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® Data Streams Growing body of work on MaxCover and SetCover
considers input given as a stream of sets

Assadi et al. [STOC 16], Warneke et al. [ESA 23], Indyk-Vakilian [PODS 2019],Yu-Yuan [SDM 13]
Saha-Getoor [SDM 09], McGregor-Vu [ICDT 17], Bateni et al. [SPAA 17], Assadi [PODS 17]
Demaine et al. [DISC 14], Indyk et al. [APPROX 17], Chakrabarti-Wirth [SODA 16]

Assadi et al. [SODA 18], Har-Peled et al. [PODS 16] etc.
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_large, can subsample universe to ensure sets are small-ish.

Older results: [Demaine et al. DISC 14], [McGregor,Vu. Theory Comput. Syst. 19],
[McGregor et al. ICDT 21]
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Talk Summary

| Simplification If sets are small, can throw out many sets. If sets are
#+ large, can subsample universe to ensure sets are small-ish.

Older results: [Demaine et al. DISC 14], [McGregor,Vu. Theory Comput. Syst. 19],
[McGregor et al. ICDT 21]

”“.‘_I‘nsert-OnIy Streams Og(k) space suffices for 1/2-€ approx (|-pass)
or |-1/e-g (l-pass random order O(l/€)-pass arbitrary order).

Prev. best space bound for random order Og(k2) [Warneke et al. ESA 23]

Dynamic Streams O(g-2k) space, O(log m+¢&-! log m/log log m)
passes suffice for |-1/e-g approx.

[Chakrabarti, McGregor, Wirth. ESA 24]
Prev. best space bound O(n+&4k) [Assadi, Khanna. SODA 18]
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Universe Sampling

® Sample elements with probability p = (ke-2 log m)/OPT.
® For set S, let h(S) be the set of elements in S that were sampled.
Lemma Whp, for all Ty, ..., Tk € {Si, ..., Sm} we have:
|h(T1)U...Uh(TW)|/p = |h(T1)U...Uh(Ty)| + € OPT
Proof Chernoff Bound + Union Bound over mk collections of sets.
a-approx on h(Si),..., h(Sm) gives (-€)-approx for original instance.

Optimum solution for h(S)),..., h(Sm) covers O(ke-2 log m) elts.
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Simple Set Sampling (Kernelization)

Remove one of {Si, S2} S
and one of {S4,Ss}. |

® Set Sampling
® Let color:[n]—[c] be a random hash function

® Only keep sets with distinct color(S)={color(i): i € S}

® Warm-up Let r be max; [Si|. If c = (kr)? there’s < (kr)?" retained sets
and these include an opt solution with good probability.

® |etOy...,Okbe an optimum solution. Covers < kr elements.

@ By Birthday-Paradox, |OU...UOy| = |color(OU...UQ\)|
e If Rjis set retained with color(Ri)=color(O;) then

|color(OU...UOy)| = |color(RjU...URK)| = |RjU...URy]
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® Superior Set Sampling

® |etcolory,...,color::[n]-[c] be t random hash functions

® For je[t], retain maximal collection of sets with distinct color;(’)

® Theorem If c = kr?2 and t = log k there are = (kr?)r retained sets and
these include an opt solution whp. McGregor-Tench-Vu [ICDT 21]
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® Superior Set Sampling

® |etcolory,...,color::[n]—-[c] be t random hash functions

® For je[t], retain maximal collection of sets with distinct color;(’)

Theorem If ¢ = kr?2 and t = log k there are = (kr?)" retained sets and
these include an opt solution whp. McGregor-Tench-Vu [ICDT 21]

Proof Approach Fix opt solution. In each coloring, for each opt set
with constant prob we sample that set or a set just as good...
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Say O is c full if
|color(Oj)| = |Oi| and color(Oi) N color(OU...UO\ O)) = @

If Oiis c full, replace O; +Ri. Note |OU...UOy| unchanged.

Pr[Qi is c full] = I-r2k/c = 1/2 and repeating log k times
ensures we find k sets covering an optimum number of elts.




Superior Set Sampling: Proof Idea

First coloring... S2 Second coloring... S

S4 S4

O,=S|, O1=S3, O3=S4 O=S), O2=S3, O3=S;s
R1=S,, R2=S3, R3=Ss Ri=Si, R2=Ss, R3=Ss

Let Oi be opt set and R; set retained with color(Ri)=color(O)).
Say O is c full if
|color(Oj)| = |Oi| and color(Oi) N color(OU...UO\ O)) = @

If Oiis c full, replace O; +Ri. Note |OU...UOy| unchanged.

Pr[Qi is c full] = I-r2k/c = 1/2 and repeating log k times
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One Pass Algorithm

. Initialize: Let C= be covered elemente
Add any get that covers 2 OPT/(2k) new elements.

. Pass:

® (Can 0.5-Approximation if we know value of optimum
® |f k sets get added, we've covered = OPT/2 elts

® |f <k sets get added, adding optimal sets adds < OPT/2 new elts

so must have already covered = OPT/2 elts.
cf. “Sieve Streaming” [Badanidiyuru et al. KDD 14]

® Theorem | pass, O(g-3 k) space, 1/2-€ approx algorithm.

