
Max Coverage
 via Simplification,

Streaming, Sampling,
and Submodular Stuff

Andrew McGregor
University of Massachusetts

includes joint work with Hoa Vu, David Tench,
Amit Chakrabarti, & Anthony Wirth

Hi to anyone reading Clement’s live tweets!

Max Coverage
 via Simplification,

Streaming, Sampling,
and Submodular Stuff

Andrew McGregor
University of Massachusetts

includes joint work with Hoa Vu, David Tench,
Amit Chakrabarti, & Anthony Wirth

• Input Sets S1, S2, …, Sm ⊆ [n] and integer k

MaxCover Problem

• Input Sets S1, S2, …, Sm ⊆ [n] and integer k

• Goal Pick k sets to maximize the size of the union of these sets

MaxCover Problem

• Input Sets S1, S2, …, Sm ⊆ [n] and integer k

• Goal Pick k sets to maximize the size of the union of these sets

• For example, if S1={1,2,3}, S2={2,4,6}, S3={2,3,4} and k=2 then
picking S1 and S2 covers {1,2,3,4,6}.

MaxCover Problem

• Input Sets S1, S2, …, Sm ⊆ [n] and integer k

• Goal Pick k sets to maximize the size of the union of these sets

• For example, if S1={1,2,3}, S2={2,4,6}, S3={2,3,4} and k=2 then
picking S1 and S2 covers {1,2,3,4,6}.

• Classic Results Greedy algorithm is 1-1/e approx and is best possible.
Simple example of sub-modular maximization optimization.

• Feige [JACM 98]

MaxCover Problem

• Input Sets S1, S2, …, Sm ⊆ [n] and integer k

• Goal Pick k sets to maximize the size of the union of these sets

• For example, if S1={1,2,3}, S2={2,4,6}, S3={2,3,4} and k=2 then
picking S1 and S2 covers {1,2,3,4,6}.

• Classic Results Greedy algorithm is 1-1/e approx and is best possible.
Simple example of sub-modular maximization optimization.

• Feige [JACM 98]

• Data Streams Growing body of work on MaxCover and SetCover
considers input given as a stream of sets

Assadi et al. [STOC 16], Warneke et al. [ESA 23], Indyk-Vakilian [PODS 2019], Yu-Yuan [SDM 13]
Saha-Getoor [SDM 09], McGregor-Vu [ICDT 17], Bateni et al. [SPAA 17], Assadi [PODS 17]

Demaine et al. [DISC 14], Indyk et al. [APPROX 17], Chakrabarti-Wirth [SODA 16]
Assadi et al. [SODA 18], Har-Peled et al. [PODS 16] etc.

MaxCover Problem

Talk Summary

• Simplification If sets are small, can throw out many sets. If sets are
large, can subsample universe to ensure sets are small-ish.

Older results: [Demaine et al. DISC 14], [McGregor, Vu. Theory Comput. Syst. 19],
[McGregor et al. ICDT 21]

Talk Summary

https://dblp.org/db/journals/mst/mst63.html#McGregorV19

• Simplification If sets are small, can throw out many sets. If sets are
large, can subsample universe to ensure sets are small-ish.

Older results: [Demaine et al. DISC 14], [McGregor, Vu. Theory Comput. Syst. 19],
[McGregor et al. ICDT 21]

• Insert-Only Streams Õε(k) space suffices for 1/2-ε approx (1-pass)
or 1-1/e-ε (1-pass random order O(1/ε)-pass arbitrary order).

Prev. best space bound for random order Õε(k2) [Warneke et al. ESA 23]

Talk Summary

https://dblp.org/db/journals/mst/mst63.html#McGregorV19

• Simplification If sets are small, can throw out many sets. If sets are
large, can subsample universe to ensure sets are small-ish.

Older results: [Demaine et al. DISC 14], [McGregor, Vu. Theory Comput. Syst. 19],
[McGregor et al. ICDT 21]

• Insert-Only Streams Õε(k) space suffices for 1/2-ε approx (1-pass)
or 1-1/e-ε (1-pass random order O(1/ε)-pass arbitrary order).

Prev. best space bound for random order Õε(k2) [Warneke et al. ESA 23]

• Dynamic Streams Õ(ε-2 k) space, O(log m+ε-1 log m/log log m)
passes suffice for 1-1/e-ε approx.

[Chakrabarti, McGregor, Wirth. ESA 24]
Prev. best space bound Õ(n+ε-4 k) [Assadi, Khanna. SODA 18]

Talk Summary

https://dblp.org/db/journals/mst/mst63.html#McGregorV19

1: Simplification
2: Insert Streams
3: Dynamic Streams

Universe Sampling

S1

S2

S3

S4

S5

• Universe Sampling

Universe Sampling

S1

S2

S3

S4

S5

• Universe Sampling

• Sample elements with probability p ≈ (kε-2 log m)/OPT.

