### One Attack to Rule Them All: Cardinality Sketches under Adaptive Inputs



#### **Edith Cohen**

**Google Research & Tel Aviv University** 

#### Sara Ahmadian





#### Jelani Nelson Tamás Sarlós





#### Mihir Singhal

#### l Uri Stemmer





### Outline

#### Background

- Cardinality Queries
- Composable Sketches
  - $2^{O(k)}$  non-adaptive queries for sketch size k
- Adaptive queries
  - Positive results:  $\tilde{O}(k^2)$  adaptive queries via wrapper methods
  - Negative results via attacks

#### **Our Contributions**

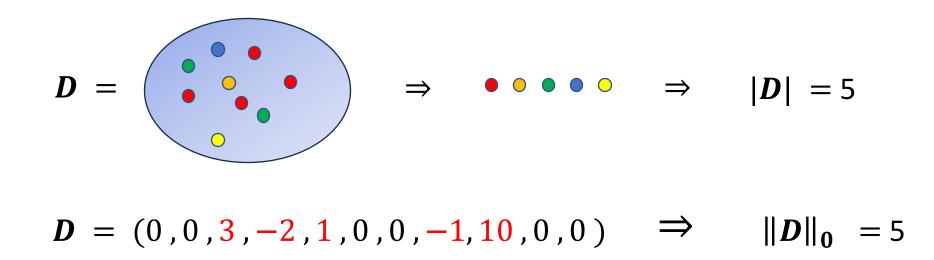
A unified universal attack on cardinality sketches

Structural properties of union-composable sketches

- Tight Õ(k<sup>2</sup>) attacks for monotone composable sketches and linear sketches (Boolean, Reals, Finite Fields) and (with some assumptions) Integers
- $\tilde{O}(k^4)$  attack on any composable sketch
- Single-batch  $\tilde{O}(k)$  attack on optimal estimator

#### Cardinality Queries

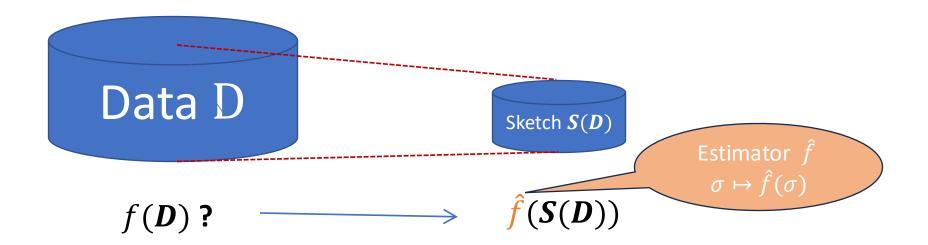
F0 frequency moment /  $\ell_0$  norm /distinct count statistic



**Applications**: Distinct Search Queries, Users, Source-Destination pairs in IP flows.....

#### Sketch Maps

Maps of data to small representations  $D \mapsto S(D)$ 

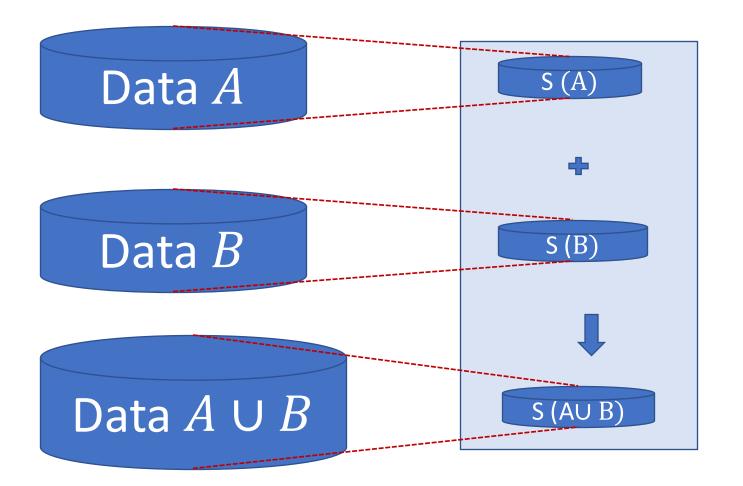


Cardinality sketch: The cardinality of **D** (or  $||D||_0$ ) can be estimated from S(D)

#### **Design goals:**

- Small  $|S(D)| \ll |D|$  (efficient storage/communication)
- Accurate  $\hat{f}(S(D)) \approx f(D)$
- Composable

#### Composable Sketch Maps



$$\mathbf{D}\mapsto S(\mathbf{D})$$

 $S(\mathbf{A} \cup \mathbf{B}) = S(\mathbf{A}) \oplus S(\mathbf{B})$ 

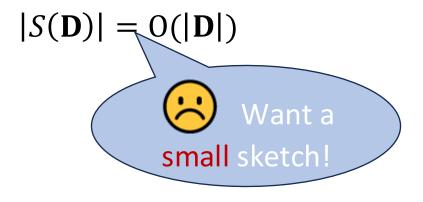
#### Why Composable?

