Max Coverage
L via Simplification,
., Streaming, Sampling,

and Submodular Stuff

Andrew McGregor
University of Massachusetts

includes joint work with Hoa Vu, David Tench,
Amit Chakrabarti, & Anthony Wirth

ve h})ee"S!

Hi to anyone reading Clement’s li

Max Coverage
L via Simplification,
., Streaming, Sampling,

and Submodular Stuff

Andrew McGregor
University of Massachusetts

includes joint work with Hoa Vu, David Tench,
Amit Chakrabarti, & Anthony Wirth

MaxCover Problem

e ® [nput Sets Si, Sy, ...,Sm C [n] and integer k
A

A

MaxCover Problem

® [nput Sets Si, Sy, ...,Sm C [n] and integer k

@ Godl Pick k sets to maximize the size of the union of these sets

MaxCover Problem

ek ® [nput Sets Sy, Sz, ..., Sm € [n] and integer k
bt

@ Godl Pick k sets to maximize the size of the union of these sets

e 1’ For example, if S1={1,2,3}, $2={2,4,6}, S3={2,3,4} and k=2 then
Yol 1. picking Si and S; covers {1,2,3,4,6}.

MaxCover Problem

® [nput Sets Si, Sy, ...,Sm C [n] and integer k

3)
B
g ¢ 7 D s
Y ¥ [
Stk

@ Godl Pick k sets to maximize the size of the union of these sets

Ve For example, if $1={1,2,3), 2={2,4,6}, $3={2,3,4} and k=2 then
e -vff;\ _+ picking S and §, covers {1,2,3,4,6}.

AE e CIass:c Results Greedy algorithm is |-1/e approx and is best possible.
== Simple example of sub-modular maximization optimization.
Feige [JACM 98]

MaxCover Problem

® [nput Sets Si, Sy, ...,Sm C [n] and integer k

@ Goal Pick k sets to maximize the size of the union of these sets

o ; ' For example, if S1={1,2,3}, S2={2,4,6}, 53={2,3,4} and k=2 then
1. picking S and Sz covers {1,2,3,4,6}.

v ! 13
Y A _/“
1 oY R

/‘“f * ® Classic Results Greedy algorithm is |-1/e approx and is best possible.

¢ RrRte
I 5\‘ -
E4E 1

. Simple example of sub-modular maximization optimization.
P P P
Feige [JACM 98]

® Data Streams Growing body of work on MaxCover and SetCover
considers input given as a stream of sets

Assadi et al. [STOC 16], Warneke et al. [ESA 23], Indyk-Vakilian [PODS 2019],Yu-Yuan [SDM 13]
Saha-Getoor [SDM 09], McGregor-Vu [ICDT 17], Bateni et al. [SPAA 17], Assadi [PODS 17]
Demaine et al. [DISC 14], Indyk et al. [APPROX 17], Chakrabarti-Wirth [SODA 16]

Assadi et al. [SODA 18], Har-Peled et al. [PODS 16] etc.

Talk Summary

Talk Summary

® Simplification If sets are small, can throw out many sets. If sets are
_large, can subsample universe to ensure sets are small-ish.

Older results: [Demaine et al. DISC 14], [McGregor,Vu. Theory Comput. Syst. 19],
[McGregor et al. ICDT 21]

https://dblp.org/db/journals/mst/mst63.html#McGregorV19

Talk Summary

® Simplification If sets are small, can throw out many sets. If sets are
_large, can subsample universe to ensure sets are small-ish.

iy
B
s

e i Older results: [Demaine et al. DISC 14], [McGregor,Vu. Theory Comput. Syst. 19],
[McGregor et al. ICDT 21]

’»,V
: AR DS ;?i.{f
(2 A \\,/, Xle

ol . ® Insert-Only Streams O¢(k) space suffices for |/2-& approx (|-pass)
i A k. or |-l/e-g (I-pass random order O(l/€)-pass arbitrary order).