Universe Sampling

S1

S2

S3

S4

S5

• Universe Sampling

• Sample elements with probability p ≈ (kε-2 log m)/OPT.

Universe Sampling

S1

S2

S3

S4

S5

• Universe Sampling

• Sample elements with probability p ≈ (kε-2 log m)/OPT.

• For set S, let h(S) be the set of elements in S that were sampled.

Universe Sampling

• Universe Sampling

• Sample elements with probability p ≈ (kε-2 log m)/OPT.

• For set S, let h(S) be the set of elements in S that were sampled.

Universe Sampling

h(S1)

h(S2)

h(S3)

h(S4)

h(S5)

• Universe Sampling

• Sample elements with probability p ≈ (kε-2 log m)/OPT.

• For set S, let h(S) be the set of elements in S that were sampled.

• Lemma Whp, for all T1, …,Tk ∈ {S1, …, Sm} we have:

|h(T1)⋃…⋃h(Tk)|/p = |h(T1)⋃…⋃h(Tk)| ± ε OPT

Universe Sampling

h(S1)

h(S2)

h(S3)

h(S4)

h(S5)

• Universe Sampling

• Sample elements with probability p ≈ (kε-2 log m)/OPT.

• For set S, let h(S) be the set of elements in S that were sampled.

• Lemma Whp, for all T1, …,Tk ∈ {S1, …, Sm} we have:

|h(T1)⋃…⋃h(Tk)|/p = |h(T1)⋃…⋃h(Tk)| ± ε OPT

• Proof Chernoff Bound + Union Bound over mk collections of sets.

Universe Sampling

h(S1)

h(S2)

h(S3)

h(S4)

h(S5)

• Universe Sampling

• Sample elements with probability p ≈ (kε-2 log m)/OPT.

• For set S, let h(S) be the set of elements in S that were sampled.

• Lemma Whp, for all T1, …,Tk ∈ {S1, …, Sm} we have:

|h(T1)⋃…⋃h(Tk)|/p = |h(T1)⋃…⋃h(Tk)| ± ε OPT

• Proof Chernoff Bound + Union Bound over mk collections of sets.

• ⍺-approx on h(S1),…, h(Sm) gives (⍺-ε)-approx for original instance.

Universe Sampling

h(S1)

h(S2)

h(S3)

h(S4)

h(S5)

• Universe Sampling

• Sample elements with probability p ≈ (kε-2 log m)/OPT.

• For set S, let h(S) be the set of elements in S that were sampled.

• Lemma Whp, for all T1, …,Tk ∈ {S1, …, Sm} we have:

|h(T1)⋃…⋃h(Tk)|/p = |h(T1)⋃…⋃h(Tk)| ± ε OPT

• Proof Chernoff Bound + Union Bound over mk collections of sets.

• ⍺-approx on h(S1),…, h(Sm) gives (⍺-ε)-approx for original instance.

• Optimum solution for h(S1),…, h(Sm) covers O(kε-2 log m) elts.

Universe Sampling

h(S1)

h(S2)

h(S3)

h(S4)

h(S5)

Uniform edge sampling via sketches…Simple Set Sampling (Kernelization)

S1

S2

S3

S4

S5

Uniform edge sampling via sketches…

• Set Sampling

• Let color:[n]→[c] be a random hash function

Simple Set Sampling (Kernelization)

S1

S2

S3

S4

S5

Uniform edge sampling via sketches…

• Set Sampling

• Let color:[n]→[c] be a random hash function

Simple Set Sampling (Kernelization)

S1

S2

S3

S4

S5

Uniform edge sampling via sketches…

• Set Sampling

• Let color:[n]→[c] be a random hash function

• Only keep sets with distinct color(S)={color(i): i ∈ S}

Simple Set Sampling (Kernelization)

S1

S2

S3

S4

S5

Uniform edge sampling via sketches…

• Set Sampling

• Let color:[n]→[c] be a random hash function

• Only keep sets with distinct color(S)={color(i): i ∈ S}

Simple Set Sampling (Kernelization)

S1

S2

S3

S4

Remove one of {S1, S2}
and one of {S4,S5}.

S5

Uniform edge sampling via sketches…

• Set Sampling

• Let color:[n]→[c] be a random hash function

• Only keep sets with distinct color(S)={color(i): i ∈ S}

• Warm-up Let r be maxi |Si|. If c ≈ (kr)2 there’s ≤ (kr)2r retained sets
and these include an opt solution with good probability.

