝑥 +=
1

መ𝑓(𝑆 𝑈)

Output 𝒰 ordered by score

Optimal estimate depends only on intersection with L
“Transparent” keys do not get biased scores, Pool keys more likely to be scores

Single Batch Attack on HLL++
𝑘 = 104 𝑘 = 416

Cardinality is
overestimated for prefixes.

Cardinality is
underestimated for suffixes.

Soft Threshold Queries

Task: Soft threshold queries
o If 𝑈 > 2𝐴 ⇒ return 1 “large”
o If 𝑈 < 𝐴 ⇒ return 0 “small”
o Otherwise ⇒ unrestricted 0 / 1

⇒ Soft Threshold can be solved with Approximate Cardinality with 2 × error.

Unified Universal Attack

Fix a ground set 𝒰 ; Initialize scores 𝑐 𝑥 ← 0 for 𝑥 ∈ 𝒰 ; Initialize mask 𝑀 ← ∅ ; Set threshold 𝐴 = 0.1 𝒰

Repeat ෨𝑂(𝐿 2) times:
• Sample rate 𝑞 ∼ 𝑄
• Select 𝑈 by including each x ∈ 𝒰 with probability 𝑞
• Receive soft threshold 𝑍 ∈ {0,1} for the sketch S(𝑈 ∪ 𝑀) from the query responder
• For each x ∈ 𝒰 ,

• 𝑐 𝑥 ← c x + Z
• If 𝑐 𝑥 is statistically above the median score, then 𝑀 ← 𝑀 ∪ {𝑥}

• Attack works against any query responder (powerful, strategic, adaptive)

Theorem: When Sketching map has a determining pool 𝐿, attack forces an error rate of
1

4

after ෨𝑂(|𝐿|2) queries

Linear Sketches

Query vector 𝒗 – the set are the nonzero entries

𝐴 =
𝒗 = (0 , 3, 0 , 0 , −2 , 0 , 0 , ⋯ , 0 , 0)

Sketching matrix

𝑆 𝒗 = A 𝒗

Multiple representations for the same set, not union-composable

Sketch

Linear Sketches: Boolean

Boolean linear sketches are monotone and composable ⇒ ෨𝑂(𝑘2) attack

Values are Boolean, ∨ instead of + , ⋀ instead of *

෨𝑂(𝑘) Determining pool: All columns that have 𝟏 value in some sparse measurement

𝐴𝑖 = (1,0,1,1, ⋯ , 1 , 0,1)

𝐴𝑖 = (0,1,0,0, ⋯ , 0, 1 , 1)

Idea: Dense measurements do not matter, as whp they are hit with a member of
a random set and sketch entry is 𝟏 .

𝐴𝑖+1 = (1,0,0,0, ⋯ , 0, 0 , 0)

Integer/Real Linear Sketches with sparsity
pattern estimators

Boolean linear sketches are monotone and composable ⇒ ෨𝑂(𝑘2) attack

Folklore and other linear sketches [Cormode, Datar, Indyk, Muthu ’03,
Ganguly ’07] caused the sketch over integers to behave like Boolean. The
estimator only uses the sparsity pattern (set of nonzero indices in the
sketch and not values).

Result: ෨𝑂(𝑘2) Attack on linear sketches on reals/integers that only use the
sparsity structure in the sketch

Idea: We specify values randomly to attack queries ⇒ probability of any
cancelation is small ⇒ sketch sparsity behaves like a Boolean sketch

Linear Sketches: Reals, Finite Fields

𝐴 =
𝒗 = (0 , 3, 0 , 0 , −2 , 0 , 0 , ⋯ , 0 , 0)

The attack queries are vectors, augment attack specs with values for the nonzero entries

Approach: We specify values 𝑋 𝑈 so that there is a determining pool 𝐿

1/0 don’t work! sketch contains exact value

𝒗 = (0 , 1, 0 , 0 , 1 , 0 , 0 , ⋯ , 0 , 0)𝐴 = (1,1,1,1, ⋯ , 1 , 1)

Linear Sketches: Reals, Finite Fields

• Take 𝐿 to be the determining pool for the column vectors of 𝐴 for span.
• We specify a particular way 𝑋 𝑀, 𝑈 of sampling nonzero values to M, 𝑈 in

the attack queries so that 𝐿 is a pool:
𝑆 𝑀, 𝑈, 𝑋(𝑈, 𝑀) ≈ 𝑆 𝑀, 𝑈 ∩ 𝐿, 𝑋(𝑈 ∩ 𝐿, 𝑀)

𝐴 =
𝒗 = (0 , 3, 0 , 0 , −2 , 0 , 0 , ⋯ , 0 , 0)

Idea: span of vectors 𝑈 ↦ 𝑠𝑝𝑎𝑛 𝑈 is a monotone composable map

Result: ෨𝑂(𝑘2) Attack on linear sketches on reals/finite fields

Conclusion
Vulnerability to adaptive inputs by presenting attacks

• ෨𝑂(𝑘) queries to attack popular cardinality sketches and estimators

• Tight ෨𝑂(𝑘2) Universal Attacks (against any query responder) on any monotone composable and
linear sketches over reals, finite fields, Boolean, integers with limited estimators

• ෨𝑂(𝑘4) for general composable sketches

Open:
• General composable sketches
• Determining pool property for other properties beyond cardinality
• Integer Linear Sketches

Follow up: When keys participate in a limited number of queries) where the
sketch is robust (bound is in terms of key participation)

Thank you!

	Slide 1: One Attack to Rule Them All: Cardinality Sketches under Adaptive Inputs
	Slide 2: Outline
	Slide 3: Cardinality Queries F 0 frequency moment / ℓ 0 norm /distinct count statistic
	Slide 4: Sketch Maps
	Slide 5: Composable Sketch Maps
	Slide 6: Composable sketches for Cardinality
	Slide 7: Composable sketches for Cardinality
	Slide 8: Non-Adaptive Queries
	Slide 9: Adaptive Queries
	Slide 10: Background: Positive Results Quadratic boost via Wrapper Methods
	Slide 11: Negative Results on Cardinality Sketches
	Slide 12: Interaction Model
	Slide 13: Attack on sketching map S
	Slide 14: Our Results
	Slide 15: Statistical Queries as Cardinality Sketches
	Slide 16: Cardinality Sketches
	Slide 17: Composable Cardinality Sketches
	Slide 18: Composable Cardinality Sketches
	Slide 19: Determining Pool
	Slide 20: Example: Pool for MinHash Sketches HyperLogLog (Stochastic Averaging)
	Slide 21: Example: Pool for HyperLogLog MinHash sketch
	Slide 22: Example: Pool for Bottom-k MinHash Sketches
	Slide 23: Small Determining Pool L is a Vulnerability Attack Pradigm
	Slide 24: Composable Maps
	Slide 25: Composable Maps
	Slide 26: Single Batch O L Attack on Optimal Estimator
	Slide 27
	Slide 28: Soft Threshold Queries
	Slide 29: Unified Universal Attack
	Slide 30: Linear Sketches
	Slide 31: Linear Sketches: Boolean
	Slide 32: Integer/Real Linear Sketches with sparsity pattern estimators
	Slide 33: Linear Sketches: Reals, Finite Fields
	Slide 34: Linear Sketches: Reals, Finite Fields
	Slide 35: Conclusion
	Slide 36: Thank you!

