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The Turing test




COMMON ERROR:

MISTAKING FLUENT LANGUAGE FOR FLUENT THOUGHT




Fallacy #1 Fallacy #2

good at language bad at language

' 1

good at thought bad at thought




When evaluating LLM capabilities,
we should dissociate language and
cognition/intelligence/thought.



Formal vs functional
linguistic competence

It gets complicated:
generalized world knowledge

Moving forward




Formal vs functional
linguistic competence
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Language and the brain

Language processing in the brain takes place within a separate network.

Words, phrases, sentences

Listening and reading

9 @

Fedorenko et al, 2010, 2011; Scott et al, 2017; Hu, Small et al, 2022; etc, etc

Speaking and writing

=~ @5




Language and the brain

Language areas show little/no response when we engage in diverse thought-

related activities.

. . Conceptual knowledge
Logical reasoning

Physical reasoning
Math Problem solving Social reasoning

2+17 => @

Response in the language areas

etc.

slide adapted from Ev Fedorenko; for a review, see Fedorenko, Ivanova & Regev, 2024



Language and the brain

Language areas can be damaged with little/no effect on thought-related
activities.

Sample patients’ lesions:

= SIS
N i - G CHRD

slide adapted from Ev Fedorenko; for a review, see Fedorenko, Ivanova & Regev, 2024



Formal and functional linguistic competence

core language \ L ' ( semantic
knowledge ; \? | & | tasks

general
cognitive
tasks

social
knowledge

situation & o A world
modeling =T Sl knowledge

Mahowald, Ilvanova et al, 2024



Formal and functional linguistic competence

core language semantic
knowledge tasks

general
cognitive
tasks

social
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Mahowald*, lvanova™ et al, 2024



Formal and functional linguistic competence

FORMAL COMPETENCE FUNCTIONAL COMPETENCE
(language-specific) (non-language-specific)

semantic
tasks

social
knowledge

core language
general

knowledge

cognitive
tasks

situation
modeling

world
knowledge

Mahowald*, lvanova™ et al, 2024



Formal and functional linguistic competence

FORMAL COMPETENCE
(language-specific)

FUNCTIONAL COMPETENCE
(non-language-specific)

The keys to the cabinet are on the table.

Easy for language models
starting with GPT2/3

A remarkable scientific and engineering
breakthrough

Not something linguists were expecting

Six birds were sitting on a tree. Three flew
away, but then one came back. There are
now four birds.

Can be challenging for language models!

Performance might rely on memorization
or heuristics

Progress requires shifting away from pure
next-word prediction to fine-tuning or
additional modules

Mahowald?*, lvanova* et al, 2024



A humanlike Al system would look like this...

core language semantic
knowledge tasks

general
cognitive
tasks

social
knowledge

.\\k
K“"n‘."

situation & 0 A world
modeling L knowledge

Mahowald, Ilvanova et al, 2024



Six birds were sitting on a tree. Three
flew away, but then one came back.

How many birds are there now?




A humanlike Al system would look like this...

core language
knowledge

social
knowledge

situation
modeling

Options:

e architectural modularity: macro structure is built in

 emergent modularity: macro structure arises during training (MoE-like)
» status quo: possible emergence of implicit structure?

Mahowald, Ilvanova et al, 2024



It gets complicated:

generalized world knowledge




It gets complicated:
generalized world knowledge

1. Why it’s complicated

2. Generalized event knowledge
3. Elements of World Knowledge (EWoK)

4. Yes-bias



Large language models and world knowledge

Language contains a wealth of information about the world

FACTUAL DISTRIBUTIONAL

Paris is the capital of France The sky is blue today

The sky was pitch black

Birds lay eggs
The sky is pink




Large language models and world knowledge

Distributional information from language aligns with that from other domains

Roads & Love, 2020; Luo et al, 2024 Abdou et al, 2021

Unsupervised learning from text
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Large language models and world knowledge

Distributional information from language aligns with that from other domains

... but it's biased
reporter bias GOOgle "square wheels"

Images Shopping Videos 18 inch

About 272,000 results (0.43 seconds)

~ o
%
" j\ ’ Gocgle "round wheels"

Images Shopping Videos For sale

Gordon & van Durme, 2013;
Schwartz & Choi, 2020 About 211,000 results (0.22 seconds)




Large language models and world knowledge

Huth et al., 2016




It gets complicated:
generalized world knowledge

1. Why it’s complicated

2. Generalized event knowledge

3. Elements of World Knowledge (EWoK)

4. Yes-bias



Language and event knowledge

Generalized Event Knowledge (GEK; McRae & Matsuki 2009)

storage of templates of common events observed in the world

The fox chased the rabbit.

The rabbit chased the fox.

The fox chased the planet.

Does generalized event knowledge naturally arise
in pretrained language models?




Language models and event knowledge

Does generalized event knowledge naturally arise
in pretrained language models?

