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What is Multitask Learning?
Multitask learning:

- Suppose we need to model  different tasksk

Conceptual Framework

Model Architecture
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Multitask Representation Learning
Multitask learning:

- Train a joint model with multiple heads, where one head ~ one task


• Pros:

➡ Easy to scale to many tasks: adding one more task-specific 

head

➡ Can exploit potential synergies among tasks


• Cons:

➡ Hard to design tailored structures

➡ “Negative transfer” could happen due to conflicting tasks

Figure credit: “Multitask Learning”, PhD Thesis, Rich Caruana, 1997
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Multitask Representation Learning
Multitask learning:

Multi-objective vector loss: ℓ({hi}k
i=1, g) :=

𝔼𝒟tr
1
[ℓ1((h1 ∘ g)(X), Y )]

⋮
𝔼𝒟tr

k
[ℓk((hk ∘ g)(X), Y )]

∈ ℝk

Note “ ” is not a total ordering in  for , so in general we 
pick a preference vector

≤ ℝk k > 1

w ∈ Δk−1 := {v ∈ ℝk :
k

∑
i=1

vi = 1,vi ≥ 0}
Linear scalarization

min
g,hi

k

∑
i=1

wi

ni

ni

∑
j=1

ℓi((hi ∘ g)(x(i)
j ), y(i)

j )

“shared multitask feature learning”“task-specific header”
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Multitask Representation Learning
Linear scalarization:

MTL Loss: min
g,hi

k

∑
i=1

wi

ni

ni

∑
j=1

ℓi((hi ∘ g)(x(i)
j ), y(i)

j )

0.5 1.0 1.5 2.0 2.5 3.0
Task 1

1

2

3

4

Task 2

w = (w1, …, wj) ∈ Δk−1

Geometrically:
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Linear Scalarization for MTL

What’s the potential problem of simple scalarization?

MTL Loss: min
g,hi

k

∑
i=1

wi

ni

ni

∑
j=1

ℓi((hi ∘ g)(x(i)
j ), y(i)

j )

Linear scalarization:

Not necessarily possible to strike the right balance among multiple tasks

𝒫(ℱ) = 𝒫(conv(ℱ)) 𝒫(ℱ) ≺ 𝒫(conv(ℱ))
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What if we use random weights  at each iteration ?w(t) ∈ Δk−1 t ∈ [T ]

Multi-Objective Optimization

A simple starter: simply randomize the combination weighting vector
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Pseudo-code:

Potential distributions to sample from:

- Uniform, (truncated) Normal, Dirichlet, etc

Multi-Objective Optimization
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Empirical results:

Variance of gradient norms:

Multi-Objective Optimization

- EW: equal weighting

- RLW: randomized loss weighting
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However,

- Unclear this RW (randomized weight) will always converge

- Will it always converge to a Pareto optimal point?
Any other more principled methods to explore the Pareto front?
Yes, for batch learning!

Multi-Objective Optimization

“Conflict-Averse Gradient Descent for Multi-task Learning”, NeurIPS’21, Liu et al.

“Multi-Task Learning as Multi-Objective Optimization”, NeurIPS’18, Sener and Kolton.

“Multiple-Gradient Descent Algorithm (MGDA) for Multi-Objective Optimization”, Comptes Rendus Mathématique, 
Désidéri, 2012.

“Gradient Surgery for Multi-Task Learning”, NeurIPS’20, Yu et al. 



11

Multiple-Gradient Descent Algorithm

Multi-Objective Optimization

“Multiple-Gradient Descent Algorithm (MGDA) for Multi-Objective Optimization”, Comptes Rendus Mathématique, 
Désidéri, 2012.

Let  be the gradient for the  tasks at a certain iterationgi, i ∈ [k] k
First order improvement along direction : d g⊤

i d

Primal problem: max
∥d∥2≤1

min
i∈[k]

g⊤
i d

Interpretation: finding a common direction  that maximizes the 
worst-task improvement

d

Dual problem: 
min

α∈Δk−1

∥
k

∑
i=1

αigi∥2
2

Interpretation: finding a convex combination  of the

multiple gradients with minimum  norm

α
ℓ2
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Empirical comparisons between linear scalarization vs multi-
objective optimization in NNs:

Linear Scalarization vs Multi-Objective Optimization
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Empirical comparisons between linear scalarization vs multi-
objective optimization in NNs:

Linear Scalarization vs Multi-Objective Optimization

“Do Current Multi-Task Optimization Methods in Deep Learning Even Help?”, NeurIPS’ 22, Xin et al.