Simple Set Sampling (Kernelization)

S1

S2

S3

S4

Remove one of {S1, S2}
and one of {S4,S5}.

S5

Uniform edge sampling via sketches…

• Set Sampling

• Let color:[n]→[c] be a random hash function

• Only keep sets with distinct color(S)={color(i): i ∈ S}

• Warm-up Let r be maxi |Si|. If c ≈ (kr)2 there’s ≤ (kr)2r retained sets
and these include an opt solution with good probability.

• Let O1, … ,Ok be an optimum solution. Covers ≤ kr elements.

Simple Set Sampling (Kernelization)

S1

S2

S3

S4

Remove one of {S1, S2}
and one of {S4,S5}.

S5

Uniform edge sampling via sketches…

• Set Sampling

• Let color:[n]→[c] be a random hash function

• Only keep sets with distinct color(S)={color(i): i ∈ S}

• Warm-up Let r be maxi |Si|. If c ≈ (kr)2 there’s ≤ (kr)2r retained sets
and these include an opt solution with good probability.

• Let O1, … ,Ok be an optimum solution. Covers ≤ kr elements.

🎈 By Birthday-Paradox, |O1⋃…⋃Ok| = |color(O1⋃…⋃Ok)|

Simple Set Sampling (Kernelization)

S1

S2

S3

S4

Remove one of {S1, S2}
and one of {S4,S5}.

S5

Uniform edge sampling via sketches…

• Set Sampling

• Let color:[n]→[c] be a random hash function

• Only keep sets with distinct color(S)={color(i): i ∈ S}

• Warm-up Let r be maxi |Si|. If c ≈ (kr)2 there’s ≤ (kr)2r retained sets
and these include an opt solution with good probability.

• Let O1, … ,Ok be an optimum solution. Covers ≤ kr elements.

🎈 By Birthday-Paradox, |O1⋃…⋃Ok| = |color(O1⋃…⋃Ok)|

• If Ri is set retained with color(Ri)=color(Oi) then

Simple Set Sampling (Kernelization)

S1

S2

S3

S4

Remove one of {S1, S2}
and one of {S4,S5}.

S5

Uniform edge sampling via sketches…

• Set Sampling

• Let color:[n]→[c] be a random hash function

• Only keep sets with distinct color(S)={color(i): i ∈ S}

• Warm-up Let r be maxi |Si|. If c ≈ (kr)2 there’s ≤ (kr)2r retained sets
and these include an opt solution with good probability.

• Let O1, … ,Ok be an optimum solution. Covers ≤ kr elements.

🎈 By Birthday-Paradox, |O1⋃…⋃Ok| = |color(O1⋃…⋃Ok)|

• If Ri is set retained with color(Ri)=color(Oi) then

|color(O1⋃…⋃Ok)| = |color(R1⋃…⋃Rk)| ≤ |R1⋃…⋃Rk|

Simple Set Sampling (Kernelization)

S1

S2

S3

S4

Remove one of {S1, S2}
and one of {S4,S5}.

S5

• Superior Set Sampling

• Let color1, …,colort : [n]→[c] be t random hash functions

Superior Set Sampling

S1

S2

S3

S4

S5 S1

S2

S3

S4

S5

First coloring… Second coloring…

• Superior Set Sampling

• Let color1, …,colort : [n]→[c] be t random hash functions

• For j∈[t], retain maximal collection of sets with distinct colorj(.)

Superior Set Sampling

S1

S2

S3

S4

S5 S1

S2

S3

S4

S5

First coloring… Second coloring…

• Superior Set Sampling

• Let color1, …,colort : [n]→[c] be t random hash functions

• For j∈[t], retain maximal collection of sets with distinct colorj(.)

• Theorem If c ≈ kr2 and t ≈ log k there are ≈ (kr2)r retained sets and
these include an opt solution whp. McGregor-Tench-Vu [ICDT 21]

Superior Set Sampling

S1

S2

S3

S4

S5 S1

S2

S3

S4

S5

First coloring… Second coloring…

• Superior Set Sampling

• Let color1, …,colort : [n]→[c] be t random hash functions

• For j∈[t], retain maximal collection of sets with distinct colorj(.)

• Theorem If c ≈ kr2 and t ≈ log k there are ≈ (kr2)r retained sets and
these include an opt solution whp. McGregor-Tench-Vu [ICDT 21]

• Proof Approach Fix opt solution. In each coloring, for each opt set
with constant prob we sample that set or a set just as good…

Superior Set Sampling

S1

S2

S3

S4

S5 S1

S2

S3

S4

S5

First coloring… Second coloring…

Uniform edge sampling via sketches…Superior Set Sampling: Proof Idea

• Let Oi be opt set and Ri set retained with color(Ri)=color(Oi).