Approach: minimal sentence pairs

co-lead:
Carina Kauf

SENTENCE The fox chased the rabbit. The rabbit chased the fox.

MODEL

compare

SCORE

Kauf*, Ivanova* et al, 2023; Kauf & Ivanova, 2023, ACL



Language models and event knowledge

o o2
al® ; -
Animate-Inanimate, impossible Animate-Animate, unlikely

The teacher bought the laptop. The fox chased the rabbit.
The laptop bought the teacher. The rabbit chased the fox.

“the gap between the
Impossible and the
unlikely”

Accuracy

GPT-2-
RoBERTa
tinyLSTM -

human

MPT-30b
RoBERTa
BERT
tinyLSTM
thematicFit
syntax-PPMI

@)
-
N
—
al
=

thematicFit
syntax-PPMI

- baselines



Language models and event knowledge

® o2
al® ; -
Animate-Ilnanimate, impossible Animate-Animate, unlikely

The teacher bought the laptop. The fox chased the rabbit.
The laptop bought the teacher. The rabbit chased the fox.

~ selectional restrictions graded event knowledge
g = =
<| formal competence functional competence
0.251
0.00-|
T EEEEEEEE: S8 2SR ZEELS
g%I—I—ECﬁI—D.UQD_ EO?EI_DC%U)D.QD_
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Event semantics in language models

Generalizability

syntactic generalization @

The author finished the novel.
VS.

The novel was finished by the author.

Passive sentence score

semantic generalization @

The author finished the novel.

VS.

Version 2 score

The writer completed the book.

Version 1 score

Kauf*, lvanova™* et al, 2023

human MPT-30b GPT-J GPT-2 RoBERTa BERT
r=0.96***
05 10 05 10 05 10 05 10 05 1
Active sentence score
human MPT-30b GPT-J GPT-2 RoBERTa BERT
r=0.90***
05 10 05 10 05 10 05 10 05 1




Language models and event knowledge

Mictral

What if, instead of evaluating the LogProb of

the sentence under the model, we ask the
models directly (Prompting)?

And what if we evaluate not just pretrained
(base) models, but also instruction-tuned
models?

The ‘impossible-unlikely’ (Al-AA) gap
remains.

LogProbs are consistent across models,

whereas prompting is hit-or-miss.

Conclusions from base models hold for
iInstruction-tuned models.

Kauf et al, 2024, best paper at BlackBoxNLP workshop
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Language models and event knowledge

LLMs systematically distinguish
possible and impossible events but are less consistent with
likely vs. unlikely events.




It gets complicated:
generalized world knowledge

1. Why it’s complicated

2. Generalized event knowledge

3. Elements of World Knowledge (EWoK)

4. Yes-bias



ewok-core.github.io

co-lead: co-lead:
Aalok Sathe Ben Lipkin

lvanova* ,Sathe”, Lipkin®, and a team of cognitive scientists, arXiv



Social Relations

Domains have
Concepts that
are tested
using several
Templates

concept: TEACHER
concept: STUDENT

template:

C1: AGENT-1 assigns homework to AGENT-2.
C2: AGENT-1 submits homework to AGENT-2.

T1: AGENT-1 is AGENT-2’s teacher.
T2: AGENT-1 i1s AGENT-2’s student.

Templates give
rise to Items

v C1-T1: Fatima assigns homework
to Jose. Fatima is Jose’s
teacher.

X C1-T2: Fatima assigns homework
to Jose. Fatima is Jose’s

student.

v C2-T2: Fatima submits
homework to Jose. Fatima is
Jose’s student.

X C2-T1: Fatima submits
homework to Jose. Fatima is
Jose’s teacher.

lvanova™ ,Sathe”, Lipkin*, and a team of cognitive scientists, arXiv



word2vec

gpt2_xI

social spatial
Interactions relations
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phi_2
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lvanova* ,Sathe”, Lipkin* et al, arXiv
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Elements of World Knowledge (EWoK)

EvalType - LogProbs . Prompting - Likert . Prompting — Choice

mpt mpt mpt mpt falcon falcon falcon falcon Mistral Mixtral Llama Llama
7b 7b_chat 30b 30b_chat 7b 7b_instruct 40b 40b_instruct /7B 8x7B 3_8B 3_70B

100- .......................................................................................................................................................................

