Max Coverage via Simplification, Streaming, Sampling, and Submodular Stuff

Andrew McGregor

University of Massachusetts

includes joint work with Hoa Vu, David Tench, Amit Chakrabarti, & Anthony Wirth

Hi to anyone reading Clement's live tweets!

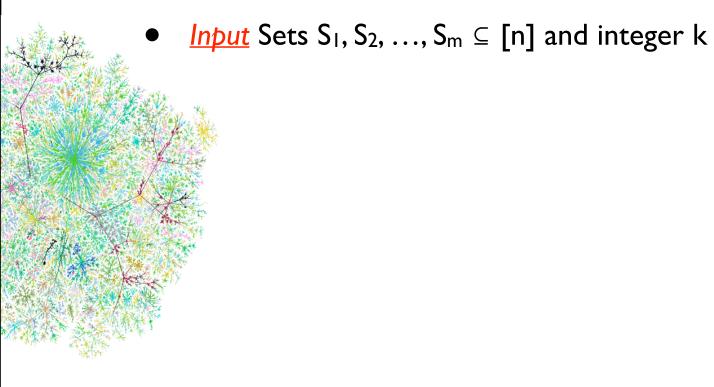
Max Coverage via Simplification, Streaming, Sampling, and Submodular Stuff

Andrew McGregor

University of Massachusetts

includes joint work with Hoa Vu, David Tench, Amit Chakrabarti, & Anthony Wirth

MaxCover Problem



MaxCover Problem

- <u>Input</u> Sets $S_1, S_2, ..., S_m \subseteq [n]$ and integer k
 - <u>Goal</u> Pick k sets to maximize the size of the union of these sets

MaxCover Problem

- Input Sets $S_1, S_2, ..., S_m \subseteq [n]$ and integer k
 - **Goal** Pick k sets to maximize the size of the union of these sets For example, if $S_1 = \{1, 2, 3\}$, $S_2 = \{2, 4, 6\}$, $S_3 = \{2, 3, 4\}$ and k = 2 then picking S_1 and S_2 covers $\{1, 2, 3, 4, 6\}$.

- Input Sets $S_1, S_2, ..., S_m \subseteq [n]$ and integer k
 - <u>Goal</u> Pick k sets to maximize the size of the union of these sets
 - For example, if $S_1 = \{1, 2, 3\}$, $S_2 = \{2, 4, 6\}$, $S_3 = \{2, 3, 4\}$ and k = 2 then picking S_1 and S_2 covers $\{1, 2, 3, 4, 6\}$.
 - Classic Results Greedy algorithm is 1-1/e approx and is best possible. Simple example of sub-modular maximization optimization.

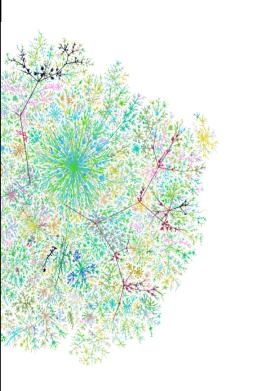
Feige [JACM 98]

- Input Sets $S_1, S_2, ..., S_m \subseteq [n]$ and integer k
 - Goal Pick k sets to maximize the size of the union of these sets
 - For example, if $S_1 = \{1, 2, 3\}$, $S_2 = \{2, 4, 6\}$, $S_3 = \{2, 3, 4\}$ and k = 2 then picking S_1 and S_2 covers $\{1, 2, 3, 4, 6\}$.
 - <u>Classic Results</u> Greedy algorithm is 1-1/e approx and is best possible. Simple example of sub-modular maximization optimization.

Feige [JACM 98]

 <u>Data Streams</u> Growing body of work on MaxCover and SetCover considers input given as a stream of sets

Assadi et al. [STOC 16], Warneke et al. [ESA 23], Indyk-Vakilian [PODS 2019], Yu-Yuan [SDM 13] Saha-Getoor [SDM 09], McGregor-Vu [ICDT 17], Bateni et al. [SPAA 17], Assadi [PODS 17] Demaine et al. [DISC 14], Indyk et al. [APPROX 17], Chakrabarti-Wirth [SODA 16] Assadi et al. [SODA 18], Har-Peled et al. [PODS 16] etc.



<u>Simplification</u> If sets are small, can throw out many sets. If sets are large, can subsample universe to ensure sets are small-ish.

Older results: [Demaine et al. DISC 14], [McGregor, Vu. Theory Comput. Syst. 19], [McGregor et al. ICDT 21]

<u>Simplification</u> If sets are small, can throw out many sets. If sets are large, can subsample universe to ensure sets are small-ish.

Older results: [Demaine et al. DISC 14], [McGregor, Vu. Theory Comput. Syst. 19], [McGregor et al. ICDT 21]

Insert-Only Streams $\tilde{O}_{\varepsilon}(k)$ space suffices for 1/2- ε approx (1-pass) or 1-1/e- ε (1-pass random order O(1/ ε)-pass arbitrary order).

Prev. best space bound for random order $\tilde{O}_{\mathcal{E}}(k^2)$ [Warneke et al. ESA 23]

Simplification If sets are small, can throw out many sets. If sets are large, can subsample universe to ensure sets are small-ish.

Older results: [Demaine et al. DISC 14], [McGregor, Vu. Theory Comput. Syst. 19], [McGregor et al. ICDT 21]

Insert-Only Streams $\tilde{O}_{\varepsilon}(k)$ space suffices for 1/2- ε approx (1-pass) or 1-1/e- ε (1-pass random order O(1/ ε)-pass arbitrary order).

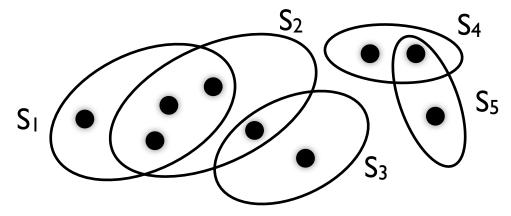
Prev. best space bound for random order $\tilde{O}_{\mathcal{E}}(k^2)$ [Warneke et al. ESA 23]

 <u>Dynamic Streams</u> Õ(E⁻² k) space, O(log m+E⁻¹ log m/log log m) passes suffice for 1-1/e-E approx.