Efficiency on Distributed/ Streaming data (operate in sketch space!)

Practice: dataset in each location / time-period is sketched and then discarded. Queries are localized or on unions of datasets.

### Composable sketches for Cardinality

First Try: Explicit representation or a Bloom Filter  $\Rightarrow$ 



## Composable sketches for Cardinality

#### Very small sketches!

Flajolet Martin '85 Cohen '97 Alon Marias Szegedy '99 Bar-Yoseff, Jayram, Kumar, Siva, Trevissan '02 Cormode, Datar, Indyk, Muthu '03 Ganguly '07 Flajolet et al '07 (Hyperloglog)

Kane, Nelson, Woordruff '10

Implementations Apache DataSketches Google BigQuery

#### !! Randomness is necessary

Sketching map  $S \sim D$  is sampled from a distribution

!! For composability, same sampled map S must be used for all sets

Sketch size  $\log \log n + k$  (*n* is dimension)

Statistical guarantees on accuracy:

NMSE $\cdot \frac{1}{-}$ 

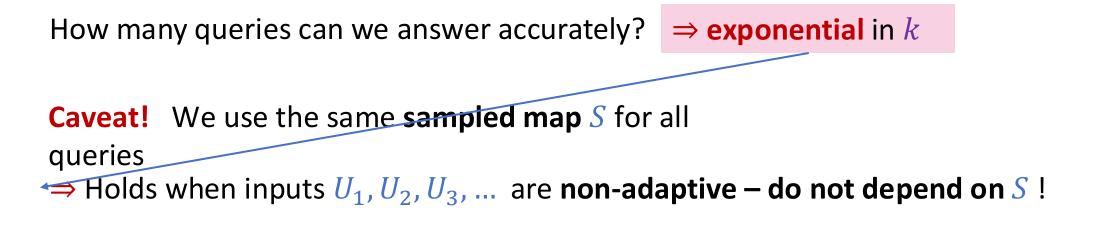
$$k = \frac{\log(\frac{1}{\delta})}{\varepsilon^2} \quad \Rightarrow \quad \Pr[\text{RelError} > \varepsilon] <$$

δ

#### Non-Adaptive Queries

Sketch size loglog 
$$n + k$$
  
 $k = \frac{\log(\frac{1}{\delta})}{\varepsilon^2} \Rightarrow \Pr_{S \sim D} [\operatorname{RelError} > \varepsilon] < \delta$ 

Queries  $U_1, U_2, U_3, \dots$  processed in Sketch Space  $U_i \rightarrow S(U_i) \rightarrow \hat{f}(S(U_i))$ 



? What about the adaptive setting?

### Adaptive Queries

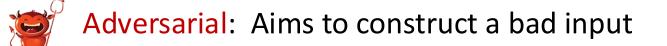
**Non-adaptive** Setting: The input sequence  $(U_i)_{i=1}^T$  does not depend on the outputs  $\hat{f}(S(U_i))$ 

Adaptive Setting:

Each input  $U_i$  may depend on  $\left(U_j, \hat{f}(S(U_i))\right)_{i=1}^{i-1}$ 

What guarantees can we give when inputs are adaptive?





Background: Positive Results Quadratic boost via Wrapper Methods

 $\mathcal{A}$  with nonadaptive guarantees  $\Rightarrow$  adaptive guarantees

Simple:  $\mathcal{A} \times k \Rightarrow \widetilde{\Omega}(k)$  adaptive queries

Advanced:  $\mathcal{A} \times k \Rightarrow \widetilde{\Omega}(k^2)$  adaptive queries

- Statistical Queries: [Dwork et al., '15, Bassily et al., '21]
- General Application: [Hassidim et al. '20]
- Subsampling: [Blanc '23]

**Non-adaptive** queries:  $2^{O(k)}$ 

### Negative Results on Cardinality Sketches

 $\tilde{O}(k^2)$  universal attack for adaptive statistical queries (queries over samples of size k) [Hardt and Ullman'14, Steinke and Ullman '15] based on Fingerprinting Codes [Boneh and Shaw '98].