&Y "'«

Prev. best space bound for random order Og(k2) [Warneke et al. ESA 23]

https://dblp.org/db/journals/mst/mst63.html#McGregorV19

Talk Summary

| Simplification If sets are small, can throw out many sets. If sets are
#+ large, can subsample universe to ensure sets are small-ish.

Older results: [Demaine et al. DISC 14], [McGregor,Vu. Theory Comput. Syst. 19],
[McGregor et al. ICDT 21]

”“.‘_I‘nsert-OnIy Streams Og(k) space suffices for 1/2-€ approx (|-pass)
or |-1/e-g (l-pass random order O(l/€)-pass arbitrary order).

Prev. best space bound for random order Og(k2) [Warneke et al. ESA 23]

Dynamic Streams O(g-2k) space, O(log m+¢&-! log m/log log m)
passes suffice for |-1/e-g approx.

[Chakrabarti, McGregor, Wirth. ESA 24]
Prev. best space bound O(n+&4k) [Assadi, Khanna. SODA 18]

https://dblp.org/db/journals/mst/mst63.html#McGregorV19

\\, - : e J ’
g A il
e N o)
WS R ® L °
RN I: 91N iTiCAtion
At /4
SN 170 SN AT T A o
- A 3 .
b § y A

2: Insert Streams
3: Dynamic Streams

Universe Sampling

Universe Sampling

® Universe Sampling

Universe Sampling

® Universe Sampling

® Sample elements with probability p = (ke-2 log m)/OPT.

Universe Sampling

® Universe Sampling

® Sample elements with probability p = (ke-2 log m)/OPT.

Universe Sampling

2

® Sample elements with probability p = (ke-2 log m)/OPT.

® Universe Sampling

® For set S, let h(S) be the set of elements in S that were sampled.

Universe Sampling

h(S2) h(S4)

h(S3)

® Universe Sampling

® Sample elements with probability p = (ke-2 log m)/OPT.

® For set S, let h(S) be the set of elements in S that were sampled.

Universe Sampling

h(S2) h(S4)

h(S3)

® Universe Sampling

® Sample elements with probability p = (ke-2 log m)/OPT.
® For set S, let h(S) be the set of elements in S that were sampled.

® |emma Whp,forallTy,...,Tk € {Si, ..., Sm} we have:

Ih(T1)U...Uh(TW)|/p = |h(T1)U...Uh(Ti)| £ € OPT

Universe Sampling

h(S2) h(S4)

h(S3)

® Universe Sampling

® Sample elements with probability p = (ke-2 log m)/OPT.
® For set S, let h(S) be the set of elements in S that were sampled.
® |emma Whp,forallTy,...,Tk € {Si, ..., Sm} we have:
|h(T1)U...Uh(TW)|/p = |h(T1)U...Uh(Ty)| + € OPT

® Proof Chernoff Bound + Union Bound over mk collections of sets.

Universe Sampling

h(S2) h(S4)

h(S3)

® Universe Sampling

® Sample elements with probability p = (ke-2 log m)/OPT.
® For set S, let h(S) be the set of elements in S that were sampled.
® |emma Whp,forallTy,...,Tk € {Si, ..., Sm} we have:
|h(T1)U...Uh(TW)|/p = |h(T1)U...Uh(Ty)| + € OPT
® Proof Chernoff Bound + Union Bound over mk collections of sets.

® (-approx on h(Sy),..., h(Sm) gives (Q0-&)-approx for original instance.

Universe Sampling

h(S2) h(S4)

h(S3)

Universe Sampling

® Sample elements with probability p = (ke-2 log m)/OPT.
® For set S, let h(S) be the set of elements in S that were sampled.
Lemma Whp, for all Ty, ..., Tk € {Si, ..., Sm} we have:
|h(T1)U...Uh(TW)|/p = |h(T1)U...Uh(Ty)| + € OPT
Proof Chernoff Bound + Union Bound over mk collections of sets.
a-approx on h(Si),..., h(Sm) gives (-€)-approx for original instance.