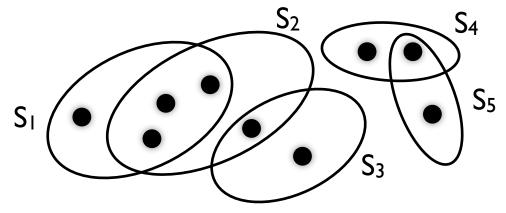
> [Chakrabarti, McGregor, Wirth. ESA 24] Prev. best space bound $\tilde{O}(n+\varepsilon^4 k)$ [Assadi, Khanna. SODA 18]

I: Simplification Insert Streams Dynamic Streams

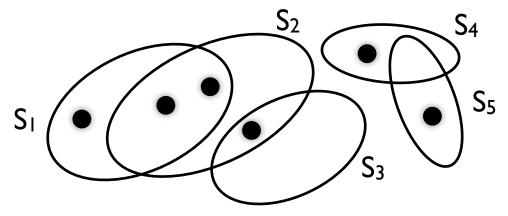




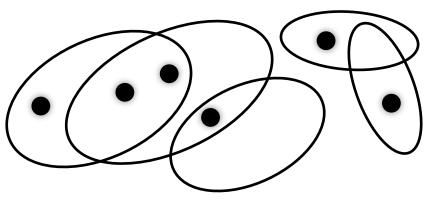
• <u>Universe Sampling</u>



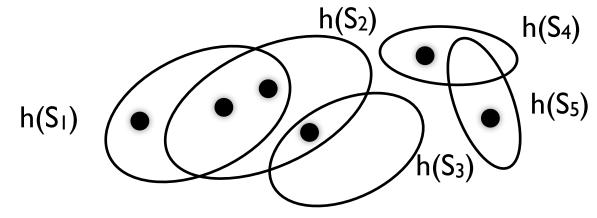
- <u>Universe Sampling</u>
 - Sample elements with probability $p \approx (k\epsilon^{-2} \log m)/OPT$.



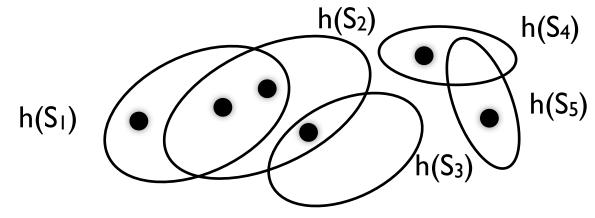
- <u>Universe Sampling</u>
 - Sample elements with probability $p \approx (k\epsilon^{-2} \log m)/OPT$.



- <u>Universe Sampling</u>
 - Sample elements with probability $p \approx (k\epsilon^{-2} \log m)/OPT$.
 - For set S, let h(S) be the set of elements in S that were sampled.

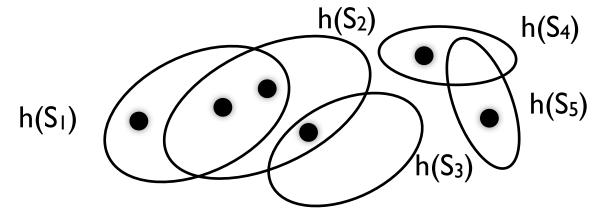


- <u>Universe Sampling</u>
 - Sample elements with probability $p \approx (k\epsilon^{-2} \log m)/OPT$.
 - For set S, let h(S) be the set of elements in S that were sampled.



- <u>Universe Sampling</u>
 - Sample elements with probability $p \approx (k\epsilon^{-2} \log m)/OPT$.
 - For set S, let h(S) be the set of elements in S that were sampled.
- Lemma Whp, for all $T_1, \ldots, T_k \in \{S_1, \ldots, S_m\}$ we have:

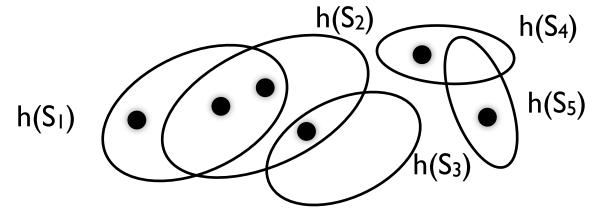
 $|h(T_1)\cup\ldots\cup h(T_k)|/p = |h(T_1)\cup\ldots\cup h(T_k)| \pm \varepsilon \text{ OPT}$



- <u>Universe Sampling</u>
 - Sample elements with probability $p \approx (k\epsilon^{-2} \log m)/OPT$.
 - For set S, let h(S) be the set of elements in S that were sampled.
- Lemma Whp, for all $T_1, \ldots, T_k \in \{S_1, \ldots, S_m\}$ we have:

 $|h(T_1)\cup\ldots\cup h(T_k)|/p = |h(T_1)\cup\ldots\cup h(T_k)| \pm \varepsilon \text{ OPT}$

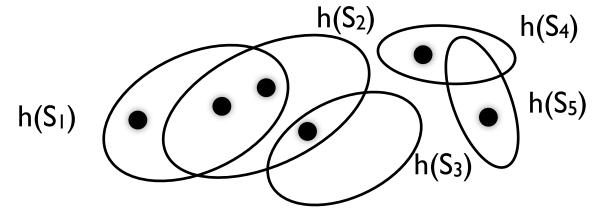
<u>Proof</u> Chernoff Bound + Union Bound over m^k collections of sets.



- <u>Universe Sampling</u>
 - Sample elements with probability $p \approx (k\epsilon^{-2} \log m)/OPT$.
 - For set S, let h(S) be the set of elements in S that were sampled.
- Lemma Whp, for all $T_1, \ldots, T_k \in \{S_1, \ldots, S_m\}$ we have:

 $|h(T_1)\cup\ldots\cup h(T_k)|/p = |h(T_1)\cup\ldots\cup h(T_k)| \pm \varepsilon \text{ OPT}$

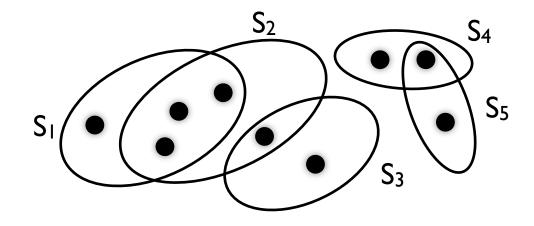
- <u>Proof</u> Chernoff Bound + Union Bound over m^k collections of sets.
- α -approx on h(S₁),..., h(S_m) gives (α - ϵ)-approx for original instance.

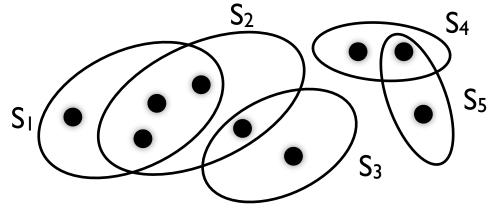


- <u>Universe Sampling</u>
 - Sample elements with probability $p \approx (k\epsilon^{-2} \log m)/OPT$.
 - For set S, let h(S) be the set of elements in S that were sampled.
- Lemma Whp, for all $T_1, \ldots, T_k \in \{S_1, \ldots, S_m\}$ we have:

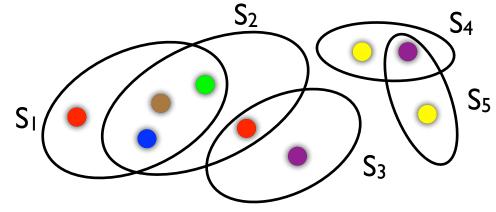
 $|h(T_1)\cup\ldots\cup h(T_k)|/p = |h(T_1)\cup\ldots\cup h(T_k)| \pm \varepsilon \text{ OPT}$

- <u>Proof</u> Chernoff Bound + Union Bound over m^k collections of sets.
- α -approx on $h(S_1), \ldots, h(S_m)$ gives $(\alpha \cdot \epsilon)$ -approx for original instance.
- Optimum solution for $h(S_1), \ldots, h(S_m)$ covers $O(k\epsilon^{-2} \log m)$ elts.