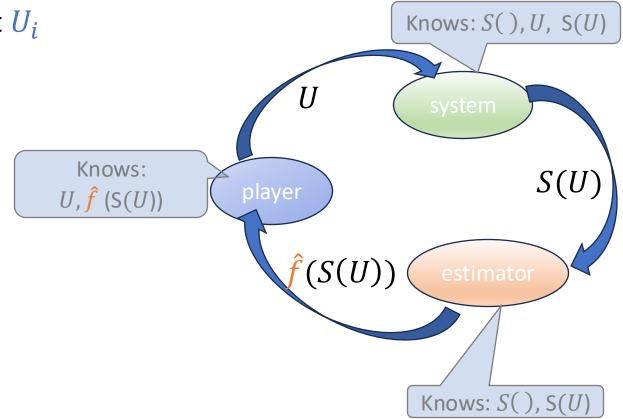
Linear Sketches [Gribelyuk et al. 2024]

- $\tilde{O}(\operatorname{poly}(k))$  over reals
- $\tilde{O}(k^8)$  over integers
- $\tilde{O}(k^3)$  over finite fields

Questions: Gap – is there an  $\tilde{O}(k^2)$  attack against any cardinality sketch? Union-composable sketches (prevalent in practice)

#### Interaction Model Queries $U_1, U_2, U_3, \dots$ processed in Sketch Space $U_i \rightarrow S(U_i) \rightarrow \hat{f}(S(U_i))$

- "player" (attacker) specifies query set  $U_i$
- "system" : sketches  $U_i \rightarrow S(U_i)$
- "estimator" (query responder) returns estimate  $\hat{f}(S(U_i))$  of  $|U_i|$



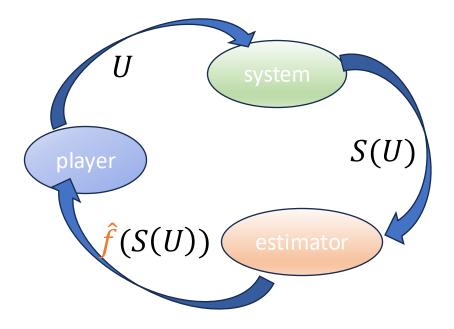
### Attack on sketching map S

Queries  $U_1, U_2, U_3, \dots$  processed in Sketch Space  $U_i \rightarrow S(U_i) \rightarrow \hat{f}(S(U_i))$ 

**Attack Size:** Number of adaptive queries needed to *compromise* (force incorrect responses) *S* of size *k* 

#### Attack types:

- *Tailored*: Applies with a specific estimator
- Universal: Applies with any query responder



### Our Results

A Unified Universal Attack (applies with any estimator)

Composable Sketch Map S :

- General:  $\tilde{O}(k^4)$  adaptive queries
- Monotone:  $\tilde{O}(k^2)$  adaptive queries

Linear Sketch Maps  $\tilde{O}(k^2)$  adaptive queries

- Boolean, reals  $\mathbb{R}$ , Finite Fields  $F_p$
- (with some assumptions) Integer

Principled Technique: Structural properties of composable sketching maps

Tailored Attacks:

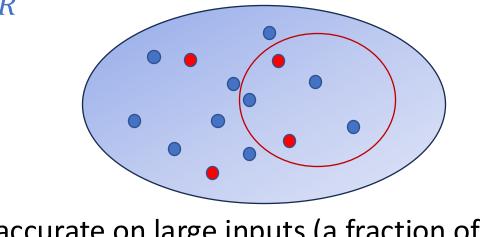
• Single-Batch  $\tilde{O}(k)$  attack on the optimal estimator



### Statistical Queries as Cardinality Sketches

Sketching map by a sample R of size k from the groundset U

•  $S(U) := U \cap R$ 



- Estimate  $\frac{|U \cap R|}{|U|}$  -- accurate on large inputs (a fraction of U)
- Adaptive attacks aim to identify R, query responder aims to be accurate while protecting R

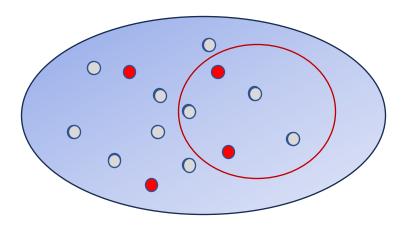
MinHash sketches (most used in practice) including Hyperloglog are glorified drilled-down samples

### Cardinality Sketches

**Property facilitating unified**  $\tilde{O}(k^2)$  attack:

Composable cardinality sketches (can be caused to) "behave like" statistical queries

Only few keys "determine" the sketch



# Composable Cardinality Sketches

Multiple known designs. One basic idea\*.