Optimum solution for h(S)),..., h(Sm) covers O(ke-2 log m) elts.

Simple Set Sampling (Kernelization)

Simple Set Sampling (Kernelization)
2 S4

® Let color:[n]—[c] be a random hash function

® Set Sampling

Simple Set Sampling (Kernelization)
2 S4

® Set Sampling

® Let color:[n]—[c] be a random hash function

Simple Set Sampling (Kernelization)

® Set Sampling

® Let color:[n]—[c] be a random hash function

® Only keep sets with distinct color(S)={color(i): i € S}

Simple Set Sampling (Kernelization)

2 S4
Remove one of {Si, Sz} S Ss
and one of {S4,Ss}. | /
S3

® Set Sampling

® Let color:[n]—[c] be a random hash function

® Only keep sets with distinct color(S)={color(i): i € S}

Simple Set Sampling (Kernelization)

Remove one of {Si, S2} S
and one of {S4,Ss}. |

® Set Sampling
® Let color:[n]—[c] be a random hash function

® Only keep sets with distinct color(S)={color(i): i € S}

® Warm-up Let r be max; [Si|. If c = (kr)? there’s < (kr)?" retained sets
and these include an opt solution with good probability.

Simple Set Sampling (Kernelization)

Remove one of {Si, S2} S
and one of {S4,Ss}. |

® Set Sampling
® Let color:[n]—[c] be a random hash function

® Only keep sets with distinct color(S)={color(i): i € S}

® Warm-up Let r be max; [Si|. If c = (kr)? there’s < (kr)?" retained sets
and these include an opt solution with good probability.

® |etOy...,Okbe an optimum solution. Covers < kr elements.

Simple Set Sampling (Kernelization)

Remove one of {Si, S2} S
and one of {S4,Ss}. |

® Set Sampling
® Let color:[n]—[c] be a random hash function

® Only keep sets with distinct color(S)={color(i): i € S}

® Warm-up Let r be max; [Si|. If c = (kr)? there’s < (kr)?" retained sets
and these include an opt solution with good probability.

® |etOy...,Okbe an optimum solution. Covers < kr elements.

@ By Birthday-Paradox, |OU...UOy| = |color(OU...UQ\)|

Simple Set Sampling (Kernelization)

Remove one of {Si, S2} S
and one of {S4,Ss}. |

® Set Sampling
® Let color:[n]—[c] be a random hash function

® Only keep sets with distinct color(S)={color(i): i € S}

® Warm-up Let r be max; [Si|. If c = (kr)? there’s < (kr)?" retained sets
and these include an opt solution with good probability.

® |etOy...,Okbe an optimum solution. Covers < kr elements.

@ By Birthday-Paradox, |OU...UOy| = |color(OU...UQ\)|

e If Rjis set retained with color(Ri)=color(O;) then

Simple Set Sampling (Kernelization)

Remove one of {Si, S2} S
and one of {S4,Ss}. |

® Set Sampling
® Let color:[n]—[c] be a random hash function

® Only keep sets with distinct color(S)={color(i): i € S}

® Warm-up Let r be max; [Si|. If c = (kr)? there’s < (kr)?" retained sets
and these include an opt solution with good probability.

® |etOy...,Okbe an optimum solution. Covers < kr elements.

@ By Birthday-Paradox, |OU...UOy| = |color(OU...UQ\)|
e If Rjis set retained with color(Ri)=color(O;) then

|color(OU...UOy)| = |color(RjU...URK)| = |RjU...URy]

Superior Set Sampling

First coloring... S2 Second coloring... S

GO e

® Superior Set Sampling

® |etcolory,...,color::[n]-[c] be t random hash functions

Superior Set Sampling

First coloring... S2 Second coloring... S

S4 S4

® Superior Set Sampling

® |etcolory,...,color::[n]-[c] be t random hash functions

® For je[t], retain maximal collection of sets with distinct color;(’)