S1

S2

S3

S4

S5

O1=S1, O2=S3, O3=S4

R1=S2, R2=S3, R3=S5

First coloring…

Uniform edge sampling via sketches…Superior Set Sampling: Proof Idea

• Let Oi be opt set and Ri set retained with color(Ri)=color(Oi).

• Say Oi is color-full if

S1

S2

S3

S4

S5

O1=S1, O2=S3, O3=S4

R1=S2, R2=S3, R3=S5

First coloring…

Uniform edge sampling via sketches…Superior Set Sampling: Proof Idea

• Let Oi be opt set and Ri set retained with color(Ri)=color(Oi).

• Say Oi is color-full if

|color(Oi)| = |Oi| and color(Oi) ⋂ color(O1⋃…⋃Ok\ Oi) = ∅

S1

S2

S3

S4

S5

O1=S1, O2=S3, O3=S4

R1=S2, R2=S3, R3=S5

First coloring…

Uniform edge sampling via sketches…Superior Set Sampling: Proof Idea

• Let Oi be opt set and Ri set retained with color(Ri)=color(Oi).

• Say Oi is color-full if

|color(Oi)| = |Oi| and color(Oi) ⋂ color(O1⋃…⋃Ok\ Oi) = ∅

• If Oi is color-full, replace Oi ←Ri . Note |O1⋃…⋃Ok| unchanged.

S1

S2

S3

S4

S5

O1=S1, O2=S3, O3=S4

R1=S2, R2=S3, R3=S5

First coloring…

Uniform edge sampling via sketches…Superior Set Sampling: Proof Idea

• Let Oi be opt set and Ri set retained with color(Ri)=color(Oi).

• Say Oi is color-full if

|color(Oi)| = |Oi| and color(Oi) ⋂ color(O1⋃…⋃Ok\ Oi) = ∅

• If Oi is color-full, replace Oi ←Ri . Note |O1⋃…⋃Ok| unchanged.

• Pr[Oi is color-full] ≥ 1-r2k/c ≥ 1/2 and repeating log k times
ensures we find k sets covering an optimum number of elts.

S1

S2

S3

S4

S5

O1=S1, O2=S3, O3=S4

R1=S2, R2=S3, R3=S5

First coloring…

Uniform edge sampling via sketches…Superior Set Sampling: Proof Idea

• Let Oi be opt set and Ri set retained with color(Ri)=color(Oi).

• Say Oi is color-full if

|color(Oi)| = |Oi| and color(Oi) ⋂ color(O1⋃…⋃Ok\ Oi) = ∅

• If Oi is color-full, replace Oi ←Ri . Note |O1⋃…⋃Ok| unchanged.

• Pr[Oi is color-full] ≥ 1-r2k/c ≥ 1/2 and repeating log k times
ensures we find k sets covering an optimum number of elts.

S1

S2

S3

S4

S5

O1=S1, O2=S3, O3=S4

R1=S2, R2=S3, R3=S5

First coloring…

S1

S2

S3

S4

S5

O1=S1, O2=S3, O3=S5

R1=S1, R2=S5, R3=S5

Second coloring…

1: Simplification
2: Insert Streams
3: Dynamic Streams

Uniform edge sampling via sketches…One Pass Algorithm

• Initialize: Let C=∅ be covered elements

• Pass: Add any set that covers ≥ OPT/(2k) new elements.

Uniform edge sampling via sketches…

• Can 0.5-Approximation if we know value of optimum

One Pass Algorithm

• Initialize: Let C=∅ be covered elements

• Pass: Add any set that covers ≥ OPT/(2k) new elements.

Uniform edge sampling via sketches…

• Can 0.5-Approximation if we know value of optimum

• If k sets get added, we've covered ≥ OPT/2 elts

One Pass Algorithm

• Initialize: Let C=∅ be covered elements

• Pass: Add any set that covers ≥ OPT/(2k) new elements.

Uniform edge sampling via sketches…

• Can 0.5-Approximation if we know value of optimum

• If k sets get added, we've covered ≥ OPT/2 elts

• If <k sets get added, adding optimal sets adds ≤ OPT/2 new elts
so must have already covered ≥ OPT/2 elts.

cf. “Sieve Streaming” [Badanidiyuru et al. KDD 14]

One Pass Algorithm

• Initialize: Let C=∅ be covered elements

• Pass: Add any set that covers ≥ OPT/(2k) new elements.

