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Contrastive Learning

Unsupervised way to learn representations

Built on a simple idea:
- Pairs of points : For every point, we are given a “partner” point
- Partner may be same modality, or a different modality
- Contrastive Loss : Embedding of a point should be close to its
“partner” while being far from everything else



Contrastive Learning

Unsupervised way to learn representations

Built on a simple idea:
- Pairs of points : For every point, we are given a “partner” point
- Partner may be same modality, or a different modality
- Contrastive Loss : Embedding of a point should be close to its
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Common recent theme:

Train (very large) models on a (very large) corpus of unsupervised data using
contrastive loss

Fine-tune / further train / adapt this model to downstream task (e.g. classification)

The simple idea works, often zero-shot, often with no knowledge of the
downstream task



Contrastive Learning

Images Augmented Embedding
Example 1: Augment Embed
SimCLR - ’
[Chen et. al,, 2020] y Close
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Trunk model trained using SIMCLR + last layer fine-tuned on imagenet-1k

beat previous state of the art (and fully supervised training) by 7% in accuracy



Contrastive Learning

Example 2: Example 3:
Dense Passage Retrieval (DPR) CLIP [Radford et. al.]
[Karpukhin et. al]
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Contrastive Losses: INfoNCE

Datais (x, ) pairs

Point and its partner are close

min — &, llog ( Eff;iﬁgi %)))] )]

Point is far from random other point

Linear case: f(ZC) = Ax



Contrastive Losses: CLIP

Datais (zy,z7) pairs
Point and its (other modality) partner are close

exp(fv(zv)" fr(zr)) )
Eylexp(fv(xv)T fr(yr))] /.

= |1 exp(fv(zv) fr(zr)) \
e _1 . <Ey[exp(fT(fUT)va(yv))]>_

Point is far from random other point (in other modality)

min — K, log<
fVafT i

Linear case:
fT(LET) — Arxr fV(CCV) = Ayazy



Understanding Contrastive Learning

Why does the simple idea of contrastive learning, using pairs of points, work so well
in learning representations .... ?

i.e. what is so special about the “partner points” that makes this idea powerful ?

To get some insight, we study contrastive learning in a simple context:
Linear representation learning for Gaussian Mixtures Models
Part 1: Gaussian Mixture Models (for InfoNCE-style losses)

Part 2: “Multi-modal” Gaussian Mixture Models (for CLIP style losses)



Part 1: Gaussian Mixture Models
(Single modality)

(and InfoNCE loss)



Background: Gaussian Mixture Models (GMMs)

Gaussian Mixture Model :

ke[ K]

Spherical GMMs Shared Covariance GMMs
|dentity Covariance

F = Z wiN (., I) F= Z wpN (g, 2)

ke[K] ke[K]



Linear Representations for GMMs

Task: Find a projection A € R4*7

so that the projected components are better separated than they were
originally

... so that subsequent tasks (e.g. k-means clustering, nearest neighbors,
classification etc.) become easier ...

A rudimentary form of “representation learning”

Classical approach: find the top-r SVD-subspace of data matrix
T
Ex~p|lxax” ]

“Spectral methods”



Spectral Clustering
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Linear Representations for GMMs

Spherical “Parallel Ssvp
Pancakes” A
Ssvp
<& > ) _ B
v

Works really well
Works really poorly

Reason: SVD-based approach is equivalent to:

AT <Z wk(zk + Mkﬂlf)) A

k

max 1r
A




Background: Fisher Discriminant

* Intuitive characterization of a “good” projection subspace
— Low intra-component variance
— High inter-component variance

« Fisher Discriminant formalizes this notion for projection matrix A

J(A) = Tr [AT(% w ) Al R [AT(% wntiyiid)A

Inter-cluster Across cluster
covariance covariance



Background: Fisher Subspace

Minimal Optimal Subspace w.r.t. Fisher Discriminant
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Our Work

We study the use of contrastive learning for finding projections for GMMs

- Needs a new notion of “augmentations” in GMMs

Shows optimality of contrastive learning

— Using contrastive loss, we can learn the fisher subspace for class of
shared covariance matrices, i.e., example (b),(c) in previous slide



Augmentations in GMMs

Define a new distribution for pairs of points

Both points from same component with prob 9

P (szwk( (1 0) > N 1) )

ke[K]

— 5)( > weN (g, Be) X Y wk’N(/'Lk’vzk’))
ke K] k'€ K]

4| A

Both points unrelated with prob 1 — 0

< ’ >
U M A @ denote augmentation pairs



Result for Single Modality GMMs

Minimizing the InfoNCE loss leads to embeddings of points lying EXACTLY in
the fisher subspace for shared covariance gaussians

Theorem 0.1 Suppose I parameterized by {wy, py, X}reix) be a shared co-

variance gaussian mixture model and F be its augmentation-distribution with

bias 0. Let S be the fisher subspace of F' and A™ be the optimal solution of the
InfoNCFE loss :

A" = argmin L(A)
AcRdxr

Then given r > K, Col(A") C Sgp. Moreover if § = 1, then Col(A™) = Sp.

(we do not actually have a counter-example of it NOT working if 0 <1 )



Part 2: Multimodal Gaussian Mixture Models

(and CLIP loss)



Paired Gaussian Mixture Model

rT € RdT

pepper the
aussie pup

ﬁ — Zwk[Ndv(MV,kZV,k) X NdT(/’LT,kZT,k)]
k

Each “component” == one Gaussian in each modality
Draw pairs from corresponding components

(here no augmentations needed)



Result for Multi Modality GMMs

Theorem 5.2. Suppose {wy, wv,k, WT k, XV, 2T } ke [K]
be a CLIP gaussian mixture model (Def 5.1). Let the fisher
subspace of Fy be Sy .r and Fr be St r (Eqn 1). Let
A3, , AT be the optimal solution of the CLIP InfoNCE loss
(Eqn 4) :

* * :

v, A = argmin ‘Cclip (AV7 AT)
AveRdl Xr
ATeRdZ Xr

Then given r > K, Col(A},) C Sy r and Col(A%) C
ST.F

Cross-modality correspondence all you need to find a good within-modality
representations



Summary + Discussion

Developed a simple setting in which to understand why contrastive losses
work:

Linear representation learning for Gaussian mixtures, in single and multiple
modalities

... in which we relied on a new notion of what it means, statistically, to be a
“partner point”

Possible next steps:
- Use this understanding to develop a better contrastive loss

- Extend this analysis to 1-hidden-layer non-linear networks and non-shared
covariance GMMs