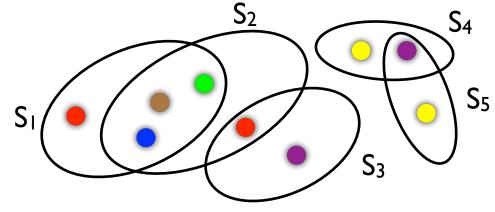




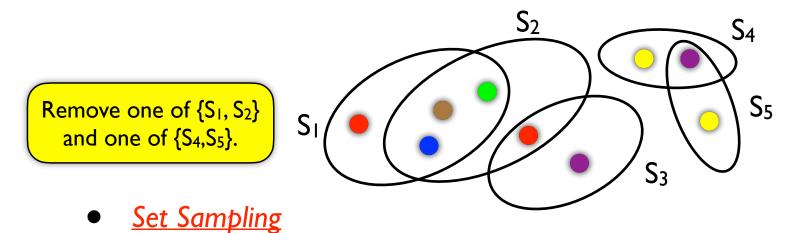
- <u>Set Sampling</u>
 - Let color: $[n] \rightarrow [c]$ be a random hash function



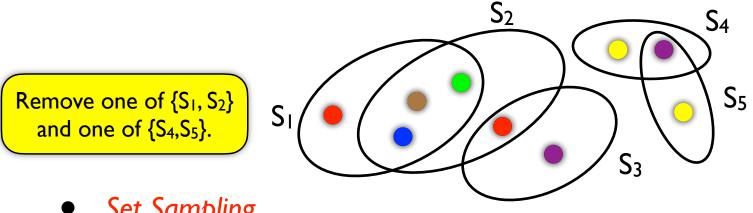
- <u>Set Sampling</u>
 - Let color: $[n] \rightarrow [c]$ be a random hash function



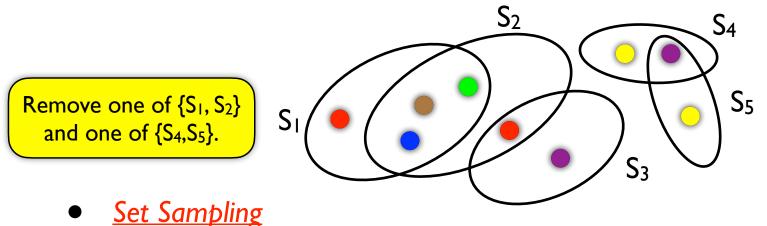
- <u>Set Sampling</u>
 - Let color: $[n] \rightarrow [c]$ be a random hash function
 - Only keep sets with distinct $color(S) = \{color(i): i \in S\}$



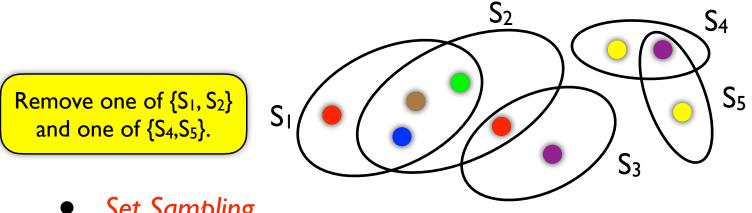
- Let color: $[n] \rightarrow [c]$ be a random hash function
- Only keep sets with distinct $color(S) = \{color(i): i \in S\}$



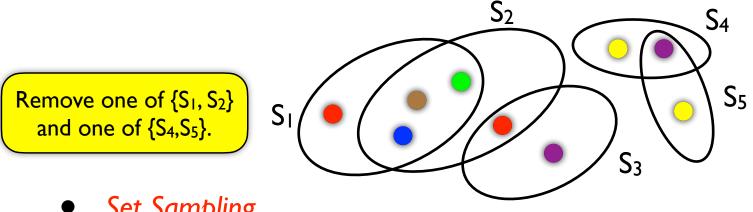
- Set Sampling
 - Let color: $[n] \rightarrow [c]$ be a random hash function
 - Only keep sets with distinct $color(S) = \{color(i): i \in S\}$
- <u>Warm-up</u> Let r be max_i $|S_i|$. If c $\approx (kr)^2$ there's $\leq (kr)^{2r}$ retained sets and these include an opt solution with good probability.



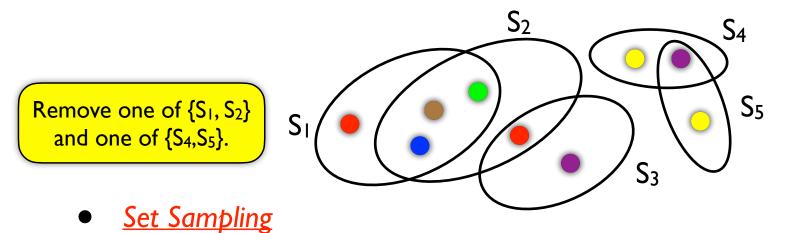
- _____
 - Let color:[n]→[c] be a random hash function
- Only keep sets with distinct $color(S) = \{color(i): i \in S\}$
- <u>Warm-up</u> Let r be max_i $|S_i|$. If c \approx (kr)² there's \leq (kr)^{2r} retained sets and these include an opt solution with good probability.
 - Let O_1, \ldots, O_k be an optimum solution. Covers $\leq kr$ elements.



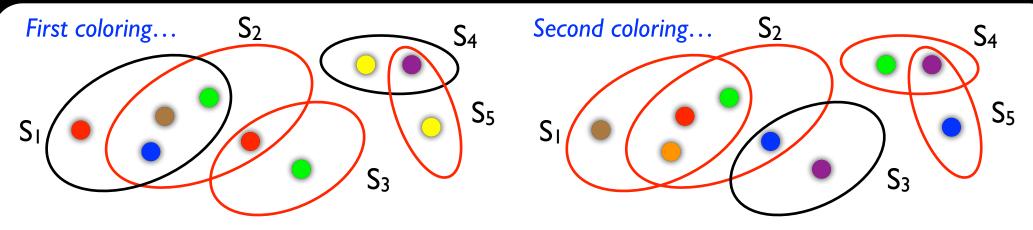
- Set Sampling
 - Let color: $[n] \rightarrow [c]$ be a random hash function
 - Only keep sets with distinct $color(S) = \{color(i): i \in S\}$
- <u>Warm-up</u> Let r be max_i |S_i|. If $c \approx (kr)^2$ there's $\leq (kr)^{2r}$ retained sets and these include an opt solution with good probability.
 - Let O_1, \ldots, O_k be an optimum solution. Covers $\leq kr$ elements.
 - By Birthday-Paradox, $|O_1 \cup \ldots \cup O_k| = |color(O_1 \cup \ldots \cup O_k)|$