Superior Set Sampling

First coloring... S2 Second coloring... S

S4 S4

® Superior Set Sampling

® |etcolory,...,color::[n]-[c] be t random hash functions

® For je[t], retain maximal collection of sets with distinct color;(’)

® Theorem If c = kr?2 and t = log k there are = (kr?)r retained sets and
these include an opt solution whp. McGregor-Tench-Vu [ICDT 21]

Superior Set Sampling

First coloring... $2 S, Second coloring... S 5 4
S| / ;) > S| / ‘ >
S3 S3

® Superior Set Sampling

® |etcolory,...,color::[n]—-[c] be t random hash functions

® For je[t], retain maximal collection of sets with distinct color;(’)

Theorem If ¢ = kr?2 and t = log k there are = (kr?)" retained sets and
these include an opt solution whp. McGregor-Tench-Vu [ICDT 21]

Proof Approach Fix opt solution. In each coloring, for each opt set
with constant prob we sample that set or a set just as good...

Superior Set Sampling: Proof Idea

First coloring...

O,=S), O2=S3, O3=54
R1=S2, R2=S3, R3=Ss

® Let O; be opt set and R; set retained with color(Ri)=color(O).

Superior Set Sampling: Proof Idea

First coloring...

O,=S), O2=S3, O3=54
R1=S2, R2=S3, R3=Ss

® Let O; be opt set and R; set retained with color(Ri)=color(O).

® Say Oiisc full if

Superior Set Sampling: Proof Idea

First coloring...

O,=S), O2=S3, O3=54
R1=S2, R2=S3, R3=Ss

® Let O; be opt set and R; set retained with color(Ri)=color(O).

® Say Oiisc full if
|color(Oj)| = |Oi| and color(Oi) N color(OU...UO\ O)) = @

Superior Set Sampling: Proof Idea

First coloring...
29

O,=S), O2=S3, O3=54
R1=S2, R2=S3, R3=Ss

3

® Let O; be opt set and R; set retained with color(Ri)=color(O).
® Say Oiisc full if
|color(Oj)| = |Oi| and color(Oi) N color(OU...UO\ O)) = @

® [fOiisc full, replace O; «Ri. Note |[OU...UO\| unchanged.

Superior Set Sampling: Proof Idea

First coloring...
29

O,=S), O2=S3, O3=54
R1=S2, R2=S3, R3=Ss

3

Let O; be opt set and R; set retained with color(Ri)=color(O).
Say O is c full if
|color(Oj)| = |Oi| and color(Oi) N color(OU...UO\ O)) = @

If Oiis c full, replace O; +Ri. Note |OU...UOy| unchanged.

Pr[Qi is c full] = I-r2k/c = 1/2 and repeating log k times
ensures we find k sets covering an optimum number of elts.

Superior Set Sampling: Proof Idea

First coloring... S2 Second coloring... S

S4 S4

O,=S|, O1=S3, O3=S4 O=S), O2=S3, O3=S;s
R1=S,, R2=S3, R3=Ss Ri=Si, R2=Ss, R3=Ss

Let Oi be opt set and R; set retained with color(Ri)=color(O)).
Say O is c full if
|color(Oj)| = |Oi| and color(Oi) N color(OU...UO\ O)) = @

If Oiis c full, replace O; +Ri. Note |OU...UOy| unchanged.

Pr[Qi is c full] = I-r2k/c = 1/2 and repeating log k times
ensures we find k sets covering an optimum number of elts.

\\, - : e J ’
g A il
e N o)
WS R ® L °
RN I: 91IMM iTicaction
At /4
SN 170 SN AT T A o
- A 3 .
b § y A

2: Insert Streams
3: Dynamic Streams

One Pass Algorithm

. Initialize: Let C= be covered elemente
Add any get that covers 2 OPT/(2k) new elements.

. Pass:

One Pass Algorithm

. Initialize: Let C= be covered elemente
Add any get that covers 2 OPT/(2k) new elements.