Observations:

- For large-scale NNs, the closure of the Pareto front seems to be convex

- Deeper and larger models help to enlarge the feasible region (hence 

achieving Pareto-dominating solutions)
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Research Question:
“For NNs, for every Pareto optimal , does 

there exists a  such that the optimal solution of 
the linear scalarization problem corresponds to ?”

v ∈ 𝒫(ℱ)
w ∈ Δk−1

v

Linear Scalarization vs Multi-Objective Optimization

- When may MOO help?

- What is the impact of model size?

𝒫(ℱ) = 𝒫(conv(ℱ)) 𝒫(ℱ) ≺ 𝒫(conv(ℱ))
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Multi-task linear network for regression: 

- For each task , the prediction is given by


- Shared input , target vector , the training 
loss for task :


- Parameter , i.e., network width = ,  are task-specific 
parameters

i ∈ [k]

X ∈ ℝn×p yi ∈ ℝn, ∀i ∈ [k]
i

W ∈ ℝp×q q ai ∈ ℝq

Linear Scalarization vs Multi-Objective Optimization

fi(x, W, ai) = x⊤Wai

ℓi(W, ai) = ∥XWai − yi∥2
2

Note:

- For linear networks without loss of generality it suffices to consider a two layer 

network

- The overall model parameters . The optimization problem is non-

convex for each task 
θ = ({ai}k

i=1, W )
i
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Phase-transition between over-parametrized and under-parametrized 
networks:


Linear Scalarization vs Multi-Objective Optimization

Over-parametrized regime ( ):
q ≥ k
Theorem (informal): The network has sufficient capacity to fit all the 
tasks optimally, and the Pareto front reduces to a singleton 

 and hence can be attained via an arbitrary choice 
of convex coefficient .
𝒫(ℱ) = {c}, c ∈ ℝk

w ∈ Δk−1

“Understanding and Improving Information Transfer in Multi-Task Learning”, Zhang et al., ICLR’ 20

“Revisiting Scalarization in Multi-Task Learning: A Theoretical Perspective”, Hu et al., NeurIPS’ 23
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Phase-transition between over-parametrized and under-parametrized 
networks:


Linear Scalarization vs Multi-Objective Optimization

Over-parametrized regime ( ):
q ≥ k
Theorem (informal): The network has sufficient capacity to fit all the 
tasks optimally, and the Pareto front reduces to a singleton 

 and hence can be attained via an arbitrary choice 
of convex coefficient .
𝒫(ℱ) = {c}, c ∈ ℝk

w ∈ Δk−1

Intuition: let  be the optimal linear predictor for task  
and let  be a stack of column vectors. Then, due 
to the  loss, each task-specific loss can be decomposed as 

̂yi := X(X⊤X)†X⊤yi i
̂Y = [ ̂y1, …, ̂yk] ∈ ℝn×k

ℓ2

ℓi(W, ai) = ∥XWai − y∥2
2 = ∥XWai − ̂yi∥2

2 + ∥ ̂yi − yi∥2
2

Approximation error: projection loss 

(irreducible)

Fitting error: can choose  
separately for a given shared 

ai
W
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Linear Scalarization vs Multi-Objective Optimization
Over-parametrized regime ( ):
q ≥ k
Intuition: let  be the optimal linear predictor for task  
and let  be a stack of column vectors. Then, due 
to the  loss, each task-specific loss can be decomposed as 

̂yi := X(X⊤X)†X⊤yi i
̂Y = [ ̂y1, …, ̂yk] ∈ ℝn×k

ℓ2

ℓi(W, ai) = ∥XWai − y∥2
2 = ∥XWai − ̂yi∥2

2 + ∥ ̂yi − yi∥2
2

- Optimize the network parameter  and  by allocating 
one neuron for each task fitting loss  


- Pick  such that  is full-rank

- For every ,  has a solution in terms of  (because 

 and )