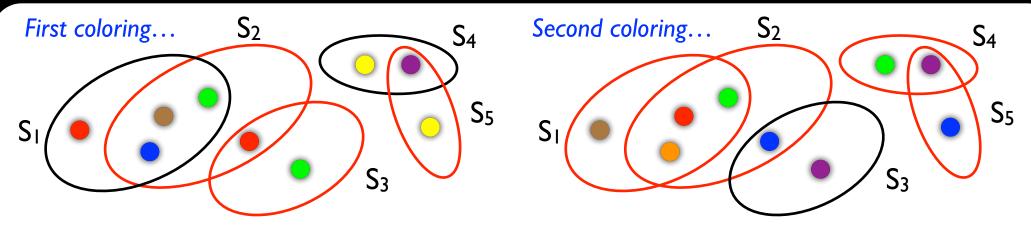
- Set Sampling
 - Let color: $[n] \rightarrow [c]$ be a random hash function
 - Only keep sets with distinct $color(S) = \{color(i): i \in S\}$
- <u>Warm-up</u> Let r be max_i |S_i|. If $c \approx (kr)^2$ there's $\leq (kr)^{2r}$ retained sets and these include an opt solution with good probability.
 - Let O_1, \ldots, O_k be an optimum solution. Covers $\leq kr$ elements.
 - By Birthday-Paradox, $|O_1 \cup \ldots \cup O_k| = |color(O_1 \cup \ldots \cup O_k)|$
 - If R_i is set retained with $color(R_i)=color(O_i)$ then



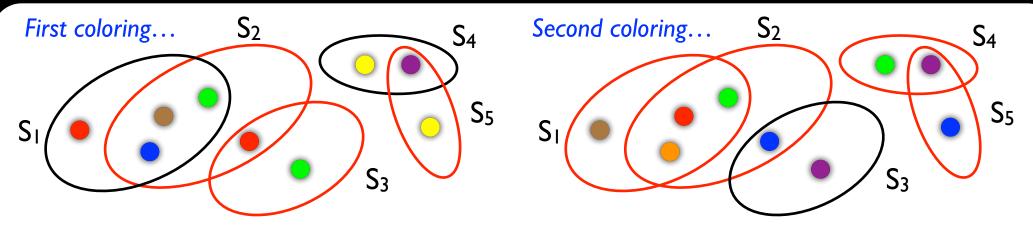
- Let color: $[n] \rightarrow [c]$ be a random hash function
- Only keep sets with distinct $color(S) = \{color(i): i \in S\}$
- <u>Warm-up</u> Let r be max_i |S_i|. If $c \approx (kr)^2$ there's $\leq (kr)^{2r}$ retained sets and these include an opt solution with good probability.
 - Let O_1, \ldots, O_k be an optimum solution. Covers $\leq kr$ elements.
 - By Birthday-Paradox, $|O_1 \cup \ldots \cup O_k| = |color(O_1 \cup \ldots \cup O_k)|$
 - If R_i is set retained with $color(R_i)=color(O_i)$ then $|color(O_1 \cup ... \cup O_k)| = |color(R_1 \cup ... \cup R_k)| \le |R_1 \cup ... \cup R_k|$



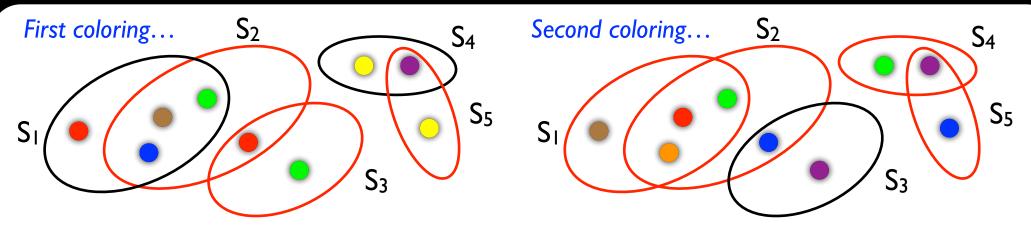
- <u>Superior Set Sampling</u>
 - Let $color_1, \dots, color_t: [n] \rightarrow [c]$ be t random hash functions



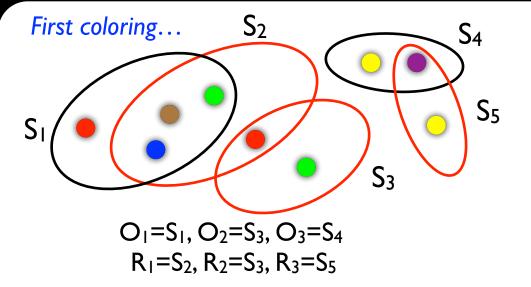
- <u>Superior Set Sampling</u>
 - Let color₁, ..., color_t: $[n] \rightarrow [c]$ be t random hash functions
 - For $j \in [t]$, retain maximal collection of sets with distinct $color_j(\cdot)$



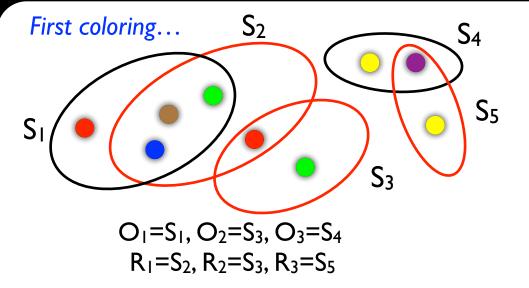
- <u>Superior Set Sampling</u>
 - Let color₁, ..., color_t: $[n] \rightarrow [c]$ be t random hash functions
 - For $j \in [t]$, retain maximal collection of sets with distinct $color_j(\cdot)$
- <u>Theorem</u> If $c \approx kr^2$ and $t \approx \log k$ there are $\approx (kr^2)^r$ retained sets and these include an opt solution whp. <u>McGregor-Tench-Vu</u> [ICDT 21]



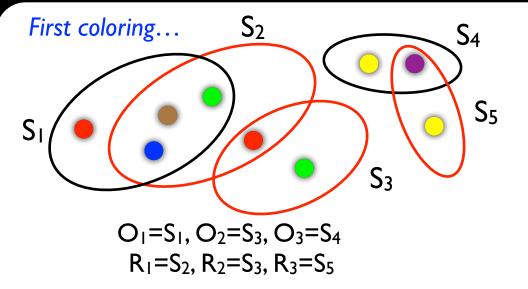
- <u>Superior Set Sampling</u>
 - Let $color_1, \dots, color_t : [n] \rightarrow [c]$ be t random hash functions
 - For $j \in [t]$, retain maximal collection of sets with distinct $color_j(\cdot)$
- <u>Theorem</u> If $c \approx kr^2$ and $t \approx \log k$ there are $\approx (kr^2)^r$ retained sets and these include an opt solution whp. <u>McGregor-Tench-Vu</u> [ICDT 21]
- <u>Proof Approach</u> Fix opt solution. In each coloring, for each opt set with constant prob we sample that set or a set just as good...



• Let O_i be opt set and R_i set retained with $color(R_i)=color(O_i)$.

