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Prologue:
Unpredictable breakthroughs



Breakthroughs in training
Grokking (Power et al.)
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Breakthroughs in training

Induction Heads (Olsson et al.)

 Multilayer models form a
circuit with two steps

ONE LAYER TWO LAYER THREE LAYER
(ATTENTION-ONLY) (ATTENTION-ONLY) (ATTENTION-ONLY)

* First search for previous
occurrence

“\
 Then copy next token _ - »\

 Think: priming effects | \

—

* Used for in-context learning Olsson et al.. 2022



Breakthroughs In scale

“Emergence” or “Breakthrough” (Srivastava et al.)

 Compositional, usually

® Standard prompting
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* Classic example: Multiple choice QA i i Of (oughy Prompng
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What makes a capability breakthrough?



What makes a capability breakthrough?

 Compositional structure
 Competition between possible solutions

* Multimodality (across random seeds or subtle changes)



What makes a capability breakthrough?

(Bonus question: Are these ... all the same thing?)

 Compositional structure
 Competition between possible solutions

* Multimodality (across random seeds or subtle changes)
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Case study 1:
Sudden syntax acquisition

SUDDEN DROPS IN THE LOSS: SYNTAX ACQUISITION,
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Angelica Chen' Ravid Shwartz-Ziv! Kyunghyun Cho!-?:3

Matthew L. Leavitt* Naomi Saphra®
{angelica.chen, ravid.shwartz.ziv, kyunghyun.cho}@nyu.edu
matthewl@datologyai.com nsaphra@fas.harvard.edu

INYU 2Genentech 3CIFARLMB % DatologyAl ° Kempner Institute, Harvard



Masked Language Modeling (MLM) with BERT

* The task: predict a masked out (missing) word from a sequence.
 Used to build a pretrained model which can be finetuned for other tasks.

« BERT: made up of Transformer heads, which compute an attention
distribution to reweight the representation of each word in a sequence.

Darker => higher weight

finch wears black hats

OE OO

Target: “wears”
10




Syntactic Attention Structure (SAS)
Voita et al., 2019 and Clark et al., 2019

» Given a syntactic relation, /‘\
some BERT head attends m f\

to that relation consistently. wears hats

nsubj head D D D D
L1 L] L1 L]

Target: “wears”

dobj head
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Syntactic Attention Structure (SAS)
Voita et al., 2019 and Clark et al., 2019

» Given a syntactic relation, /‘\
some BERT head attends f\ m

to that relation consistently. wears hats
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Syntactic Attention Structure (SAS)
Voita et al., 2019 and Clark et al., 2019

» Given a syntactic relation, /‘\
some BERT head attends m m M
to that relation consistently. e o

° Natura”y emerging nsubj head D . D D
property in masked

language models!

g

Target: “wears”

Ll H

dobj head
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Syntactic Attention Structure (SAS)
Voita et al., 2019 and Clark et al., 2019

» Given a syntactic relation, /‘\
some BERT head attends m m M
to that relation consistently. e o

° Natura”y emerging nsubj head D . D D
property in masked

language models!

* Measured with Unlabeled b head
Attachment Score (UAS).

Ll H

g

Target: “wears”
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We know MLMs have specialized syntactic heads
But are they important for grammatical understanding? Evidence:

e Instance level observations

» Specialized syntactic heads predict dependencies with high accuracy.

N (0:1s -1 12l 0R Il WWhat if these artifacts are just a side effect of training?

e Instance level causal intervention

* Specialized syntactic heads hurt performance most when pruned.

» (Voita et al., 2019) What if specialized heads are more entangled,

rather than themselves encoding structure?

15



Let’s find some evidence for the role of SAS!



When does Syntactic Attention
Structure emerge?



Syntactic Attention Structure is acquired abruptly
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End of SAS phase
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SAS phase accompanies a large loss drop
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And is followed by gains in grammatical reasoning
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What makes a capability breakthrough?

« Compositional structure
 Competition between solutions

 Multimodality



What happens if we suppress SAS?
Causal evidence!




Suppressing Syntactic Attention Structure

dobj
poss nsubj amod
NG N ﬂ
My dog wears red hats

nsubj head

nsubj gold labels D .