- Assign random priorities h(x) to keys  $x \in \mathcal{U}$
- Sketch of set  $U \subset \mathcal{U}$  is (derived from) its k keys of highest priority

 ${h(x) \mid x \in U}_{(1:k)}$ 

Sketching map S = **priorities** h

**Analysis Idea**: Larger cardinality  $\Leftrightarrow$  Higher top priorities

**Composable**: The top priorities in  $A \cup B$  can be recovered from top priorities in each of A, B

\* Implicit also in linear sketches

Composable Cardinality Sketches Multiple known designs. One basic idea\*.

- Assign random priorities h(x) to keys  $x \in \mathcal{U}$
- Sketch of set  $U \subset \mathcal{U}$  is (derived from) its k keys of highest priority

 ${h(x) \mid x \in U}_{(1:k)}$ 

Sketching map S = **priorities** h

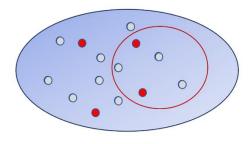
#### "Determining Pool" Property:

For random sets  $U \sim \text{Bern}[q]^{\mathcal{U}}$ , few keys "matter", most keys are "transparent" to S

Just like SQ!

**Theorem**: Any composable sketching map has a "small" pool

**Corollary**: Inherent vulnerability to adaptive inputs (and privacy)

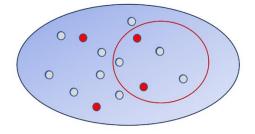


### **Determining Pool**

```
Groundset \mathcal{U} Sketching map S
Set L \subset \mathcal{U} such that for randomly sampled U \sim \text{Bern}[q]^{\mathcal{U}} with q = \Omega(1)
S(U) \approx S(U \cap L)
```

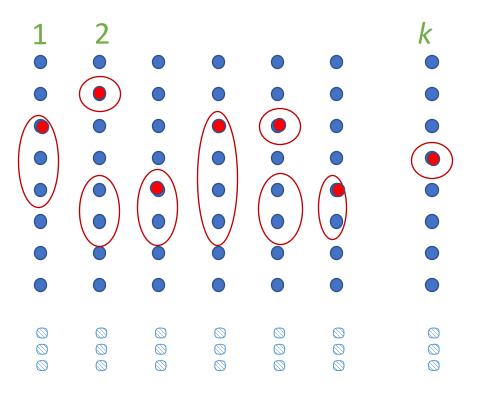
- A determining pool always exists (take L = U).
- To be useful, it needs to be small, depend on sketch size k not on ground set size  $|\mathcal{U}|$

**Example**: SQ - the pool is the sample R of size k



# Example: Pool for MinHash Sketches HyperLogLog (Stochastic Averaging)

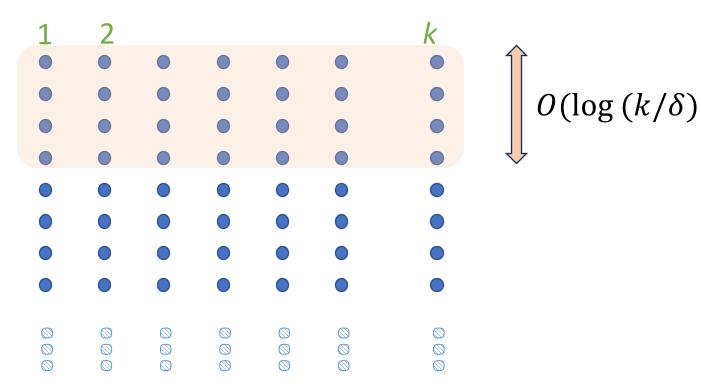
- Randomly prioritize keys
- Randomly partition universe to k bucket
   Sketch: highest priority key in each bucket



Flajolet Martin '85 Flajolet et al '07 (Hyperloglog)