- Putting all together, we have  and , 

W ∈ ℝp×q {ai}k
i=1 ⊆ ℝq

̂yi

W ∈ ℝp×q W
i ∈ [k] XWai = ̂yi ai ∈ ℝq

q ≥ k ̂yi ∈ Col(X) = Col(XW )
∥XWai − ̂yi∥2

2 = 0 ci = ∥ ̂yi − yi∥2
2

∀i ∈ [k]

Note that  is the projection of  into the column space 
spanned by , i.e., the optimal linear prediction. Then if the 
network is wide enough, i.e., , we can:

̂yi ∈ Col(X) yi
X ∈ ℝn×p

q ≥ k
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Linear Scalarization vs Multi-Objective Optimization
Under-parametrized regime ( ):
q < k
Theorem (informal): We focus on two extremal cases:

- Extremely under-parametrized ( ): Linear scalarization suffices, i.e., 

full-exploration of the Pareto front, if and only if  is doubly 
non-negative, i.e., the inner products for all task pairs  and  are non-
negative, up to negating the directions of some 


- Mildly under-parametrized ( ): Linear scalarization suffices if 
and only if  is doubly non-negative, up to negating the 
directions of some 

q = 1
G := ̂Y⊤ ̂Y

̂yi ̂yj
̂yi, i ∈ [k]

q = k − 1
Q = G−1

̂yi, i ∈ [k]
Remark: 

- This means that in general under the under-parametrized regime, linear scalarization 

is not sufficient of full exploration

-  and  could be understood as a notion of “task-similarity” — task similarity is 

model-dependent!, i.e., 


- Sufficient and necessary conditions for the general case of  still open

G Q
Gij = ⟨ ̂yi, ̂yj⟩

1 < q < k − 1
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Linear Scalarization vs Multi-Objective Optimization
Geometric intuition of the under-parametrized regime:

Notation: let  be the optimal linear predictor for task  
and let  be a stack of column vectors. 

̂yi := X(X⊤X)†X⊤yi i
̂Y = [ ̂y1, …, ̂yk] ∈ ℝn×k

For every fixed ,  are the linear representations learned 
by NNs. Each task-specific head admits an optimal solution .

W ∈ ℝp×q Z = XW ∈ ℝn×q

a*i = (Z⊤Z)†Z⊤ ̂yi

Hence, each task-specific loss  could be simplified toℓi

min
Z=XW

∥Z(Z⊤Z)†Z⊤ ̂yi − ̂yi∥2
2

Let  be the projection matrix under a fixed linear 
representation , then the MOO optimization problem becomes

PZ := Z(Z⊤Z)†Z⊤

Z = XW

max
PZ

( ̂y⊤
1 PZ ̂y1, …, ̂y⊤

k PZ ̂yk)
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Linear Scalarization vs Multi-Objective Optimization
Geometric intuition of the under-parametrized regime:

Let  be the projection matrix under a fixed linear 
representation , then the MOO optimization problem becomes

PZ := Z(Z⊤Z)†Z⊤

Z = XW

max
PZ

( ̂y⊤
1 PZ ̂y1, …, ̂y⊤

k PZ ̂yk)

To illustrate the idea, let’s consider the case  and  with 
. Define  and .

q = 1 PZ = vv⊤

∥v∥2 = 1 si = ̂y⊤
i v s = ̂Y⊤v ∈ ℝk

max
PZ

( ̂y⊤
1 PZ ̂y1, …, ̂y⊤

k PZ ̂yk) ⟺ max
v

(s2
1 , …, s2

k )

But, s⊤ ( ̂Y⊤ ̂Y)
†

s = v⊤ ̂Y ( ̂Y⊤ ̂Y)
†

̂Y⊤v ≤ 1

This is a function of a -dim ellipsoid!k
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Linear Scalarization vs Multi-Objective Optimization
Geometric intuition of the under-parametrized regime:


max
PZ

( ̂y⊤
1 PZ ̂y1, …, ̂y⊤

k PZ ̂yk) ⟺ max
v

(s2
1 , …, s2

k )

and s⊤ ( ̂Y⊤ ̂Y)
†

s = v⊤ ̂Y ( ̂Y⊤ ̂Y)
†

̂Y⊤v ≤ 1

This is a function of a -dim ellipsoid!k
Furthermore, a few observations:

- The objective is invariant under negation of 


- Under negation, there are  different configurations, each configuration 
corresponds to an (potentially degenerated) ellipsoid