Uniform edge sampling via sketches…

• Can 0.5-Approximation if we know value of optimum

• If k sets get added, we've covered ≥ OPT/2 elts

• If <k sets get added, adding optimal sets adds ≤ OPT/2 new elts
so must have already covered ≥ OPT/2 elts.

cf. “Sieve Streaming” [Badanidiyuru et al. KDD 14]

• Theorem 1 pass, Õ(ε-3 k) space, 1/2-ε approx algorithm.

One Pass Algorithm

• Initialize: Let C=∅ be covered elements

• Pass: Add any set that covers ≥ OPT/(2k) new elements.

Uniform edge sampling via sketches…

• Can 0.5-Approximation if we know value of optimum

• If k sets get added, we've covered ≥ OPT/2 elts

• If <k sets get added, adding optimal sets adds ≤ OPT/2 new elts
so must have already covered ≥ OPT/2 elts.

cf. “Sieve Streaming” [Badanidiyuru et al. KDD 14]

• Theorem 1 pass, Õ(ε-3 k) space, 1/2-ε approx algorithm.

• Proof Combine sub-sampling approach with threshold algorithm.
Extra Õ(ε-1) arises from having to guess OPT up to 1+ε factor.

One Pass Algorithm

• Initialize: Let C=∅ be covered elements

• Pass: Add any set that covers ≥ OPT/(2k) new elements.

Uniform edge sampling via sketches…Multi-Pass Algorithm

• In pass p = 1, … , O(1/ε):

• Add any set that covers ≥ OPT Θp/k new elements where

threshold Θp decreases as 1, 1/(1+ε), 1/(1+ε)2 … 1/(2e)

Uniform edge sampling via sketches…

• Theorem O(ε-1) pass 1-1/e-ε approx using Õ(ε-2 k) space.

Multi-Pass Algorithm

• In pass p = 1, … , O(1/ε):

• Add any set that covers ≥ OPT Θp/k new elements where

threshold Θp decreases as 1, 1/(1+ε), 1/(1+ε)2 … 1/(2e)

Uniform edge sampling via sketches…

• Theorem O(ε-1) pass 1-1/e-ε approx using Õ(ε-2 k) space.

• Proof Approx factor follows from analysis of greedy algorithm.
Universe subsampling and fact we only need 2-approx of OPT.

Multi-Pass Algorithm

• In pass p = 1, … , O(1/ε):

• Add any set that covers ≥ OPT Θp/k new elements where

threshold Θp decreases as 1, 1/(1+ε), 1/(1+ε)2 … 1/(2e)

Uniform edge sampling via sketches…

• Recall, function f: 2[m]➝ℝ is sub-modular if for X⊂Y⊆[m], i ∉Y

f(X+i)-f(X) ≥ f(Y+i)-f(Y)

Random Order Algorithm

Uniform edge sampling via sketches…

• Recall, function f: 2[m]➝ℝ is sub-modular if for X⊂Y⊆[m], i ∉Y

f(X+i)-f(X) ≥ f(Y+i)-f(Y)

e.g., f(X)=|⋃i∈X Si| where S1, …, Sm are sets

Random Order Algorithm

Uniform edge sampling via sketches…

• Recall, function f: 2[m]➝ℝ is sub-modular if for X⊂Y⊆[m], i ∉Y

f(X+i)-f(X) ≥ f(Y+i)-f(Y)

e.g., f(X)=|⋃i∈X Si| where S1, …, Sm are sets

• Work on sub-modular maximization in streams assumes stream
is a permutation of [m] and algorithm has oracle access to f.

• Norouzi-Fard et al. [ICML 18], Agrawal et al. [ITCS 19], Feldman et al. [STOC 20]

Random Order Algorithm

Uniform edge sampling via sketches…

• Recall, function f: 2[m]➝ℝ is sub-modular if for X⊂Y⊆[m], i ∉Y

f(X+i)-f(X) ≥ f(Y+i)-f(Y)

e.g., f(X)=|⋃i∈X Si| where S1, …, Sm are sets

• Work on sub-modular maximization in streams assumes stream
is a permutation of [m] and algorithm has oracle access to f.

• Norouzi-Fard et al. [ICML 18], Agrawal et al. [ITCS 19], Feldman et al. [STOC 20]

• Corollary Sub-modular results and universe sampling gives1-pass,
Õε(k2)-space, 1-1/e-ε approx. for random order streams.

Random Order Algorithm

Uniform edge sampling via sketches…

• Recall, function f: 2[m]➝ℝ is sub-modular if for X⊂Y⊆[m], i ∉Y

f(X+i)-f(X) ≥ f(Y+i)-f(Y)

e.g., f(X)=|⋃i∈X Si| where S1, …, Sm are sets

• Work on sub-modular maximization in streams assumes stream
is a permutation of [m] and algorithm has oracle access to f.