® Proof Combine sub-sampling approach with threshold algorithm.
Extra O(g-') arises from having to guess OPT up to |+¢ factor.
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Multi-Pass Algorithm

*Inpassp=1,...,0(l/¢):

* Add any set that covere > QDT Op/k new elemente where
threshold ©, decreases ag |, I/(l+¢), I/(1+e)2 . |/ (2e)

® Theorem O(g") pass |-1/e-g approx using O(g2 k) space.

® Proof Approx factor follows from analysis of greedy algorithm.
Universe subsampling and fact we only need 2-approx of OPT.
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Random Order Algorithm

Recall, function f: 2[mI2R is sub-modular if for XcYC[m], i ¢Y
fOX+i)-f(X) = f(Y+i)-f(Y)
e.g., f(X)=|Uiex Si| where Si, ..., Sm are sets

Work on sub-modular maximization in streams assumes stream

is a permutation of [m] and algorithm has oracle access to f.
Norouzi-Fard et al. [[CML 18],Agrawal et al. [ITCS 19], Feldman et al. [STOC 20]

Corollary Sub-modular results and universe sampling gives | -pass,
Oc¢(k?)-space, |-1/e-g approx. for random order streams.

With more work... Can reduce space dependence to linear in k.
Chakrabarti, McGregor,Wirth [ESA 24]
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Dynamic Steam Algorithm: Warm-Up

® Definition Set is useful if it covers = OPT/(2k) new elts.

® |[fSandT are useful,T may no longer be useful once S is added.

. [nitialize: Let C=& be covered elementg
. Until k cete added or no remaining sets are useful:
. During a pace: Sample k cete amongat the useful sefg

. At end of pace: Add sampled get that remain ugeful

| /2 Approx Carries over from insert-only analysis.
Space Can sample k sets in = k max; |[S\C| = Og(k?) space

Lemma In each pass, number of remaining useful sets halves or we
add k/3 new sets. So O(log m) passes.

A more careful analysis, gives O(log m/log log m) passes.
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Proof of Lemma: Urn Analysis

Consider urn with balls corresponding to useful sets

Draw k balls one-at-a-time*. If we draw a useful ball we earn $1 but
an arbitrary number of other balls in urn become useless

If fraction of useful balls stays above /2, we expect = $k/2.

At end of each pass we remove all useless balls and restart.

* Although principle of deferred decision means this doesn’t really matter.
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Improving Space Complexity

® Definition Set is v-useful if it covers between v and 2v new elts.

. [nitialize: Let C=2 be covered elements.
. [n parallel for i<{l, ..., log(2k)}
. Qample 2 cete amonget the OPT/2! ugeful cefg

. Add et any campled gete that remain ugeful

. Repeat until we have covered OPT/2 elts

® |/2 Approx Carries over from insert-only analysis.

® Space Can sample 2i sets in = 21 maxiop1/2 useful |S\C| < Oe(k) space

® [emma O(log k + log m/log log m) passes.
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Proof Idea of Lemma: Cascading Urns
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Balls in i-th urn correspond to (OPT/2i)-useful sets.

Draw 2i balls from Urn i. May cause other balls to become useless.
A useful ball from Urn i gives $OPT/2i

If fraction of useful balls stays above 1/2, we expect = $OPT/2.

At end of each pass useless balls are removed and potentially placed
in later urns, i.e., balls “cascade”.




Getting I-1/e-g Approx




Getting I-1/e-g Approx

. [nitialize: Let C=@ be covered elements.

. n parallel for i<{l, ..., log k}
. Qample 2 cete amonget the OPT/2! ugeful sefg
. Add et any campled gete that remain ugeful

. [n series for ic{l, ..., logi+ e}
. Qample k sete amonget (1+&) OPT/k ugeful cete

. Add et any campled gete that remain ugeful




Getting I-1/e-g Approx

. [nitialize: Let C=@ be covered elements.

. n parallel for i<{l, ..., log k}
. Qample 2 cete amonget the OPT/2! ugeful sefg
. Add et any campled gete that remain ugeful

. [n series for ic{l, ..., logi+ e}
. Qample k sete amonget (1+&) OPT/k ugeful cete

. Add et any campled gete that remain ugeful

® Theorem O(log m + &' log m/log log m) pass, O(e-2k)-space, |-1/e-&
approx. in the dynamic set stream model,




Summary of Talk

| Simplification If sets are small, can throw out many sets. If sets are
#+ large, can subsample universe to ensure sets are small-ish.

Older results: [Demaine et al. DISC 14], [McGregor,Vu. Theory Comput. Syst. 19],
[McGregor et al. ICDT 21]

”“.‘_I‘nsert-OnIy Streams Og(k) space suffices for 1/2-€ approx (|-pass)
or |-1/e-g (l-pass random order O(l/€)-pass arbitrary order).

Prev. best space bound for random order Og(k2) [Warneke et al. ESA 23]

Dynamic Streams O(g-2k) space, O(log m+¢&-! log m/log log m)
passes suffice for |-1/e-g approx.

[Chakrabarti, McGregor, Wirth. ESA 24]
Prev. best space bound O(n+&4k) [Assadi, Khanna. SODA 18]

Thanks!



https://dblp.org/db/journals/mst/mst63.html#McGregorV19