Suppressing Syntactic Attention Structure

ay - 1[D(z;)]
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nsubj head D .
nsubj gold labels D .




MLM loss

The impact of Syntactic Attention Structure
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MLM loss

The impact of Syntactic Attention Structure

Bad at smaller scales ...
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MLM loss

The impact of Syntactic Attention Structure

But eventually important!
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MLM loss

Why are there two phase transitions?

We have found a competing strategy.

101 Onset of competing éstrategy

\ Onsi.et of SAS strategy
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What makes a capability breakthrough?

 Compositional structure
« Competition between solutions

 Multimodality



Case study 2:
What makes hierarchica
grok?

Sometimes I am a Tree: Data Drives Unstable
Hierarchical Generalization

Tian Qin Naomi Saphra David Alvarez-Melis
Harvard University Harvard University Harvard University & MSR
Cambridge, MA Cambridge, MA Cambridge, MA

tqin@g.harvard.edu nsaphra@fas.harvard.edu dam@seas.harvard.edu



Will we learn hierarchical syntactic generalization?
Ambiguous rule: question formation (McCoy et al., 2019)

In Distribution:

Input: My unicorn does move the dogs that do wait.

Output: Does my unicorn move the dogs that do wait?
S0es does the zebra dees chuckle
Qibra N _J

dees chuckle

Out of Distribution:

Input: My unicorn who doesn’t sing does move.
Linear Output: Doesn’t my unicorn who sing does move?
Hierarchical Output: Does my unicorn who doesn’t sing move?



Hierarchical syntax groks after ID accuracy converges for an autoregressive LM.

Murty et al., 2023; Ahuja et al., 2024
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What makes a capability breakthrough?

« Compositional structure
 Competition between solutions

 Multimodality



Hierarchical generalization depends on center embeddings

* English language mostly branches right ...

 So if each head only gets one relative clause, it will be exclusively forward
scoping.

e [hat doesn’t require hierarchical structure at all!

Right Branching Center Embedding

subj

OySfe e e (@S | @ e

My  unicorn does entertain  her tyrannosaurus that doesn't smile. My  unicorn  who doesn't wait does entertain her tyrannosaurus.




Hierarchical generalization depends on center embeddings

Complex training data leads more training runs to generalize.

Varying QF Data Composition
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Complex training data teaches complex rules.



What happens if you mix “easy” and “hard” data?
Training doesn’t lead to consistent OOD behavior!

~OOD Right-branching
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What makes a capability breakthrough?

 Compositional structure
« Competition between solutions

 Multimodality



Only models that commit to a simple rule can stabilize OOD behavior

Measuring stability
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Only models that commit to a simple rule can stabilize OOD behavior
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Only models that commit to a simple rule can stabilize OOD behavior

Stable models are bimodally distributed
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What makes a capability breakthrough?

 Compositional structure
o Competition between solutions

 Multimodality



Case study 3:
Predicting unpredictable emergence
IN length generalization

Distributional Scaling Laws for Emergent Capabilities

Rosie Zhao !? Tian Qin? David Alvarez-Melis ' > Sham Kakade !> Naomi Saphra ! 2



Length generalization: reverse order addition
Zhou et al., 2023; Zhou et al., 2024

 Train on 30 characters, test on 40

 Compositional productivity or length generalization
200 seeds trained for each architecture
« Example task: Reverse order addition

e QOutput sum in reverse order

* |nput Includes index hints

e a0, 3, al, 4, +, a0, 2, al, 8, >, al, 2, a0, 6



Emerges at appropriate width scale!
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What makes a capability breakthrough?

« Compositional structure
 Competition between solutions

 Multimodality



Emergence!

Exact Match Accuracy
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Emergence is when the model selects a “successful” run

But performance is bimodal!
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What makes a capability breakthrough?