• Norouzi-Fard et al. [ICML 18], Agrawal et al. [ITCS 19], Feldman et al. [STOC 20]

• Corollary Sub-modular results and universe sampling gives1-pass,
Õε(k2)-space, 1-1/e-ε approx. for random order streams.

• With more work… Can reduce space dependence to linear in k.
• Chakrabarti, McGregor, Wirth [ESA 24]

Random Order Algorithm

1: Simplification
2: Insert Streams
3: Dynamic Streams

Dynamic Steam Algorithm: Warm-Up

Dynamic Steam Algorithm: Warm-Up

• Definition Set is useful if it covers ≥ OPT/(2k) new elts.

Dynamic Steam Algorithm: Warm-Up

• Definition Set is useful if it covers ≥ OPT/(2k) new elts.

• If S and T are useful, T may no longer be useful once S is added.

Dynamic Steam Algorithm: Warm-Up

• Initialize: Let C=∅ be covered elements

• Until k sets added or no remaining sets are useful:

• During a pass: Sample k sets amongst the useful sets

• At end of pass: Add sampled set that remain useful

• Definition Set is useful if it covers ≥ OPT/(2k) new elts.

• If S and T are useful, T may no longer be useful once S is added.

• 1/2 Approx Carries over from insert-only analysis.

Dynamic Steam Algorithm: Warm-Up

• Initialize: Let C=∅ be covered elements

• Until k sets added or no remaining sets are useful:

• During a pass: Sample k sets amongst the useful sets

• At end of pass: Add sampled set that remain useful

• Definition Set is useful if it covers ≥ OPT/(2k) new elts.

• If S and T are useful, T may no longer be useful once S is added.

• 1/2 Approx Carries over from insert-only analysis.

• Space Can sample k sets in ≈ k maxi |Si\C| = Õε(k2) space

Dynamic Steam Algorithm: Warm-Up

• Initialize: Let C=∅ be covered elements

• Until k sets added or no remaining sets are useful:

• During a pass: Sample k sets amongst the useful sets

• At end of pass: Add sampled set that remain useful

• Definition Set is useful if it covers ≥ OPT/(2k) new elts.

• If S and T are useful, T may no longer be useful once S is added.

• 1/2 Approx Carries over from insert-only analysis.

• Space Can sample k sets in ≈ k maxi |Si\C| = Õε(k2) space

• Lemma In each pass, number of remaining useful sets halves or we
add k/3 new sets. So O(log m) passes.

Dynamic Steam Algorithm: Warm-Up

• Initialize: Let C=∅ be covered elements

• Until k sets added or no remaining sets are useful:

• During a pass: Sample k sets amongst the useful sets

• At end of pass: Add sampled set that remain useful

• Definition Set is useful if it covers ≥ OPT/(2k) new elts.

• If S and T are useful, T may no longer be useful once S is added.

• 1/2 Approx Carries over from insert-only analysis.

• Space Can sample k sets in ≈ k maxi |Si\C| = Õε(k2) space

• Lemma In each pass, number of remaining useful sets halves or we
add k/3 new sets. So O(log m) passes.

• A more careful analysis, gives O(log m/log log m) passes.

Dynamic Steam Algorithm: Warm-Up

• Initialize: Let C=∅ be covered elements

• Until k sets added or no remaining sets are useful:

• During a pass: Sample k sets amongst the useful sets

• At end of pass: Add sampled set that remain useful

• Definition Set is useful if it covers ≥ OPT/(2k) new elts.

• If S and T are useful, T may no longer be useful once S is added.

Proof of Lemma: Urn Analysis

c

≈ç ≈ç

c c

≈ç ≈ç

c

≈ç

• Consider urn with balls corresponding to useful sets

Proof of Lemma: Urn Analysis

c

≈ç ≈ç

c c

≈ç ≈ç

c

≈ç

• Consider urn with balls corresponding to useful sets

• Draw k balls one-at-a-time*. If we draw a useful ball we earn $1 but
an arbitrary number of other balls in urn become useless

* Although principle of deferred decision means this doesn’t really matter.

Proof of Lemma: Urn Analysis

c

≈ç ≈ç

c c

≈ç ≈ç

c

• Consider urn with balls corresponding to useful sets

• Draw k balls one-at-a-time*. If we draw a useful ball we earn $1 but
an arbitrary number of other balls in urn become useless

≈ç

* Although principle of deferred decision means this doesn’t really matter.