. Pass:

® (Can 0.5-Approximation if we know value of optimum

One Pass Algorithm

. Initialize: Let C= be covered elemente
Add any get that covers 2 OPT/(2k) new elements.

. Pass:

® (Can 0.5-Approximation if we know value of optimum

® |f k sets get added, we've covered = OPT/2 elts

One Pass Algorithm

. Initialize: Let C= be covered elemente
Add any get that covers 2 OPT/(2k) new elements.

. Pass:

® (Can 0.5-Approximation if we know value of optimum

® |f k sets get added, we've covered = OPT/2 elts

® |f <k sets get added, adding optimal sets adds < OPT/2 new elts

so must have already covered = OPT/2 elts.
cf. “Sieve Streaming” [Badanidiyuru et al. KDD 14]

One Pass Algorithm

. Initialize: Let C= be covered elemente
Add any get that covers 2 OPT/(2k) new elements.

. Pass:

® (Can 0.5-Approximation if we know value of optimum

® |f k sets get added, we've covered = OPT/2 elts

® |f <k sets get added, adding optimal sets adds < OPT/2 new elts

so must have already covered = OPT/2 elts.
cf. “Sieve Streaming” [Badanidiyuru et al. KDD 14]

® Theorem | pass, O(g-3 k) space, 1/2-€ approx algorithm.

One Pass Algorithm

. Initialize: Let C= be covered elemente
Add any get that covers 2 OPT/(2k) new elements.

. Pass:

® (Can 0.5-Approximation if we know value of optimum
® |f k sets get added, we've covered = OPT/2 elts

® |f <k sets get added, adding optimal sets adds < OPT/2 new elts

so must have already covered = OPT/2 elts.
cf. “Sieve Streaming” [Badanidiyuru et al. KDD 14]

® Theorem | pass, O(g-3 k) space, 1/2-€ approx algorithm.

® Proof Combine sub-sampling approach with threshold algorithm.
Extra O(g-') arises from having to guess OPT up to |+¢ factor.

Multi-Pass Algorithm

*Inpassp=1,...,0(l/¢):

* Add any set that covere > QDT Op/k new elemente where
threshold ©, decreases ag |, I/(l+¢), I/(1+e)2 . |/ (2e)

Multi-Pass Algorithm

*Inpassp=1,...,0(l/¢):

* Add any set that covere > QDT Op/k new elemente where
threshold ©, decreases ag |, I/(l+¢), I/(1+e)2 . |/ (2e)

® Theorem O(g") pass |-1/e-g approx using O(g2 k) space.

Multi-Pass Algorithm

*Inpassp=1,...,0(l/¢):

* Add any set that covere > QDT Op/k new elemente where
threshold ©, decreases ag |, I/(l+¢), I/(1+e)2 . |/ (2e)

® Theorem O(g") pass |-1/e-g approx using O(g2 k) space.

® Proof Approx factor follows from analysis of greedy algorithm.
Universe subsampling and fact we only need 2-approx of OPT.

Random Order Algorithm

® Recall, function f: 2IMI2R is sub-modular if for XcYC[m],i Y

F(X+i)-F(X) = F(Y+i)-(Y)

Random Order Algorithm

® Recall, function f: 2IMI2R is sub-modular if for XcYC[m],i Y
fOX+i)-f(X) = f(Y+i)-f(Y)

e.g., f(X)=|Uiex Si| where Si, ..., Sm are sets

Random Order Algorithm

Recall, function f: 2[mI2R is sub-modular if for XcYC[m], i ¢Y
fOX+i)-f(X) = f(Y+i)-f(Y)
e.g., f(X)=|Uiex Si| where Si, ..., Sm are sets

Work on sub-modular maximization in streams assumes stream

is a permutation of [m] and algorithm has oracle access to f.
Norouzi-Fard et al. [[CML 18],Agrawal et al. [ITCS 19], Feldman et al. [STOC 20]

Random Order Algorithm

Recall, function f: 2[mI2R is sub-modular if for XcYC[m], i ¢Y
fOX+i)-f(X) = f(Y+i)-f(Y)
e.g., f(X)=|Uiex Si| where Si, ..., Sm are sets

Work on sub-modular maximization in streams assumes stream

is a permutation of [m] and algorithm has oracle access to f.
Norouzi-Fard et al. [[CML 18],Agrawal et al. [ITCS 19], Feldman et al. [STOC 20]

Corollary Sub-modular results and universe sampling gives | -pass,
Oc¢(k?)-space, |-1/e-g approx. for random order streams.