### Example: Pool for HyperLogLog MinHash sketch

- Randomly prioritize keys
- Randomly partition universe to k bucket
   Sketch: highest priority key in each bucket

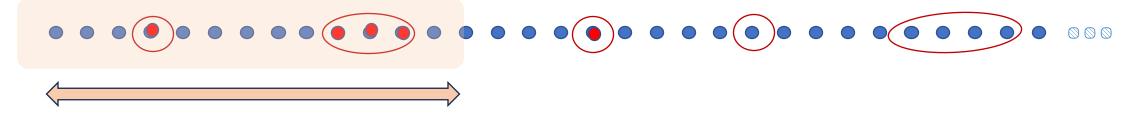


Flajolet Martin '85 Flajolet et al '07 (Hyperloglog)

### Example: Pool for Bottom-k MinHash Sketches

• Randomly prioritize keys

**Sketch**: *k* highest priority keys



 $O(k \log{(k/\delta)})$ 

## Small Determining Pool *L* is a Vulnerability Attack Pradigm

- Fix a groundset  $\mathcal{U}$  of size  $1000 \cdot |L|$
- Attack identifies  $M \approx L$  (approximate the determining pool)

For query sets

- $U \sim \text{Bern}[q]^{\mathcal{U}}$  for different q > 0.2
- $U' \leftarrow U \cup M$

We have  $S(U') \approx S(M) \quad (\Rightarrow M \text{ masks } U)$ 

 $\Rightarrow$  it is not possible to estimate |U'| ( $|U'| > 0.1 |U| \gg |L|$ 

Generalizes the Fingerprinting attacks of [Hardt and Ullman'14, Steinke and Ullman '15]

### Composable Maps

Groundset  $\mathcal{U}$  Sketching map S from  $2^{\mathcal{U}}$  to  $\Sigma$ Binary composition operation  $\bigoplus : S(A \cup B) = S(A) \bigoplus S(B)$ 

Core of a sketch  $\sigma \in \Sigma$ : Minimal  $U \subset \mathcal{U}$  such that  $S(U) = \sigma$ 

Monotonicity: Core size can only increase with subset size Rank of *S* : Minimum cardinality of a Core

#### **Examples:**

• Statistical Queries:  $\Sigma$  are subsets of the sample R.  $S(U) = U \cap R_{2}$ 

Monotone

Unique

Core

- Vectors Spaces ( $\sigma$  is the spanned subspace, cores are basis).
- MinHash: Cores are the low priority keys

### Composable Maps

Groundset  $\mathcal{U}$  Sketching map S from  $2^{\mathcal{U}}$  to  $\Sigma$ Binary composition operation  $\bigoplus : S(A \cup B) = S(A) \bigoplus S(B)$ 

Core of a sketch  $\sigma \in \Sigma$ : Minimal  $U \subset \mathcal{U}$  such that  $S(U) = \sigma$ 

Monotonicity: Core size can only increase with subset size Rank of *S* : Minimum cardinality of a Core

**Lemma**: Maximum sketch size  $\max_{\sigma \in S(2^{\mathcal{U}})} |\sigma| \le k \Rightarrow \text{Rank} \le k$  **Thm**: Pool size for composable maps of rank kGeneral:  $\tilde{O}(k^2)$ Monotone:  $\tilde{O}(k)$ 

Constructive proof via Core Peeling,  $\tilde{O}(k)$  for general,  $\tilde{O}(1)$  for monotone S

# Single Batch $\tilde{O}(|L|)$ Attack on Optimal Estimator

Fix a groundset  $\mathcal{U}$  of size  $100 \cdot |L|$ ; Initialize *scores*  $c[x] \leftarrow 0$  for  $x \in \mathcal{U}$ **Repeat**  $\tilde{O}(|L|)$  times:

Select  $U \subset \mathcal{U}$  to independently include each  $x \in \mathcal{U}$  with prob  $\frac{1}{2}$ 