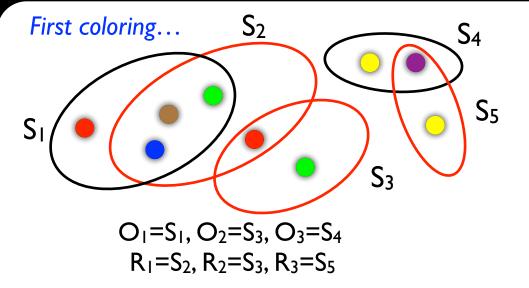


- Let O_i be opt set and R_i set retained with $color(R_i)=color(O_i)$.
- Say O_i is color-full if



- Let O_i be opt set and R_i set retained with $color(R_i)=color(O_i)$.
- Say O_i is color-full if

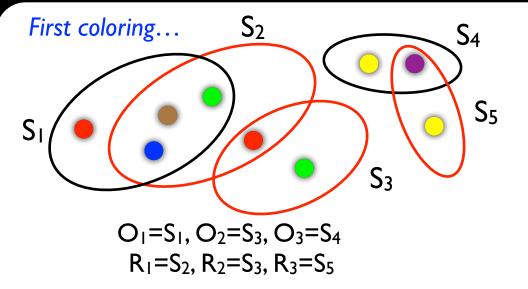
 $|color(O_i)| = |O_i| \text{ and } color(O_i) \cap color(O_1 \cup ... \cup O_k \setminus O_i) = \emptyset$



- Let O_i be opt set and R_i set retained with $color(R_i)=color(O_i)$.
- Say O_i is color-full if

 $|color(O_i)| = |O_i| \text{ and } color(O_i) \cap color(O_1 \cup ... \cup O_k \setminus O_i) = \emptyset$

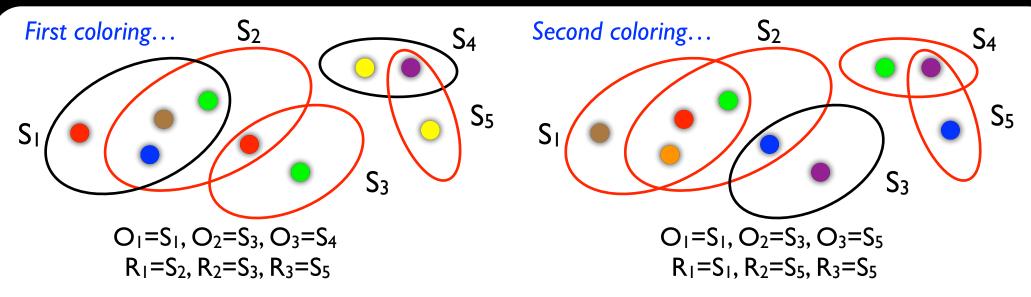
• If O_i is color-full, replace $O_i \leftarrow R_i$. Note $|O_1 \cup ... \cup O_k|$ unchanged.



- Let O_i be opt set and R_i set retained with $color(R_i)=color(O_i)$.
- Say O_i is color-full if

 $|color(O_i)| = |O_i|$ and $color(O_i) \cap color(O_1 \cup ... \cup O_k \setminus O_i) = \emptyset$

- If O_i is color-full, replace $O_i \leftarrow R_i$. Note $|O_1 \cup ... \cup O_k|$ unchanged.
- Pr[O_i is color-full] ≥ 1-r²k/c ≥ 1/2 and repeating log k times ensures we find k sets covering an optimum number of elts.



- Let O_i be opt set and R_i set retained with $color(R_i)=color(O_i)$.
- Say O_i is color-full if

 $|color(O_i)| = |O_i| \text{ and } color(O_i) \cap color(O_1 \cup ... \cup O_k \setminus O_i) = \emptyset$

- If O_i is color-full, replace $O_i \leftarrow R_i$. Note $|O_1 \cup ... \cup O_k|$ unchanged.
- Pr[O_i is color-full] ≥ 1-r²k/c ≥ 1/2 and repeating log k times ensures we find k sets covering an optimum number of elts.

I: Simplification Insert Streams Dynamic Streams

- Initialize: Let $C=\emptyset$ be covered elements
- **Pass:** Add any set that covers $\geq OPT/(2k)$ new elements.

- Initialize: Let $C=\emptyset$ be covered elements
- **Pass:** Add any set that covers $\geq OPT/(2k)$ new elements.
- <u>Can 0.5-Approximation if we know value of optimum</u>

- Initialize: Let $C=\emptyset$ be covered elements
- **Pass:** Add any set that covers $\geq OPT/(2k)$ new elements.
- <u>Can 0.5-Approximation if we know value of optimum</u>
 - If k sets get added, we've covered \geq OPT/2 elts

- Initialize: Let $C=\emptyset$ be covered elements
- Pass: Add any set that covers $\geq OPT/(2k)$ new elements.
- <u>Can 0.5-Approximation if we know value of optimum</u>
 - If k sets get added, we've covered \geq OPT/2 elts
 - If <k sets get added, adding optimal sets adds ≤ OPT/2 new elts so must have already covered ≥ OPT/2 elts.

cf. "Sieve Streaming" [Badanidiyuru et al. KDD 14]

- Initialize: Let $C=\emptyset$ be covered elements
- **Pass:** Add any set that covers $\geq OPT/(2k)$ new elements.
- <u>Can 0.5-Approximation if we know value of optimum</u>
 - If k sets get added, we've covered \geq OPT/2 elts
 - If <k sets get added, adding optimal sets adds ≤ OPT/2 new elts so must have already covered ≥ OPT/2 elts.

cf. "Sieve Streaming" [Badanidiyuru et al. KDD 14]

• <u>Theorem</u> | pass, $\tilde{O}(\varepsilon^{-3} k)$ space, $1/2-\varepsilon$ approx algorithm.

- Initialize: Let $C=\emptyset$ be covered elements
- **Pass:** Add any set that covers $\geq OPT/(2k)$ new elements.
- <u>Can 0.5-Approximation if we know value of optimum</u>
 - If k sets get added, we've covered \geq OPT/2 elts
 - If <k sets get added, adding optimal sets adds ≤ OPT/2 new elts so must have already covered ≥ OPT/2 elts.
 cf. "Sieve Streaming" [Badanidiyuru et al. KDD 14]
- **<u>Theorem</u>** | pass, $\tilde{O}(\varepsilon^{-3} k)$ space, $1/2-\varepsilon$ approx algorithm.
- <u>**Proof</u>** Combine sub-sampling approach with threshold algorithm. Extra $\tilde{O}(\varepsilon^{-1})$ arises from having to guess OPT up to 1+ ε factor.</u>

Multi-Pass Algorithm

• In pass $p = 1, ..., O(1/\epsilon)$:

• Add any set that covers $\geq OPT \Theta_p/k$ new elements where threshold Θ_p decreases as 1, $1/(1+\epsilon)$, $1/(1+\epsilon)^2 \dots 1/(2\epsilon)$

Multi-Pass Algorithm

• In pass $p = 1, ..., O(1/\epsilon)$:

• Add any set that covers \geq OPT Θ_p/k new elements where threshold Θ_p decreases as 1, $1/(1+\epsilon)$, $1/(1+\epsilon)^2 \dots 1/(2\epsilon)$

• <u>Theorem</u> $O(\varepsilon^{-1})$ pass $1-1/e-\varepsilon$ approx using $\tilde{O}(\varepsilon^{-2} k)$ space.