Random Order Algorithm

Recall, function f: 2[mI2R is sub-modular if for XcYC[m], i ¢Y
fOX+i)-f(X) = f(Y+i)-f(Y)
e.g., f(X)=|Uiex Si| where Si, ..., Sm are sets

Work on sub-modular maximization in streams assumes stream

is a permutation of [m] and algorithm has oracle access to f.
Norouzi-Fard et al. [[CML 18],Agrawal et al. [ITCS 19], Feldman et al. [STOC 20]

Corollary Sub-modular results and universe sampling gives | -pass,
Oc¢(k?)-space, |-1/e-g approx. for random order streams.

With more work... Can reduce space dependence to linear in k.
Chakrabarti, McGregor,Wirth [ESA 24]

\\, - : e J ’
g A il
e N o)
WS R ® L °
RN I: 91IMM iTicaction
At /4
SN 170 SN AT T A o
- A 3 .
b § y A

2: Insert Streams
3: Dynamic Streams

Dynamic Steam Algorithm: Warm-Up

Dynamic Steam Algorithm: Warm-Up

® Definition Set is useful if it covers = OPT/(2k) new elts.

Dynamic Steam Algorithm: Warm-Up

® Definition Set is useful if it covers = OPT/(2k) new elts.

® |[fSandT are useful,T may no longer be useful once S is added.

Dynamic Steam Algorithm: Warm-Up

® Definition Set is useful if it covers = OPT/(2k) new elts.

® |[fSandT are useful,T may no longer be useful once S is added.

. Initialize: Let C=a be covered elements

. Until k cete added or no remaining sets are useful:

. During a pace: Sample k cete amongat the useful sefg

. At end of pace: Add sampled get that remain ugeful

Dynamic Steam Algorithm: Warm-Up

® Definition Set is useful if it covers = OPT/(2k) new elts.

® |[fSandT are useful,T may no longer be useful once S is added.

. Initialize: Let C=a be covered elements

. Until k cete added or no remaining sets are useful:

. During a pace: Sample k cete amongat the useful sefg

. At end of pace: Add sampled get that remain ugeful

® |/2 Approx Carries over from insert-only analysis.

Dynamic Steam Algorithm: Warm-Up

® Definition Set is useful if it covers = OPT/(2k) new elts.

® |[fSandT are useful,T may no longer be useful once S is added.

. Initialize: Let C=a be covered elements

. Until k cete added or no remaining sets are useful:

. During a pace: Sample k cete amongat the useful sefg

. At end of pace: Add sampled get that remain ugeful

® |/2 Approx Carries over from insert-only analysis.

® Space Can sample k sets in = k max; |S\C| = Og(k?) space

Dynamic Steam Algorithm: Warm-Up

® Definition Set is useful if it covers = OPT/(2k) new elts.

® |[fSandT are useful,T may no longer be useful once S is added.

. Initialize: Let C=a be covered elements

. Until k cete added or no remaining sets are useful:

. During a pace: Sample k cete amongat the useful sefg

. At end of pace: Add sampled get that remain ugeful

® |/2 Approx Carries over from insert-only analysis.
® Space Can sample k sets in = k max; |S\C| = Og(k?) space

® [emma In each pass, number of remaining useful sets halves or we
add k/3 new sets. So O(log m) passes.

Dynamic Steam Algorithm: Warm-Up

® Definition Set is useful if it covers = OPT/(2k) new elts.

® |[fSandT are useful,T may no longer be useful once S is added.

