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• Classic Results Greedy algorithm is 1-1/e approx and is best possible. 
Simple example of sub-modular maximization optimization. 

• Feige [JACM 98]

• Data Streams Growing body of work on MaxCover and SetCover 
considers input given as a stream of sets

Assadi et al. [STOC 16], Warneke et al. [ESA 23], Indyk-Vakilian [PODS 2019], Yu-Yuan [SDM 13] 
Saha-Getoor [SDM 09], McGregor-Vu [ICDT 17], Bateni et al. [SPAA 17], Assadi [PODS 17] 

Demaine et al. [DISC 14], Indyk et al. [APPROX 17], Chakrabarti-Wirth [SODA 16]             
Assadi et al. [SODA 18], Har-Peled et al. [PODS 16] etc.
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large, can subsample universe to ensure sets are small-ish.

Older results: [Demaine et al. DISC 14], [McGregor, Vu. Theory Comput. Syst. 19], 
[McGregor et al. ICDT 21]
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large, can subsample universe to ensure sets are small-ish.

Older results: [Demaine et al. DISC 14], [McGregor, Vu. Theory Comput. Syst. 19], 
[McGregor et al. ICDT 21]

• Insert-Only Streams Õε(k) space suffices for 1/2-ε approx (1-pass) 
or 1-1/e-ε (1-pass random order O(1/ε)-pass arbitrary order).

Prev. best space bound for random order Õε(k2) [Warneke et al. ESA 23]

• Dynamic Streams Õ(ε-2 k) space, O(log m+ε-1 log m/log log m)  
passes suffice for 1-1/e-ε approx.

[Chakrabarti, McGregor, Wirth. ESA 24] 
Prev. best space bound Õ(n+ε-4 k) [Assadi, Khanna. SODA 18] 

Talk Summary

https://dblp.org/db/journals/mst/mst63.html#McGregorV19
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• Universe Sampling 

• Sample elements with probability p ≈ (kε-2 log m)/OPT.

• For set S, let h(S) be the set of elements in S that were sampled. 

• Lemma Whp, for all T1, …,Tk ∈ {S1, …, Sm} we have:

|h(T1)⋃…⋃h(Tk)|/p = |h(T1)⋃…⋃h(Tk)| ± ε OPT

• Proof Chernoff Bound + Union Bound over mk collections of sets.

• ⍺-approx on h(S1),…, h(Sm) gives (⍺-ε)-approx for original instance. 

• Optimum solution for h(S1),…, h(Sm) covers O(kε-2 log m) elts.

Universe Sampling
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• Warm-up Let r be maxi |Si|. If c ≈ (kr)2 there’s ≤ (kr)2r retained sets 
and these include an opt solution with good probability.

• Let O1, … ,Ok be an optimum solution. Covers ≤ kr elements.

🎈 By Birthday-Paradox, |O1⋃…⋃Ok| = |color(O1⋃…⋃Ok)|

• If Ri is set retained with color(Ri)=color(Oi) then 
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• Superior Set Sampling 

• Let color1, …,colort : [n]→[c] be t random hash functions

• For j∈[t], retain maximal collection of sets with distinct colorj(.)

• Theorem If c ≈ kr2 and t ≈ log k there are ≈ (kr2)r retained sets and 
these include an opt solution whp. McGregor-Tench-Vu [ICDT 21]

• Proof Approach Fix opt solution. In each coloring, for each opt set 
with constant prob we sample that set or a set just as good…
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• Can 0.5-Approximation if we know value of optimum

• If k sets get added, we've covered ≥ OPT/2 elts

• If <k sets get added, adding optimal sets adds ≤ OPT/2 new elts 
so must have already covered ≥ OPT/2 elts. 

cf. “Sieve Streaming” [Badanidiyuru et al. KDD 14]

• Theorem 1 pass, Õ(ε-3 k) space, 1/2-ε approx algorithm.

• Proof Combine sub-sampling approach with threshold algorithm. 
Extra Õ(ε-1) arises from having to guess OPT up to 1+ε factor.

One Pass Algorithm

• Initialize: Let  C=∅ be covered elements


• Pass: Add any set that covers ≥ OPT/(2k) new elements.
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• Proof Approx factor follows from analysis of greedy algorithm. 
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• Recall, function f: 2[m]➝ℝ is sub-modular if for X⊂Y⊆[m], i ∉Y

f(X+i)-f(X) ≥ f(Y+i)-f(Y)

e.g., f(X)=|⋃i∈X Si| where S1, …, Sm are sets

• Work on sub-modular maximization in streams assumes stream 
is a permutation of [m] and algorithm has oracle access to f.

• Norouzi-Fard et al. [ICML 18], Agrawal et al. [ITCS 19], Feldman et al. [STOC 20] 

• Corollary Sub-modular results and universe sampling gives1-pass, 
Õε(k2)-space, 1-1/e-ε approx. for random order streams.

• With more work… Can reduce space dependence to linear in k.
• Chakrabarti, McGregor, Wirth [ESA 24]

Random Order Algorithm



1: Simplification
2: Insert Streams
3: Dynamic Streams



Dynamic Steam Algorithm: Warm-Up



Dynamic Steam Algorithm: Warm-Up

• Definition Set is useful if it covers ≥ OPT/(2k) new elts. 



Dynamic Steam Algorithm: Warm-Up

• Definition Set is useful if it covers ≥ OPT/(2k) new elts. 