Get cardinality estimate  $\hat{f}(S(U))$ 

For  $x \in U$ :  $c[x] += \frac{1}{\hat{f}(S(U))}$ 

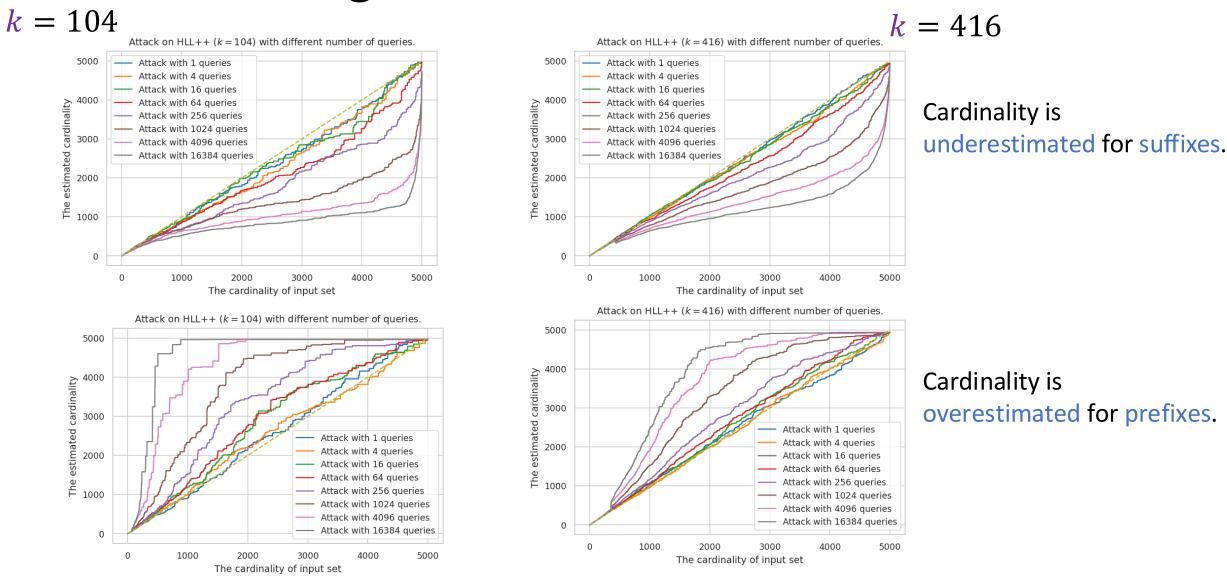
**Output**  $\mathcal{U}$  ordered by score

Single batch: Only the post processing is dependent on prior outputs!

**Lemma**: The  $\tilde{O}(|L|)$  highest scores includes the pool keys

Optimal estimate depends only on intersection with L "Transparent" keys do not get biased scores, Pool keys more likely to be scores

#### Single Batch Attack on HLL++



### Soft Threshold Queries

Task: Soft threshold queries $\circ$  If  $|U| > 2A \Rightarrow$  return 1 "large" $\circ$  If  $|U| < A \Rightarrow$  return 0 "small" $\circ$  Otherwise  $\Rightarrow$  unrestricted 0 / 1

 $\Rightarrow$  Soft Threshold can be solved with Approximate Cardinality with  $\sqrt{2} \times$  error.

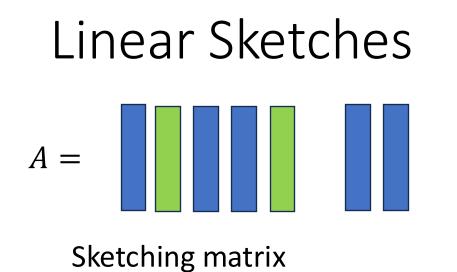
### Unified Universal Attack

Fix a ground set  $\mathcal{U}$ ; Initialize scores  $c[x] \leftarrow 0$  for  $x \in \mathcal{U}$ ; Initialize mask  $M \leftarrow \emptyset$ ; Set threshold  $A = 0.1 |\mathcal{U}|$ 

**Repeat**  $\tilde{O}(|L|^2)$  times:

- Sample rate  $q \sim Q$
- Select U by including each  $x \in U$  with probability q
- Receive soft threshold  $Z \in \{0,1\}$  for the sketch  $S(U \cup M)$  from the query responder
- For each  $x \in \mathcal{U}$ ,
  - $c[x] \leftarrow c[x] + Z$
  - If c[x] is statistically above the median score, then  $M \leftarrow M \cup \{x\}$
- Attack works against any query responder (powerful, strategic, adaptive)

**Theorem**: When Sketching map has a determining pool *L*, attack forces an error rate of  $\frac{1}{4}$  after  $\tilde{O}(|L|^2)$  queries



$$v = (0, 3, 0, 0, -2, 0, 0, \dots, 0, 0)$$

Query vector v – the set are the nonzero entries

S(v) = A vSketch

Multiple representations for the same set, not union-composable

#### Linear Sketches: Boolean

Values are Boolean, V instead of + ,  $\Lambda$  instead of \*

Boolean linear sketches are monotone and composable  $\Rightarrow \tilde{O}(k^2)$  attack