Proof of Lemma: Urn Analysis

c

≈ç ≈ç

c c

≈ç ≈ç

c

• Consider urn with balls corresponding to useful sets

• Draw k balls one-at-a-time*. If we draw a useful ball we earn $1 but
an arbitrary number of other balls in urn become useless

≈ç

≈ç

c

* Although principle of deferred decision means this doesn’t really matter.

Proof of Lemma: Urn Analysis

c

≈ç

c c

≈ç ≈ç

c

• Consider urn with balls corresponding to useful sets

• Draw k balls one-at-a-time*. If we draw a useful ball we earn $1 but
an arbitrary number of other balls in urn become useless

≈ç ≈ç

c

* Although principle of deferred decision means this doesn’t really matter.

Proof of Lemma: Urn Analysis

c

≈ç

c c

≈ç ≈ç

c

• Consider urn with balls corresponding to useful sets

• Draw k balls one-at-a-time*. If we draw a useful ball we earn $1 but
an arbitrary number of other balls in urn become useless

• If fraction of useful balls stays above 1/2, we expect ≥ $k/2.

≈ç ≈ç

c

* Although principle of deferred decision means this doesn’t really matter.

Proof of Lemma: Urn Analysis

c

≈ç

c c

≈ç ≈ç

c

• Consider urn with balls corresponding to useful sets

• Draw k balls one-at-a-time*. If we draw a useful ball we earn $1 but
an arbitrary number of other balls in urn become useless

• If fraction of useful balls stays above 1/2, we expect ≥ $k/2.

• At end of each pass we remove all useless balls and restart.

≈ç ≈ç

c

* Although principle of deferred decision means this doesn’t really matter.

Improving Space Complexity

Improving Space Complexity

• Definition Set is v-useful if it covers between v and 2v new elts.

Improving Space Complexity

• Initialize: Let C=∅ be covered elements.

• In parallel for i∈{1, …, log(2k)}

• Sample 2i sets amongst the OPT/2i useful sets

• Add set any sampled sets that remain useful

• Repeat until we have covered OPT/2 elts

• Definition Set is v-useful if it covers between v and 2v new elts.

• 1/2 Approx Carries over from insert-only analysis.

Improving Space Complexity

• Initialize: Let C=∅ be covered elements.

• In parallel for i∈{1, …, log(2k)}

• Sample 2i sets amongst the OPT/2i useful sets

• Add set any sampled sets that remain useful

• Repeat until we have covered OPT/2 elts

• Definition Set is v-useful if it covers between v and 2v new elts.

• 1/2 Approx Carries over from insert-only analysis.

• Space Can sample 2i sets in ≈ 2i maxi:OPT/2i useful |Si\C| ≤ Õε(k) space

Improving Space Complexity

• Initialize: Let C=∅ be covered elements.

• In parallel for i∈{1, …, log(2k)}

• Sample 2i sets amongst the OPT/2i useful sets

• Add set any sampled sets that remain useful

• Repeat until we have covered OPT/2 elts

• Definition Set is v-useful if it covers between v and 2v new elts.

• 1/2 Approx Carries over from insert-only analysis.

• Space Can sample 2i sets in ≈ 2i maxi:OPT/2i useful |Si\C| ≤ Õε(k) space

• Lemma O(log k + log m/log log m) passes.

Improving Space Complexity

• Initialize: Let C=∅ be covered elements.

• In parallel for i∈{1, …, log(2k)}

• Sample 2i sets amongst the OPT/2i useful sets

• Add set any sampled sets that remain useful

• Repeat until we have covered OPT/2 elts

• Definition Set is v-useful if it covers between v and 2v new elts.

Proof Idea of Lemma: Cascading Urns

c

≈ç ≈ç

c c

≈ç ≈ç

c

• Balls in i-th urn correspond to (OPT/2i)-useful sets.

≈ç

≈ç

c c
c

≈ç

c c

≈ç

c

≈ç

≈ç ≈ç

≈ç

c c

≈ç ≈ç

c c

≈ç

c

≈ç

≈ç ≈ç

≈ç c

Urn 1 Urn 2 Urn log(2k)

≈ç ≈ç ≈ç ≈ç

≈ç ≈ç≈ç ≈ç ≈ç

…

Proof Idea of Lemma: Cascading Urns

c

≈ç ≈ç

c c

≈ç ≈ç

c

• Balls in i-th urn correspond to (OPT/2i)-useful sets.

• Draw 2i balls from Urn i. May cause other balls to become useless.