 Compositional structure
o Competition between solutions

 Multimodality



Emergent trends express underlying continuous changes

Individual scaling “laws” look like the mode

Overall Mode - EM Accuracy
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Emergent trends express underlying continuous changes

But with enough samples, mean can be smoother

Overall Mean - EM Accuracy
o

06 ~° F!xed Width ,\\‘,{‘
—eo— Fixed Depth o /
>
O 4’/ o
= 0.4 o— /
O ®
O
<
E . /
e
/‘
0.0 e
10° 10/

Parameter count



Bimodal distributions change gradually

Reverse Order Addition Task - EM Accuracy - Fixing Depth = 6
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Bimodal distributions change gradually

(As long as we have minimum capacity)

Reverse Order Addition Task - EM Accuracy - Fixing Depth = 6
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Why is the mode discontinuous?
Gradual change in PROBABILITY of success

Fraction of Runs Above 30% Accuracy
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MMLU dataset

 Emergent because it Is °0

compositional 55

— 50

» Without multiple choice =

format, QA improvement is e
smooth S
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* With extra finetuning / exposure 30

to dataset, can emerge at 25

smaller model scales

MMLU

Finetuned
Few-shot
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- == Predicted Emergence

......

2.2 2.1 2.0 1.9
Pretraining Loss

Snell et al., 2025
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Training after top layer reinitialization

With random variation, MMLU is bimodal
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Training after top layer reinitialization

With enough scale, eventually collapses to top mode

Qwen2.5-0.5B vs 1.5B - MMLU ratio = 10%
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What makes a capability breakthrough?

 Compositional structure
o Competition between solutions

 Multimodality



Recap

 MLMs develop specialized syntactic heads suddenly during a huge loss drop,
and immediately afterwards learn complex linguistic rules during another
huge loss drop.

 Causal LMs trained on ambiguous data develop an inductive bias towards
hierarchical rules, but only if exposed to enough center embeddings that
cannot be represented with linear structures.

* |In length generalization, emergence looks discontinuous for a single sample,
but once the model has theoretical capacity, changes in probabillity are
continuous.



What makes a capability breakthrough?

 Compositional structure
o Competition between solutions

 Multimodality



Do | have extra time?
Let’s talk about mysterious U-
shaped curves!



Mystery #1: U-shaped regularizer responses
When should MLMs learn syntax?

/\F\m

wears hats
s 0 @ 0O O
dobj head D D




MLM loss

There two phase transitions?
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Suppressing SAS promotes a competing strategy

World's gratest Competing strategy

all-SAS model

65



Can we recover the original strategy?

World's gratest Competing strategy
all-SAS model



Multistage regularization

o Stage 1: Suppress SAS
o Stage 2: Stop suppressing SAS

* Will we hit the original phase transition?
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Every metric is worst when we release during the breakthrough
Why?
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The longer we suppress SAS, the less SAS recovers

MLM loss
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Syntactic Attention Structure onset magnitude

 Push past the
competing
strategy phase
transition and
we lose the
SAS phase
transition
entirely!

Magnitude of Inflection
> o S S =
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A/SHS Onset

10000
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------- Alternative Loss Drop

20000 30000 40000 50000
Step suppressed until
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Once we transition to the competing
strategy, the model can’t transition strategies
back to Syntactic Attention Structure.




Conjecture: Phase changes are
unstable?



Mystery #2: U-shaped stability

Why don’t we learn linear rules from exclusively forward-branching data?




We need at least .1% center embeddings
0% vyields high variance, but why?

Varying QF Data Composition
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Forward-branching data isn’t diverse enough!
Model oscillates between memorization and linear rule

Inverse U-shaped Scaling w/ Data Diversity

Hierarchical-Inducing Data 14 Linear-Inducing Data
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The whole picture

Memorization Regime Hierarchical Generalization
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Hierarchical Model
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The keys that unlock the cabinet are on the table.

Linear Model

P(xi=are | Xi.1, Xi-2, ... Xi-n )

ID

The keys are on the table.

The keys that unlock the cabinet is X
on the table.



Confirmed: Memorization and
rule-based generalization can also
compete.




Mystery #3: U-shaped scaling laws

* Jask: Length generalization in counting
¢ 5,9>,5,6,7,8,9

 Jrain on 30, test on 40



Scaling width yields INVERSE scaling law

Overall Mean - EM Accuracy
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Only probability of emergence has inverse scaling

Count Task
Fraction of Runs Above 50% Accuracy Mean For Runs Above 50% Accuracy
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Conjecture: Sometimes scaling up
can “buy” more potential parameters
for the non-compositional circuit?



Complete understanding will
Include U-shaped curves, not just
emergence.



Questions?



We find a viable alternative strategy!

World's greatest Competing strategy

all-SAS model