 $\tilde{O}(k)$  Determining pool: All columns that have **1** value in some sparse measurement

$$A_{i} = (0,1,0,0,\cdots,0,1,1)$$
$$A_{i+1} = (1,0,0,0,\cdots,0,0,0)$$

**Idea**: Dense measurements do not matter, as whp they are hit with a member of a random set and sketch entry is  ${f 1}$ .

$$A_i = (1,0,1,1,\cdots,1,0,1)$$

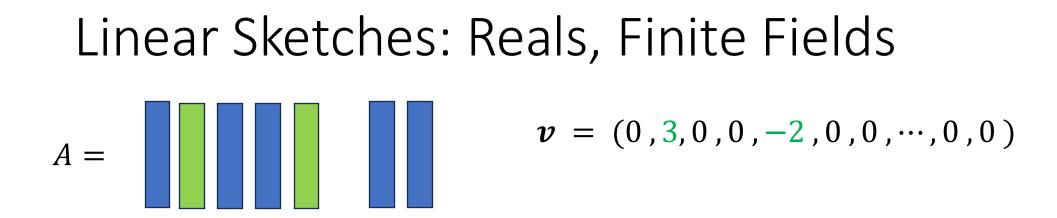
# Integer/Real Linear Sketches with sparsity pattern estimators

Boolean linear sketches are monotone and composable  $\Rightarrow \tilde{O}(k^2)$  attack

Folklore and other linear sketches [Cormode, Datar, Indyk, Muthu '03, Ganguly '07] caused the sketch over integers to behave like Boolean. The estimator only uses the sparsity pattern (set of nonzero indices in the sketch and not values).

Result:  $\tilde{O}(k^2)$  Attack on linear sketches on reals/integers that only use the sparsity structure in the sketch

Idea: We specify values randomly to attack queries  $\Rightarrow$  probability of any cancelation is small  $\Rightarrow$  sketch sparsity behaves like a Boolean sketch

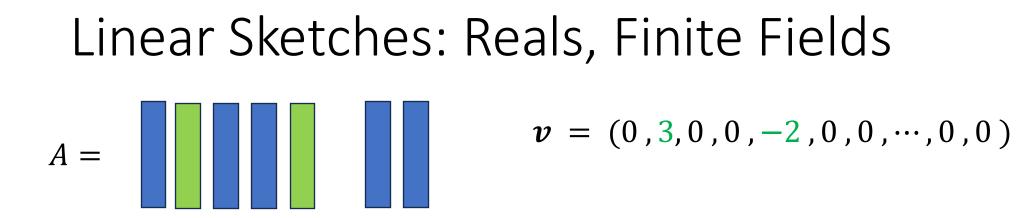


The attack queries are vectors, augment attack specs with values for the nonzero entries

1/0 don't work! sketch contains exact value

 $A = (1,1,1,1,\cdots,1,1) \qquad v = (0,1,0,0,1,0,0,\cdots,0,0)$ 

Approach: We specify values X(U) so that there is a determining pool L



**Result:**  $\tilde{O}(k^2)$  Attack on linear sketches on reals/finite fields

Idea: span of vectors  $U \mapsto span(U)$  is a monotone composable map

- Take *L* to be the determining pool for the column vectors of *A* for span.
- We specify a particular way X(M, U) of sampling nonzero values to M, U in the attack queries so that L is a pool:  $S(M, U, X(U, M)) \approx S(M, U, Q, L, M)$

 $S(M, U, X(U, M)) \approx S(M, U \cap L, X(U \cap L, M))$ 

### Conclusion

Vulnerability to adaptive inputs by presenting attacks

- $\tilde{O}(k)$  queries to attack popular cardinality sketches and estimators
- Tight  $\tilde{O}(k^2)$  Universal Attacks (against any query responder) on any monotone composable and linear sketches over reals, finite fields, Boolean, integers with limited estimators
- $\tilde{O}(k^4)$  for general composable sketches

#### Open:

- General composable sketches
- Determining pool property for other properties beyond cardinality
- Integer Linear Sketches

**Follow up:** When keys participate in a limited number of queries) where the sketch is robust (bound is in terms of key participation)

# Thank you!