- The feasible region  will be the union of  ellipsoid

̂yi, i ∈ [k]
2k

ℱ 2k
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Linear Scalarization vs Multi-Objective Optimization
Geometric intuition of the under-parametrized regime:

Let  be the projection matrix under a fixed linear 
representation , then the MOO optimization problem becomes

PZ := Z(Z⊤Z)†Z⊤

Z = XW
max

PZ

( ̂y1PZ ̂y1, …, ̂ykPZ ̂yk)
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Linear Scalarization vs Multi-Objective Optimization
Multi-task non-linear network for regression: 
Theorem (informal): If , then there exists a network that has 
sufficient capacity to fit all the tasks optimally, and the Pareto front 
reduces to a singleton  and hence can be attained 
via an arbitrary choice of convex coefficient .

q ≥ nk

𝒫(ℱ) = {c}, c ∈ ℝk

w ∈ Δk−1
Remark: 

- This upper bound is potentially very loose; ideally we would like an 

upper bound on the width  that only depends on the number of tasks 
 not the number of data points 


- No lower bound known, i.e., is there a trade-off problem in general for 
under-parametrized nonlinear NNs?

q
k n

NN-Width Linear NNs Nonlinear NNs

Upper bound (sufficient) k nk

Lower bound (necessary) k ?
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Linear Scalarization vs Multi-Objective Optimization
Multi-task non-linear network for regression: 
Theorem (informal): If , then there exists a network that has 
sufficient capacity to fit all the tasks optimally, and the Pareto front 
reduces to a singleton  and hence can be attained 
via an arbitrary choice of convex coefficient .

q ≥ nk

𝒫(ℱ) = {c}, c ∈ ℝk

w ∈ Δk−1

Empirical evidence:
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How to Rescue?
Under-parametrized regime ( ): how to rescue?
q < k
Randomization!

Randomization  Convexification≈
Given two under-parametrized networks  and , we can construct a 
randomized network as follows:

f0 f1

f(x) = {f0(x) if S ≤ t
f1(x) o . w .

where  and  is a uniform RV over . Thent ∈ [0,1] S ∼ U(0,1) (0,1)

𝔼S,X,Y[ℓ( f(X), Y )] = t𝔼X,Y[ℓ( f0(X), Y )] + (1 − t)𝔼X,Y[ℓ( f1(X), Y )]

By choosing different  we can interpolate and hence convexity 
any given feasible region .

t ∈ (0,1)
ℱ

𝒫(ℱS) = 𝒫(conv(ℱ))ℱS = conv(ℱ)
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Under-parametrized regime ( ): how to rescue?
q < k
Chebyshev scalarization: w ∈ Δk−1 := {v ∈ ℝk :

k

∑
i=1

vi = 1,vi ≥ 0}
Chebyshev scalarization

min
g,hi

max
i∈[k]

wi

ni

ni

∑
j=1

ℓi((hi ∘ g)(x(i)
j ), y(i)

j )

Theorem (Choo & Atkins, 1983): Any feasible solution that is weakly 
Pareto optimal if and only if it is a solution for a weighted Chebyshev 
problem under some preference vector .w ∈ Δk−1

“Proper Efficiency in Nonconvex Multicriterion Programming”, Choo and Atkins, 
Mathematics of Operation Research, 1983

“A Unifying Perspective on Multi-Calibration: Game Dynamics for Multi-Objective Learning”, 
Haghtalab et al., NeurIPS’ 23

“Robust Multi-Task Learning with Excess Risks”, He et al., ICML’ 24

“Smooth Tchebycheff Scalarization for Multi-Objective Optimization”, Lin et al., ICML’ 24

How to Rescue?

https://scholar.google.com/citations?view_op=view_citation&hl=zh-TW&user=KQj18L8AAAAJ&sortby=pubdate&citation_for_view=KQj18L8AAAAJ:ufrVoPGSRksC
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Online Mirror Descent for Chebyshev Scalarization
Solving the Chebyshev scalarization problem with online mirror descent:


min
θ∈Θ

max
i∈[k]

1
ni

ni

∑
j=1

wiℓi( fθ(x(i)
j ), y(i)

j )

min
θ∈Θ

max
λ∈Δk−1

λi

ni

ni

∑
j=1

wiℓi( fθ(x(i)
j ), y(i)

j )