. [nitialize: Let C=& be covered elementg
. Until k cete added or no remaining sets are useful:
. During a pace: Sample k cete amongat the useful sefg

. At end of pace: Add sampled get that remain ugeful

| /2 Approx Carries over from insert-only analysis.
Space Can sample k sets in = k max; |[S\C| = Og(k?) space

Lemma In each pass, number of remaining useful sets halves or we
add k/3 new sets. So O(log m) passes.

A more careful analysis, gives O(log m/log log m) passes.

Proof of Lemma: Urn Analysis

® Consider urn with balls corresponding to useful sets

Proof of Lemma: Urn Analysis

® Consider urn with balls corresponding to useful sets

® Draw k balls one-at-a-time™. If we draw a useful ball we earn $1 but
an arbitrary number of other balls in urn become useless

* Although principle of deferred decision means this doesn’t really matter.

Proof of Lemma: Urn Analysis

® Consider urn with balls corresponding to useful sets

® Draw k balls one-at-a-time™. If we draw a useful ball we earn $1 but
an arbitrary number of other balls in urn become useless

* Although principle of deferred decision means this doesn’t really matter.

Proof of Lemma: Urn Analysis

® Consider urn with balls corresponding to useful sets

® Draw k balls one-at-a-time™. If we draw a useful ball we earn $1 but
an arbitrary number of other balls in urn become useless

* Although principle of deferred decision means this doesn’t really matter.

Proof of Lemma: Urn Analysis

® Consider urn with balls corresponding to useful sets

® Draw k balls one-at-a-time™. If we draw a useful ball we earn $1 but
an arbitrary number of other balls in urn become useless

* Although principle of deferred decision means this doesn’t really matter.

Proof of Lemma: Urn Analysis

Consider urn with balls corresponding to useful sets

Draw k balls one-at-a-time*. If we draw a useful ball we earn $1 but
an arbitrary number of other balls in urn become useless

If fraction of useful balls stays above /2, we expect = $k/2.

* Although principle of deferred decision means this doesn’t really matter.

Proof of Lemma: Urn Analysis

Consider urn with balls corresponding to useful sets

Draw k balls one-at-a-time*. If we draw a useful ball we earn $1 but
an arbitrary number of other balls in urn become useless

If fraction of useful balls stays above /2, we expect = $k/2.

At end of each pass we remove all useless balls and restart.

* Although principle of deferred decision means this doesn’t really matter.

Improving Space Complexity

Improving Space Complexity

® Definition Set is v-useful if it covers between v and 2v new elts.

Improving Space Complexity

® Definition Set is v-useful if it covers between v and 2v new elts.

. [nitialize: Let C=2 be covered elements.
. [n parallel for i<{l, ..., log(2k)}
. Qample 2 cete amonget the OPT/2! ugeful cefg

. Add et any campled gete that remain ugeful

. Repeat until we have covered OPT/2 elts

Improving Space Complexity

® Definition Set is v-useful if it covers between v and 2v new elts.

. [nitialize: Let C=2 be covered elements.
. [n parallel for i<{l, ..., log(2k)}
. Qample 2 cete amonget the OPT/2! ugeful cefg

. Add et any campled gete that remain ugeful

. Repeat until we have covered OPT/2 elts

® |/2 Approx Carries over from insert-only analysis.

Improving Space Complexity

® Definition Set is v-useful if it covers between v and 2v new elts.

. [nitialize: Let C=2 be covered elements.
. [n parallel for i<{l, ..., log(2k)}
. Qample 2 cete amonget the OPT/2! ugeful cefg

. Add et any campled gete that remain ugeful

. Repeat until we have covered OPT/2 elts

® |/2 Approx Carries over from insert-only analysis.

® Space Can sample 2i sets in = 21 maxiop1/2 useful |S\C| < Oe(k) space

Improving Space Complexity

® Definition Set is v-useful if it covers between v and 2v new elts.