0.75

0@6)

08

Accuracy
o
0}
o

0.25

0.00 -

lvanova™ ,Sathe”, Lipkin* et al, arXiv



EWoK in BabyLM

» EWoK-core-1.0 served as a test-only

benchmark
= -
Model N § B = Findings of the Second * BabyLM Challenge:
= & s 8 |% Y < g 2 .- Sample-Efficient Pretraining on Developmentally Plausible Corpora
. =R = - s O A= 3, S =
= 2z < - Sz 7 = s < 2 Michael Y. Hu! Aaron Mueller??3 Candace Ross*
Adina Williams*"  Tal Linzen' Chengxu Zhuang®  Ryan Cotterell®
_ CB}:JI;E Iél;:l; gg—; ;gg 3} g ggg Z; - - - B 1 Leshem C.hoshen&"’6 Alex War.stadF8g Ethangqotlieb {’Vilcox9
2 ' ‘ ' ‘ New York University ~ “Northeastern University ~ *Technion Meta Al (FAIR)
% MLSM 69.6 654 748 526 656 - - - - SIBM Resemch  OMIT ™ML Cormmons
Best baseline: LTG-BERT 69.2 66.5 684 519 648 - — — - SETH Ziirich  ?Georgetown University
_  GPT-BERT 812 694 765 546 704 - - - - michael.huCnyu. edu
= DeBaby 742 637 737 543 1665 - - -  —
é BabyLlama-2 71.8 634 70.2 515 642 - - - -
% Best baseline: BabyLlama 69.8 59.5 633 50.7 61.6 - - - -
=  GIT-1vd125 66.5 609 656 522 [61.3 519 578 48.1 526
é Wake/Sleep 73.6 55.6 647 514 ' 61.3 420 509 228 38.6
=  Flamingocr. 60.1 533 643 50.7 [ 57.1 409 508 473 46.3
2 Best baseline: Flamingo 709 65.0 69.5 52.7 1652 523 516 59.5 545

Table 3: Macro averages for each benchmark across the top-performing systems (by overall score), best baseline,
and skylines.



Elements of World Knowledge (EWoK)

ewok-core.github.io

Basic world knowledge in LLMs varies drastically by domain,
with social knowledge > physical and spatial knowledge.

EWoK is not just one dataset; it’s a framework. So do consider adding to it!

lvanova* ,Sathe”, Lipkin* et al, arXiv



It gets complicated:
generalized world knowledge

1. Why it’s complicated

2. Generalized event knowledge

3. Elements of World Knowledge (EWoK)

4. Yes-bias



Yes-no bias In language models

 Background: task demands affect performance in LLMs and humans

Hu & Frank, 2024

£

Interpret question

Access internal
predictions

Produce prediction
after prompt

Interpret question

Predict next token
of sentence

Transfer prediction
to prompt



Yes-no bias In language models

 Humans tend to exhibit a yes-bias (acquiescence bias)

Is this for reading?

qgT>

<>
&

example from Okanda & Itakura, 2008




Yes-no bias In language models

 Humans tend to exhibit a yes-bias (acquiescence bias) ¢ 'Y
Om Bhatt

Does yes-bias arise in LMs as a result of statistical learning on
language inputs and/or instruction tuning®?

Does the yes-bias mask existing model knowledge,
such that
correcting for this bias will improve model performance?

Bhatt & lvanova, in review



Yes-no bias In language models

EWoOK-YNQ, zero-shot
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Yes-no bias In language models

Accuracy

EWOK-YNQ, few-shot
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Yes-no bias In language models
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Generic correction

Subtract LogProbs of
seguence-initial Yes/No

Specific correction

Subtract average LogProbs

of Yes/No for other Qs in a
(class-balanced) portion of
the same dataset

Bhatt & lvanova, in review



Yes-no bias In language models

Does yes-bias in LMs arise as a result of statistical learning on
language inputs and/or instruction tuning?

No: language models are often biased, but the bias direction varies
depending on the model and testing conditions.

Does the yes-bias mask existing model knowledge,
such that
correcting for this bias will improve model performance?

Yes: correcting for the bias typically improves model performance.

(our bias correction method works at the level of LogProbs: need open models)

Bhatt & lvanova, in review



Moving forward



conceptual insights

methodological insights

the do’s and the don’ts of experimental design
(lvanova, 2025, Nat Hum Behav)

from
formal and functional competence brain to Al

elements of world knowledge (EWoK) benchmark

LLMs as model organisms LLMs as computational tools

generalized event knowledge

from di dels of the brai
. encoding moaeis o e prain
Al to brain (ongoing work)

yes/no bias
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Thank you for listening!







determine what the model might
have learned about your test
during training

l

consider alternative strategies a
model might use to arrive at the
correct answer

&)

rely on minor changes
in the test items

This is

Sally

This is Megan

incorporate careful control 0 0 Q

overly trust crowd-
sourced / automatically
generated items

My nam is Mark

conditions o 0 ‘

= ©
evaluate models under —
conditions similar to humans é}ﬁ _é‘lﬁ

examine the effect of culture- y’all

specific aspects of the prompt :ou
on model behavior =2

overly trust LLM item 9 @
scoring %/s *
assume that model @

responses reflect
“universal” human behavior

j®)
® )

assume that models
solve the task in the
same way as humans

&/

J

D @
compare model and human = am
performance 85% 87%
be explicit about the
experimental settings when E'y
reporting the results
Q2
check whether a model %
generalizes beyond a single ... o
test —=1|] ok

jump to conclusions
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Ilvanova, 2025, Nat Hum Behav