Upon receiving a batch :

- Apply (projected) gradient descent to optimize the primal variable: model 

parameter 

- Apply exponentiated gradient / multiplicative weight update / hedging 

algorithm to optimize the dual variable: 

Z(t) = {X(t), Y(t)}

θ ∈ Θ

λ ∈ Δk−1

“Online Mirror Descent for Tchebycheff Scalarization in Multi-Objective Optimization”, Liu et al., arXiv: 
2410.21764
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Online Mirror Descent for Chebyshev Scalarization
Solving the Chebyshev scalarization problem with online mirror descent:


“Online Mirror Descent for Tchebycheff Scalarization in Multi-Objective Optimization”, Liu et al., arXiv: 
2410.21764

min
θ∈Θ

max
λ∈Δk−1

λi

ni

ni

∑
j=1

wiℓi( fθ(x(i)
j ), y(i)

j )

Primal update:

Dual update:

At the end of  iterations, we have a sequence of model parameters 
, how to combine them?
T

θ(1), …, θ(T)
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Online Mirror Descent for Chebyshev Scalarization

“Online Mirror Descent for Tchebycheff Scalarization in Multi-Objective Optimization”, Liu et al., arXiv: 
2410.21764

θ* :=
1
T

T

∑
t=1

γ(t)θ(t)

Our solution: Adaptive online-to-batch conversion:

- Maintain an active set of PO solutions during the algorithm

- Credit assignment: weight  of each solution  # of 

intermediate solutions dominated by it

- For dominated solutions, weight 

γ(t) θ(t) ∝ 1+

γ(t) = 0
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Online Mirror Descent for Chebyshev Scalarization

“Online Mirror Descent for Tchebycheff Scalarization in Multi-Objective Optimization”, Liu et al., arXiv: 
2410.21764

Under the following assumptions:

- Convexity: each  is convex in 


- Bounded feasible region: 


- Bounded gradients: 

fi(θ) θ ∈ ℝd

∀θ ∈ Θ,∥θ∥2 ≤ Rθ

∀i ∈ [k], ∀θ ∈ Θ,∥∇θ fi(θ)∥2 ≤ L

TCH(θ; w) := max
i∈[k]

1
ni

ni

∑
j=1

wiℓi( fθ(x(i)
j ), y(i)

j )

Theorem (convergence): under the above assumptions and the adaptive 
online mirror descent with learning rate , the algorithm 
converges as follows:

η = O( 1/T)

𝔼 [TCH(θ*; w)] − min
θ∈Θ

TCH(θ; w) ≤ O ( d

T
+

log k

T )
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Online Mirror Descent for Chebyshev Scalarization

“Online Mirror Descent for Tchebycheff Scalarization in Multi-Objective Optimization”, Liu et al., arXiv: 
2410.21764

Controlled PO solution:
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Online Mirror Descent for Chebyshev Scalarization

“Online Mirror Descent for Tchebycheff Scalarization in Multi-Objective Optimization”, Liu et al., arXiv: 
2410.21764

Convergence speed and stability:
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Online Mirror Descent for Chebyshev Scalarization

“Online Mirror Descent for Tchebycheff Scalarization in Multi-Objective Optimization”, Liu et al., arXiv: 
2410.21764

Convergence speed and stability:
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LibMoon: A Gradient-based MultiObjective OptimizatioN Library in PyTorch

“LibMOON: A Gradient-based MultiObjective OptimizatioN Library in PyTorch”, Zhang et al., NeurIPS’ 
24 D&B Track

Github repo: https://github.com/xzhang2523/libmoon


https://github.com/xzhang2523/libmoon
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Summary
Insights and Implications for us:

- The problem of linear scalarization vs MOO for multitask learning 

is model-dependent

- Good news: with sufficient capacity of the networks, linear 

scalarization can represent every Pareto optimal solution

- For linear MTL models under regression tasks we identify a 

precise phase-transition 

- For nonlinear MTL models we have a (loose) upper bound 

- For under-parametrized models, we can use Chebyshev 

scalarization to control the converged PO solution

q = k
q = nk

Open questions:

- How about linear MTL for classification?

- Is there a similar phase transition phenomenon for nonlinear MTL models?

- Pareto-set learning: a single model/algorithm to learn all the diverse PO 

solutions simultaneously 
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Thanks!
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