• In pass $p = 1, ..., O(1/\epsilon)$:

• Add any set that covers $\geq OPT \Theta_p/k$ new elements where threshold Θ_p decreases as 1, $1/(1+\epsilon)$, $1/(1+\epsilon)^2 \dots 1/(2\epsilon)$

- <u>Theorem</u> $O(\varepsilon^{-1})$ pass $1-1/e-\varepsilon$ approx using $\tilde{O}(\varepsilon^{-2} k)$ space.
- <u>Proof</u> Approx factor follows from analysis of greedy algorithm. Universe subsampling and fact we only need 2-approx of OPT.

• Recall, function f: $2^{[m]} \rightarrow \mathbb{R}$ is sub-modular if for $X \subset Y \subseteq [m]$, i $\notin Y$

 $f(X+i)-f(X) \ge f(Y+i)-f(Y)$

Recall, function f: 2^[m]→ℝ is sub-modular if for X⊂Y⊆[m], i ∉Y
 f(X+i)-f(X) ≥ f(Y+i)-f(Y)
 e.g., f(X)=|∪_{i∈X} S_i| where S₁, ..., S_m are sets

• Recall, function f: $2^{[m]} \rightarrow \mathbb{R}$ is sub-modular if for $X \subset Y \subseteq [m]$, i $\notin Y$

 $f(X+i)-f(X) \ge f(Y+i)-f(Y)$

e.g., $f(X) = |\bigcup_{i \in X} S_i|$ where S_1, \dots, S_m are sets

 Work on sub-modular maximization in streams assumes stream is a permutation of [m] and algorithm has oracle access to f. Norouzi-Fard et al. [ICML 18], Agrawal et al. [ITCS 19], Feldman et al. [STOC 20]

• Recall, function f: $2^{[m]} \rightarrow \mathbb{R}$ is sub-modular if for $X \subset Y \subseteq [m]$, i $\notin Y$

 $f(X+i)-f(X) \ge f(Y+i)-f(Y)$

e.g., $f(X) = |\bigcup_{i \in X} S_i|$ where S_1, \ldots, S_m are sets

- Work on sub-modular maximization in streams assumes stream is a permutation of [m] and algorithm has oracle access to f. Norouzi-Fard et al. [ICML 18], Agrawal et al. [ITCS 19], Feldman et al. [STOC 20]
- <u>Corollary</u> Sub-modular results and universe sampling gives I-pass, $\tilde{O}_{\varepsilon}(k^2)$ -space, I-I/e- ε approx. for random order streams.

• Recall, function f: $2^{[m]} \rightarrow \mathbb{R}$ is sub-modular if for $X \subset Y \subseteq [m]$, i $\notin Y$

 $f(X+i)-f(X) \ge f(Y+i)-f(Y)$

e.g., $f(X) = |\bigcup_{i \in X} S_i|$ where $S_1, ..., S_m$ are sets

- Work on sub-modular maximization in streams assumes stream is a permutation of [m] and algorithm has oracle access to f. Norouzi-Fard et al. [ICML 18], Agrawal et al. [ITCS 19], Feldman et al. [STOC 20]
- <u>Corollary</u> Sub-modular results and universe sampling gives I-pass, $\tilde{O}_{\epsilon}(k^2)$ -space, I-I/e- ϵ approx. for random order streams.
- <u>With more work...</u> Can reduce space dependence to linear in k. Chakrabarti, McGregor, Wirth [ESA 24]

Insert Streams Dynamic Streams

• <u>Definition</u> Set is useful if it covers $\geq OPT/(2k)$ new elts.

- <u>Definition</u> Set is useful if it covers $\geq OPT/(2k)$ new elts.
- If S and T are useful, T may no longer be useful once S is added.

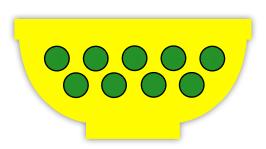
- <u>Definition</u> Set is useful if it covers $\geq OPT/(2k)$ new elts.
- If S and T are useful, T may no longer be useful once S is added.
 - Initialize: Let $C=\emptyset$ be covered elements
 - Until k sets added or no remaining sets are useful:
 - During a pass: Sample k sets amongst the useful sets
 - · At end of pass: Add sampled set that remain useful

- <u>Definition</u> Set is useful if it covers $\geq OPT/(2k)$ new elts.
- If S and T are useful, T may no longer be useful once S is added.
 - Initialize: Let $C=\emptyset$ be covered elements
 - Until k sets added or no remaining sets are useful:
 - · During a pass: Sample k sets amongst the useful sets
 - · At end of pass: Add sampled set that remain useful
- <u>1/2 Approx</u> Carries over from insert-only analysis.

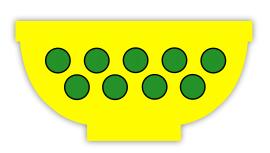
- <u>Definition</u> Set is useful if it covers $\geq OPT/(2k)$ new elts.
- If S and T are useful, T may no longer be useful once S is added.
 - Initialize: Let $C=\emptyset$ be covered elements
 - Until k sets added or no remaining sets are useful:
 - During a pass: Sample k sets amongst the useful sets
 - · At end of pass: Add sampled set that remain useful
- <u>1/2 Approx</u> Carries over from insert-only analysis.
- <u>Space</u> Can sample k sets in \approx k max_i $|S_i \setminus C| = \tilde{O}_{\varepsilon}(k^2)$ space

- <u>Definition</u> Set is useful if it covers $\geq OPT/(2k)$ new elts.
- If S and T are useful, T may no longer be useful once S is added.
 - Initialize: Let $C=\emptyset$ be covered elements
 - Until k sets added or no remaining sets are useful:
 - During a pass: Sample k sets amongst the useful sets
 - · At end of pass: Add sampled set that remain useful
- <u>1/2 Approx</u> Carries over from insert-only analysis.
- <u>Space</u> Can sample k sets in \approx k max_i $|S_i \setminus C| = \tilde{O}_{\varepsilon}(k^2)$ space
- <u>Lemma</u> In each pass, number of remaining useful sets halves or we add k/3 new sets. So O(log m) passes.

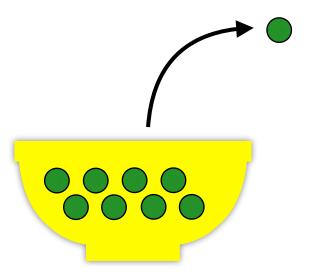
- <u>Definition</u> Set is useful if it covers $\geq OPT/(2k)$ new elts.
- If S and T are useful, T may no longer be useful once S is added.
 - Initialize: Let $C=\emptyset$ be covered elements
 - Until k sets added or no remaining sets are useful:
 - During a pass: Sample k sets amongst the useful sets
 - · At end of pass: Add sampled set that remain useful
- <u>1/2 Approx</u> Carries over from insert-only analysis.
- <u>Space</u> Can sample k sets in \approx k max_i $|S_i \setminus C| = \tilde{O}_{\varepsilon}(k^2)$ space
- <u>Lemma</u> In each pass, number of remaining useful sets halves or we add k/3 new sets. So O(log m) passes.
- A more careful analysis, gives O(log m/log log m) passas



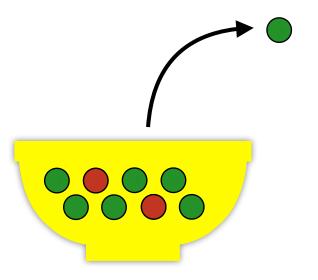
• Consider urn with balls corresponding to useful sets