. [nitialize: Let C=2 be covered elements.
. [n parallel for i<{l, ..., log(2k)}
. Qample 2 cete amonget the OPT/2! ugeful cefg

. Add et any campled gete that remain ugeful

. Repeat until we have covered OPT/2 elts

® |/2 Approx Carries over from insert-only analysis.

® Space Can sample 2i sets in = 21 maxiop1/2 useful |S\C| < Oe(k) space

® [emma O(log k + log m/log log m) passes.

Proof Idea of Lemma: Cascading Urns

O 'Y ey

T T T

Urn | Urn 2 Urn log(2k)

® Balls in i-th urn correspond to (OPT/2i)-useful sets.

Proof Idea of Lemma: Cascading Urns

O 'Y ey

T T T

Urn | Urn 2 Urn log(2k)

® Balls in i-th urn correspond to (OPT/2i)-useful sets.

® Draw 2i balls from Urn i. May cause other balls to become useless.

Proof Idea of Lemma: Cascading Urns

O 'Y ey

T T T

Urn | Urn 2 Urn log(2k)

® Balls in i-th urn correspond to (OPT/2i)-useful sets.

® Draw 2i balls from Urn i. May cause other balls to become useless.

® A useful ball from Urn i gives $OPT/2i

Proof Idea of Lemma: Cascading Urns

O N A a4 4

T T T

Urn | Urn 2 Urn log(2k)

Balls in i-th urn correspond to (OPT/2i)-useful sets.

Draw 2i balls from Urn i. May cause other balls to become useless.

A useful ball from Urn i gives $OPT/2i

If fraction of useful balls stays above 1/2, we expect = $OPT/2.

Proof Idea of Lemma: Cascading Urns

O N A a4 4

T T T

Urn | Urn 2 Urn log(2k)

Balls in i-th urn correspond to (OPT/2i)-useful sets.

Draw 2i balls from Urn i. May cause other balls to become useless.
A useful ball from Urn i gives $OPT/2i

If fraction of useful balls stays above 1/2, we expect = $OPT/2.

At end of each pass useless balls are removed and potentially placed
in later urns, i.e., balls “cascade”.

Getting I-1/e-g Approx

Getting I-1/e-g Approx

. [nitialize: Let C=@ be covered elements.

. n parallel for i<{l, ..., log k}
. Qample 2 cete amonget the OPT/2! ugeful sefg
. Add et any campled gete that remain ugeful

. [n series for ic{l, ..., logi+ e}
. Qample k sete amonget (1+&) OPT/k ugeful cete

. Add et any campled gete that remain ugeful

Getting I-1/e-g Approx

. [nitialize: Let C=@ be covered elements.

. n parallel for i<{l, ..., log k}
. Qample 2 cete amonget the OPT/2! ugeful sefg
. Add et any campled gete that remain ugeful

. [n series for ic{l, ..., logi+ e}
. Qample k sete amonget (1+&) OPT/k ugeful cete

. Add et any campled gete that remain ugeful

® Theorem O(log m + &' log m/log log m) pass, O(e-2k)-space, |-1/e-&
approx. in the dynamic set stream model,

Summary of Talk

| Simplification If sets are small, can throw out many sets. If sets are
#+ large, can subsample universe to ensure sets are small-ish.

Older results: [Demaine et al. DISC 14], [McGregor,Vu. Theory Comput. Syst. 19],
[McGregor et al. ICDT 21]

”“.‘_I‘nsert-OnIy Streams Og(k) space suffices for 1/2-€ approx (|-pass)
or |-1/e-g (l-pass random order O(l/€)-pass arbitrary order).

Prev. best space bound for random order Og(k2) [Warneke et al. ESA 23]

Dynamic Streams O(g-2k) space, O(log m+¢&-! log m/log log m)
passes suffice for |-1/e-g approx.

[Chakrabarti, McGregor, Wirth. ESA 24]
Prev. best space bound O(n+&4k) [Assadi, Khanna. SODA 18]

Thanks!

https://dblp.org/db/journals/mst/mst63.html#McGregorV19