≈ç

≈ç

c c
c

≈ç

c c

≈ç

c

≈ç

≈ç ≈ç

≈ç

c c

≈ç ≈ç

c c

≈ç

c

≈ç

≈ç ≈ç

≈ç c

Urn 1 Urn 2 Urn log(2k)

≈ç ≈ç ≈ç ≈ç

≈ç ≈ç≈ç ≈ç ≈ç

…

Proof Idea of Lemma: Cascading Urns

c

≈ç ≈ç

c c

≈ç ≈ç

c

• Balls in i-th urn correspond to (OPT/2i)-useful sets.

• Draw 2i balls from Urn i. May cause other balls to become useless.

• A useful ball from Urn i gives $OPT/2i

≈ç

≈ç

c c
c

≈ç

c c

≈ç

c

≈ç

≈ç ≈ç

≈ç

c c

≈ç ≈ç

c c

≈ç

c

≈ç

≈ç ≈ç

≈ç c

Urn 1 Urn 2 Urn log(2k)

≈ç ≈ç ≈ç ≈ç

≈ç ≈ç≈ç ≈ç ≈ç

…

Proof Idea of Lemma: Cascading Urns

c

≈ç ≈ç

c c

≈ç ≈ç

c

• Balls in i-th urn correspond to (OPT/2i)-useful sets.

• Draw 2i balls from Urn i. May cause other balls to become useless.

• A useful ball from Urn i gives $OPT/2i

• If fraction of useful balls stays above 1/2, we expect ≥ $OPT/2.

≈ç

≈ç

c c
c

≈ç

c c

≈ç

c

≈ç

≈ç ≈ç

≈ç

c c

≈ç ≈ç

c c

≈ç

c

≈ç

≈ç ≈ç

≈ç c

Urn 1 Urn 2 Urn log(2k)

≈ç ≈ç ≈ç ≈ç

≈ç ≈ç≈ç ≈ç ≈ç

…

Proof Idea of Lemma: Cascading Urns

c

≈ç ≈ç

c c

≈ç ≈ç

c

• Balls in i-th urn correspond to (OPT/2i)-useful sets.

• Draw 2i balls from Urn i. May cause other balls to become useless.

• A useful ball from Urn i gives $OPT/2i

• If fraction of useful balls stays above 1/2, we expect ≥ $OPT/2.

• At end of each pass useless balls are removed and potentially placed
in later urns, i.e., balls “cascade”.

≈ç

≈ç

c c
c

≈ç

c c

≈ç

c

≈ç

≈ç ≈ç

≈ç

c c

≈ç ≈ç

c c

≈ç

c

≈ç

≈ç ≈ç

≈ç c

Urn 1 Urn 2 Urn log(2k)

≈ç ≈ç ≈ç ≈ç

≈ç ≈ç≈ç ≈ç ≈ç

…

Getting 1-1/e-ε Approx

Getting 1-1/e-ε Approx

• Initialize: Let C=∅ be covered elements.

• In parallel for i∈{1, …, log k}

• Sample 2i sets amongst the OPT/2i useful sets

• Add set any sampled sets that remain useful

• In series for i∈{1, …, log1+ε e}

• Sample k sets amongst (1+ε)-i OPT/k useful sets

• Add set any sampled sets that remain useful

Getting 1-1/e-ε Approx

• Theorem O(log m + ε-1 log m/log log m) pass, Õ(ε-2k)-space, 1-1/e-ε
approx. in the dynamic set stream model,

• Initialize: Let C=∅ be covered elements.

• In parallel for i∈{1, …, log k}

• Sample 2i sets amongst the OPT/2i useful sets

• Add set any sampled sets that remain useful

• In series for i∈{1, …, log1+ε e}

• Sample k sets amongst (1+ε)-i OPT/k useful sets

• Add set any sampled sets that remain useful

Thanks!

Summary of Talk

• Simplification If sets are small, can throw out many sets. If sets are
large, can subsample universe to ensure sets are small-ish.

Older results: [Demaine et al. DISC 14], [McGregor, Vu. Theory Comput. Syst. 19],
[McGregor et al. ICDT 21]

• Insert-Only Streams Õε(k) space suffices for 1/2-ε approx (1-pass)
or 1-1/e-ε (1-pass random order O(1/ε)-pass arbitrary order).

Prev. best space bound for random order Õε(k2) [Warneke et al. ESA 23]

• Dynamic Streams Õ(ε-2 k) space, O(log m+ε-1 log m/log log m)
passes suffice for 1-1/e-ε approx.

[Chakrabarti, McGregor, Wirth. ESA 24]
Prev. best space bound Õ(n+ε-4 k) [Assadi, Khanna. SODA 18]

https://dblp.org/db/journals/mst/mst63.html#McGregorV19