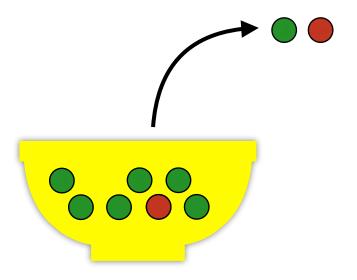
- Consider urn with balls corresponding to useful sets
- Draw k balls one-at-a-time*. If we draw a useful ball we earn \$1 but an arbitrary number of other balls in urn become useless



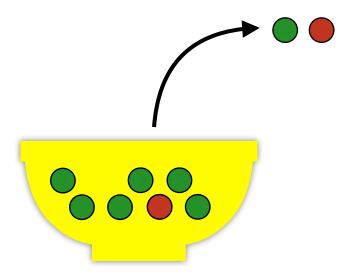
- Consider urn with balls corresponding to useful sets
- Draw k balls one-at-a-time*. If we draw a useful ball we earn \$1 but an arbitrary number of other balls in urn become useless



- Consider urn with balls corresponding to useful sets
- Draw k balls one-at-a-time*. If we draw a useful ball we earn \$1 but an arbitrary number of other balls in urn become useless



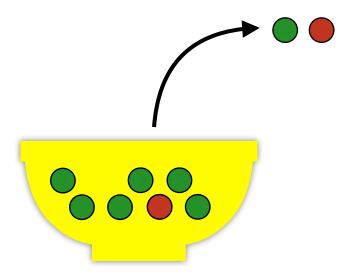
- Consider urn with balls corresponding to useful sets
- Draw k balls one-at-a-time*. If we draw a useful ball we earn \$1 but an arbitrary number of other balls in urn become useless



- Consider urn with balls corresponding to useful sets
- Draw k balls one-at-a-time*. If we draw a useful ball we earn \$1 but an arbitrary number of other balls in urn become useless
- If fraction of useful balls stays above 1/2, we expect $\geq \frac{k}{2}$.

* Although principle of deferred decision means this doesn't really matter.

Proof of Lemma: Urn Analysis



- Consider urn with balls corresponding to useful sets
- Draw k balls one-at-a-time*. If we draw a useful ball we earn \$1 but an arbitrary number of other balls in urn become useless
- If fraction of useful balls stays above 1/2, we expect $\geq \frac{k}{2}$.
- At end of each pass we remove all useless balls and restart.

See all and the second second

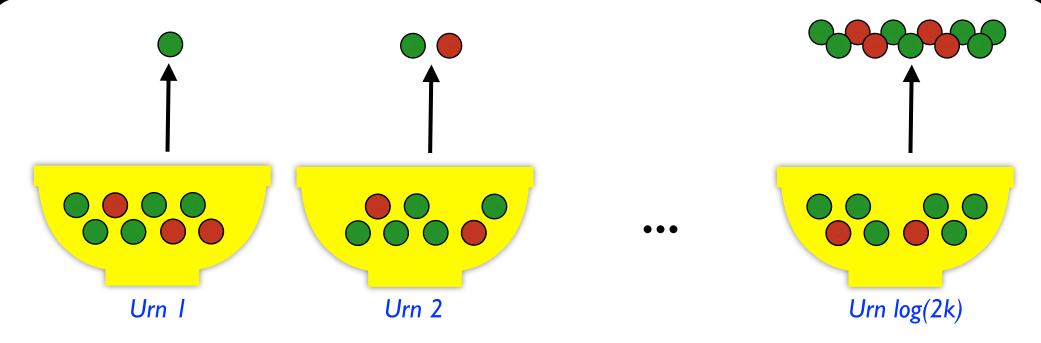
• **Definition** Set is v-useful if it covers between v and 2v new elts.

- **Definition** Set is v-useful if it covers between v and 2v new elts.
 - Initialize: Let $C=\emptyset$ be covered elements.
 - In parallel for $i \in \{1, ..., log(2k)\}$
 - · Sample 2ⁱ sets amongst the OPT/2ⁱ useful sets
 - Add set any sampled sets that remain useful
 - Repeat until we have covered OPT/2 elts

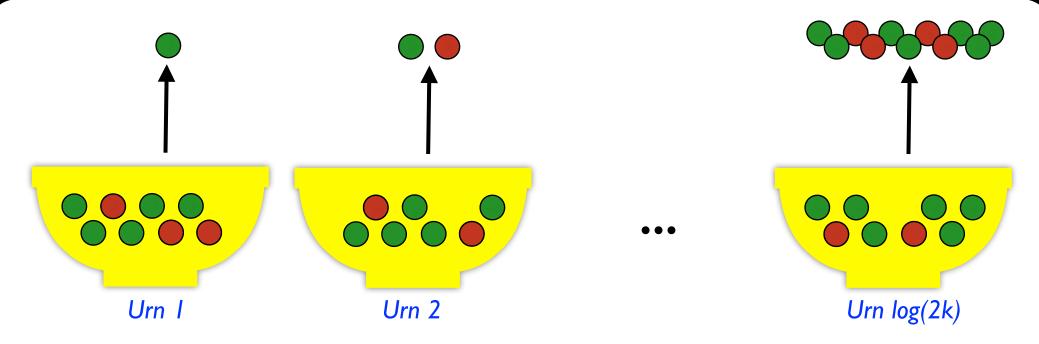
- **Definition** Set is v-useful if it covers between v and 2v new elts.
 - Initialize: Let $C=\emptyset$ be covered elements.
 - In parallel for $i \in \{1, ..., log(2k)\}$
 - Sample 2ⁱ sets amongst the OPT/2ⁱ useful sets
 - Add set any sampled sets that remain useful
 - Repeat until we have covered OPT/2 elts
- <u>1/2 Approx</u> Carries over from insert-only analysis.

- **Definition** Set is v-useful if it covers between v and 2v new elts.
 - Initialize: Let $C=\emptyset$ be covered elements.
 - In parallel for $i \in \{1, ..., log(2k)\}$
 - Sample 2ⁱ sets amongst the OPT/2ⁱ useful sets
 - Add set any sampled sets that remain useful
 - Repeat until we have covered OPT/2 elts
- <u>1/2 Approx</u> Carries over from insert-only analysis.
- <u>Space</u> Can sample 2^i sets in $\approx 2^i \max_{i:OPT/2^i useful} |S_i \setminus C| \le \tilde{O}_{\varepsilon}(k)$ space