• If S and T are useful, T may no longer be useful once S is added. 



Dynamic Steam Algorithm: Warm-Up

• Initialize: Let C=∅ be covered elements


• Until k sets added or no remaining sets are useful: 


• During a pass: Sample k sets amongst the useful sets


• At end of pass: Add sampled set that remain useful

• Definition Set is useful if it covers ≥ OPT/(2k) new elts. 

• If S and T are useful, T may no longer be useful once S is added. 



• 1/2 Approx Carries over from insert-only analysis. 

Dynamic Steam Algorithm: Warm-Up

• Initialize: Let C=∅ be covered elements


• Until k sets added or no remaining sets are useful: 


• During a pass: Sample k sets amongst the useful sets


• At end of pass: Add sampled set that remain useful

• Definition Set is useful if it covers ≥ OPT/(2k) new elts. 

• If S and T are useful, T may no longer be useful once S is added. 



• 1/2 Approx Carries over from insert-only analysis. 

• Space Can sample k sets in ≈ k maxi |Si\C| = Õε(k2) space

Dynamic Steam Algorithm: Warm-Up

• Initialize: Let C=∅ be covered elements


• Until k sets added or no remaining sets are useful: 


• During a pass: Sample k sets amongst the useful sets


• At end of pass: Add sampled set that remain useful

• Definition Set is useful if it covers ≥ OPT/(2k) new elts. 

• If S and T are useful, T may no longer be useful once S is added. 



• 1/2 Approx Carries over from insert-only analysis. 

• Space Can sample k sets in ≈ k maxi |Si\C| = Õε(k2) space

• Lemma In each pass, number of remaining useful sets halves or we 
add k/3 new sets. So O(log m) passes.

Dynamic Steam Algorithm: Warm-Up

• Initialize: Let C=∅ be covered elements


• Until k sets added or no remaining sets are useful: 


• During a pass: Sample k sets amongst the useful sets


• At end of pass: Add sampled set that remain useful

• Definition Set is useful if it covers ≥ OPT/(2k) new elts. 

• If S and T are useful, T may no longer be useful once S is added. 
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• Consider urn with balls corresponding to useful sets

• Draw k balls one-at-a-time*. If we draw a useful ball we earn $1 but 
an arbitrary number of other balls in urn become useless 

• If fraction of useful balls stays above 1/2, we expect ≥ $k/2.

• At end of each pass we remove all useless balls and restart.
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* Although principle of deferred decision means this doesn’t really matter.
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• 1/2 Approx Carries over from insert-only analysis. 

• Space Can sample 2i sets in ≈ 2i maxi:OPT/2i useful |Si\C| ≤ Õε(k) space 

• Lemma O(log k + log m/log log m) passes.
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• Draw 2i balls from Urn i. May cause other balls to become useless.

• A useful ball from Urn i gives $OPT/2i 

• If fraction of useful balls stays above 1/2, we expect ≥ $OPT/2.

• At end of each pass useless balls are removed and potentially placed 
in later urns, i.e., balls “cascade”.

≈ç

≈ç

c c
c

≈ç

c c

≈ç

c

≈ç

≈ç ≈ç

≈ç

c c

≈ç ≈ç

c c

≈ç

c

≈ç

≈ç ≈ç

≈ç c

Urn 1 Urn 2 Urn log(2k)

≈ç ≈ç ≈ç ≈ç

≈ç ≈ç≈ç ≈ç ≈ç

…



Getting 1-1/e-ε Approx



Getting 1-1/e-ε Approx

• Initialize: Let  C=∅ be covered elements.


• In parallel for i∈{1, …, log k} 


• Sample 2i sets amongst the OPT/2i useful sets


• Add set any sampled sets that remain useful


• In series for i∈{1, …, log1+ε e} 


• Sample k sets amongst (1+ε)-i OPT/k useful sets


• Add set any sampled sets that remain useful



Getting 1-1/e-ε Approx

• Theorem O(log m + ε-1 log m/log log m) pass, Õ(ε-2k)-space, 1-1/e-ε 
approx. in the dynamic set stream model,

• Initialize: Let  C=∅ be covered elements.


• In parallel for i∈{1, …, log k} 


• Sample 2i sets amongst the OPT/2i useful sets


• Add set any sampled sets that remain useful


• In series for i∈{1, …, log1+ε e} 


• Sample k sets amongst (1+ε)-i OPT/k useful sets


• Add set any sampled sets that remain useful



Thanks!

Summary of Talk

• Simplification If sets are small, can throw out many sets. If sets are 
large, can subsample universe to ensure sets are small-ish.

Older results: [Demaine et al. DISC 14], [McGregor, Vu. Theory Comput. Syst. 19], 
[McGregor et al. ICDT 21]

• Insert-Only Streams Õε(k) space suffices for 1/2-ε approx (1-pass) 
or 1-1/e-ε (1-pass random order O(1/ε)-pass arbitrary order).

Prev. best space bound for random order Õε(k2) [Warneke et al. ESA 23]

• Dynamic Streams Õ(ε-2 k) space, O(log m+ε-1 log m/log log m)  
passes suffice for 1-1/e-ε approx.

[Chakrabarti, McGregor, Wirth. ESA 24] 
Prev. best space bound Õ(n+ε-4 k) [Assadi, Khanna. SODA 18] 

https://dblp.org/db/journals/mst/mst63.html#McGregorV19