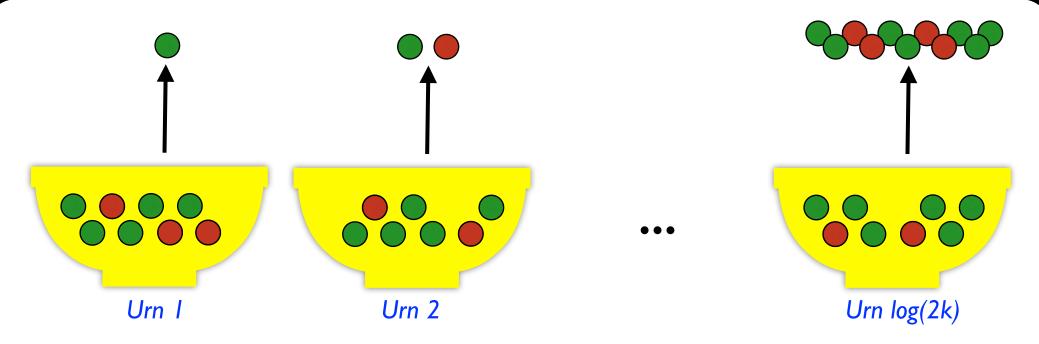
- <u>Definition</u> Set is v-useful if it covers between v and 2v new elts.
 - Initialize: Let $C=\emptyset$ be covered elements.
 - In parallel for $i \in \{1, ..., log(2k)\}$
 - Sample 2ⁱ sets amongst the OPT/2ⁱ useful sets
 - Add set any sampled sets that remain useful
 - Repeat until we have covered OPT/2 elts
- <u>1/2 Approx</u> Carries over from insert-only analysis.
- <u>Space</u> Can sample 2^i sets in $\approx 2^i \max_{i:OPT/2^i useful} |S_i \setminus C| \le \tilde{O}_{\varepsilon}(k)$ space
- <u>Lemma</u> O(log k + log m/log log m) passes.



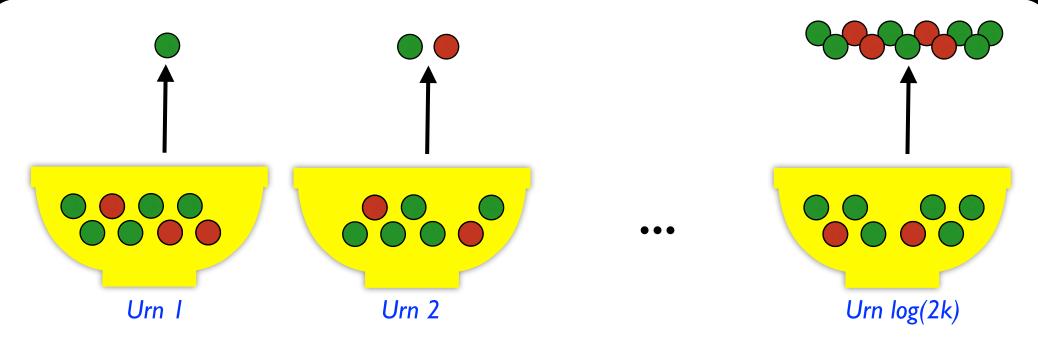
• Balls in i-th urn correspond to (OPT/2ⁱ)-useful sets.



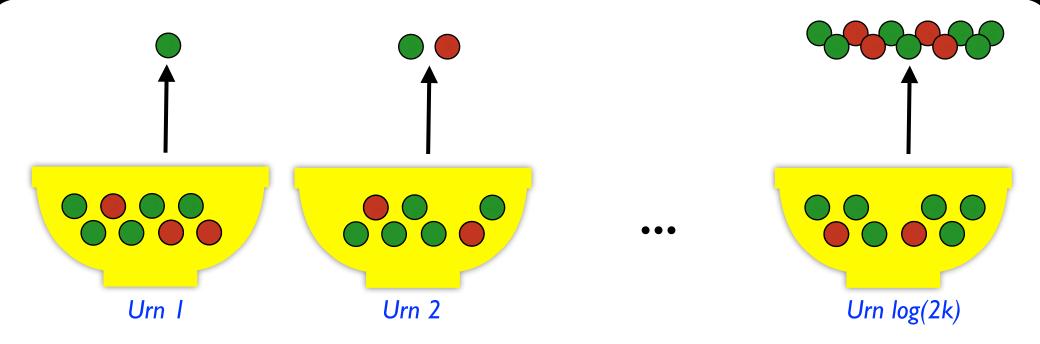
- Balls in i-th urn correspond to (OPT/2ⁱ)-useful sets.
- Draw 2ⁱ balls from Urn i. May cause other balls to become useless.



- Balls in i-th urn correspond to (OPT/2ⁱ)-useful sets.
- Draw 2ⁱ balls from Urn i. May cause other balls to become useless.
- A useful ball from Urn i gives \$OPT/2ⁱ



- Balls in i-th urn correspond to (OPT/2ⁱ)-useful sets.
- Draw 2ⁱ balls from Urn i. May cause other balls to become useless.
- A useful ball from Urn i gives \$OPT/2ⁱ
- If fraction of useful balls stays above 1/2, we expect \geq \$OPT/2.



- Balls in i-th urn correspond to (OPT/2ⁱ)-useful sets.
- Draw 2ⁱ balls from Urn i. May cause other balls to become useless.
- A useful ball from Urn i gives \$OPT/2ⁱ
- If fraction of useful balls stays above 1/2, we expect \geq \$OPT/2.
- At end of each pass useless balls are removed and potentially placed in later urns, i.e., balls "cascade".

Getting I-I/e-E Approx

Getting I-I/e-ε Approx

- Initialize: Let $C=\emptyset$ be covered elements.
- In parallel for $i \in \{1, ..., \log k\}$
 - Sample 2ⁱ sets amongst the OPT/2ⁱ useful sets
 - Add set any sampled sets that remain useful
- In series for $i \in \{1, ..., log_{l+\epsilon} e\}$
 - Sample k sets amongst $(1+\epsilon)^{-i}$ OPT/k useful sets
 - Add set any sampled sets that remain useful

Getting I-I/e-ε Αpprox

- Initialize: Let $C=\emptyset$ be covered elements.
- In parallel for $i \in \{1, ..., \log k\}$
 - Sample 2ⁱ sets amongst the OPT/2ⁱ useful sets
 - Add set any sampled sets that remain useful
- In series for $i \in \{1, ..., log_{l+\epsilon} e\}$
 - Sample k sets amongst $(1+\epsilon)^{-i}$ OPT/k useful sets
 - Add set any sampled sets that remain useful

 <u>Theorem</u> O(log m + ε⁻¹ log m/log log m) pass, Õ(ε⁻²k)-space, I-I/e-ε approx. in the dynamic set stream model,

Simplification If sets are small, can throw out many sets. If sets are large, can subsample universe to ensure sets are small-ish.

Older results: [Demaine et al. DISC 14], [McGregor, Vu. Theory Comput. Syst. 19], [McGregor et al. ICDT 21]

<u>Insert-Only Streams</u> $\tilde{O}_{\varepsilon}(k)$ space suffices for 1/2- ε approx (1-pass) or 1-1/e- ε (1-pass random order O(1/ ε)-pass arbitrary order).

Prev. best space bound for random order $\tilde{O}_{\mathcal{E}}(k^2)$ [Warneke et al. ESA 23]

 <u>Dynamic Streams</u> Õ(E⁻² k) space, O(log m+E⁻¹ log m/log log m) passes suffice for 1-1/e-E approx.

> [Chakrabarti, McGregor, Wirth. ESA 24] Prev. best space bound $\tilde{O}(n+\varepsilon^4 k)$ [Assadi, Khanna. SODA 18]

Thanks!